説明

Fターム[5F102HC11]の内容

接合型電界効果トランジスタ (42,929) | 個別プロセス (4,778) | 蒸着、スパッタ (562)

Fターム[5F102HC11]の下位に属するFターム

斜め方向からの蒸着 (2)
蒸着の際に段切れを利用するもの

Fターム[5F102HC11]に分類される特許

81 - 100 / 560


【課題】電界効果型トランジスタの表面に、誘電性材料の堆積/成長させ、誘電性材料をエッチングし、および、メタルを蒸着させる、連続的なステップを用いる、シングルゲートまたはマルチゲートプレートの製造プロセスの提供。
【解決手段】本製造プロセスは、誘電性材料の堆積/成長が、典型的には、非常によく制御できるプロセスなので、フィールドプレート動作を厳しく制御できる。さらに、デバイス表面に堆積された誘電性材料は、デバイスの真性領域から除去される必要はない。このため、乾式または湿式のエッチングプロセスで受けるダメージの少ない材料を用いることなく、フィールドプレートされたデバイスを、実現することができる。マルチゲートフィールドプレートを使うと、マルチ接続を使用するので、ゲート抵抗を減らすこともでき、こうして、大周辺デバイスおよび/またはサブミクロンゲートデバイスの性能を向上することができる。 (もっと読む)


【課題】活性層の上に電極パッドを形成する場合に生じる問題を解決し、オン抵抗の上昇を抑えた窒化物半導体装置を実現できるようにする。
【解決手段】窒化物半導体装置は、活性領域102Aを有する窒化物半導体層積層体102と、活性領域の上に互いに間隔をおいて形成されたフィンガー状の第1の電極131及び第2の電極132とを備えている。第1の電極の上に接して第1の電極配線151が形成され、第2の電極の上に第2の電極配線152が接して形成されている。第1の電極配線及び第2の電極配線を覆うように第2の絶縁膜が形成され、第2の絶縁膜の上に第1の金属層161が形成されている。第1の金属層は、第2の絶縁膜を介して活性領域の上に形成され、第1の電極配線と接続されている。 (もっと読む)


【課題】FETの閾値電圧のばらつきのない半導体トランジスタおよびその製造方法を提供する。
【解決手段】半導体トランジスタ100は、基板1と、基板1の上方に形成された第1化合物半導体層103と、第1化合物半導体層103上に形成され、第1化合物半導体層103よりもバンドギャップの大きい第2化合物半導体層104と、第2化合物半導体層104内の少なくとも一部に、酸素がドープされた酸素ドープ領域105と、第2化合物半導体層104上に形成された第3化合物半導体層106と、第1化合物半導体層103に電気的に接続されたソース電極107およびドレイン電極109と、酸素ドープ領域105の上方に、酸素ドープ領域105に接するように形成されたゲート電極108とを有する。 (もっと読む)


【課題】コンタクト抵抗率を低く抑えることが可能な半導体装置の製造方法を提供すること。
【解決手段】本発明は、Al組成比が0.2以上のAlGaN層をエッチングして、RMS粗さが0.3nm未満の底面を有する凹部を形成する工程と、前記凹部の底面に接して、4nmから8nmの厚さの第1Ta層を形成する工程と、前記第1Ta層に熱処理を施して、前記AlGaN層にオーミック接触させる工程と、を有する半導体装置の製造方法である。 (もっと読む)


【課題】本発明は、ソース電極およびドレイン電極の熱耐久性を向上させて、かつ製造過程においてオーミック性に与える不安定要因を取り除き信頼性および量産性の高いGaN系HEMTを提供する。
【解決手段】GaN系HEMTは、基板と、窒化ガリウム系半導体と、融点が3000℃と高融点金属のタンタルと低融点金属のアルミニウムが前記窒化ガリウム系半導体上に積層されてなる前記ソースおよび前記ドレイン電極を備えている。前記ソース電極および前記ドレイン電極は、前記タンタルと前記アルミニウムの積層膜厚の比(前記アルミニウム膜厚/前記タンタル膜厚)を10以上にし、積層後のアニール処理温度が510℃以上、600℃未満で処理されて成る。 (もっと読む)


【課題】ゲート−ソース間の容量低減及びソース抵抗を低減させ、且つ耐圧向上、高出力化及び高周波化を、容易且つ確実に可能とする量産化に優れた信頼性の高い化合物半導体装置を実現する。
【解決手段】ゲート電極19を形成する際に、4層の電子線レジスト11〜14を用いてゲート開口17を形成し、ゲート開口17内に、キャップ層5の表面との接触面を含む幹状の下方部分19aと下方部分19aから傘状に拡がる上方部分19bとが一体形成されてなり、下方部分19aの接触面がドレイン電極7に比べてソース電極6に偏倚した位置に設けられており、上方部分19bの傘状の下端面のうちソース電極6側の部位がドレイン電極7側の部位よりもキャップ層5の表面からの高さが高いゲート電極19を形成する。 (もっと読む)


【課題】半導体層とソース電極、ドレイン電極とのコンタクト抵抗が小さい電界効果トランジスタを提供すること。
【解決手段】SiC基板11の表面上に形成された、活性層を含む半導体層12と、半導体層12上に互いに離間して形成され、チタン層18、およびこのチタン層18に対する膜厚比が12〜15であるアルミニウム層19を有するソース電極16およびドレイン電極15と、半導体層12上のうち、ソース電極16とドレイン電極15との間に形成されたゲート電極17と、を具備する電界効果トランジスタ。 (もっと読む)


【課題】 従来のJ−FETでは、動作領域内のゲート領域(トップゲート領域)は、動作領域外周に設けられた深いゲート領域を介してのみ、半導体基板(バックゲート領域)と接続していた。このため動作領域の中央と外周ではゲート抵抗にばらつきが生じ、ゲート抵抗の増加によるノイズ電圧の増加や、不均一動作によるゲインの低下が問題であった。
【解決手段】 格子状のゲート領域(トップゲート領域)を有するJ−FETにおいて、行列状にソース領域と交互に配置されていたドレイン領域の一部を深いゲート領域に置き換え、動作領域内にも深いゲート領域を設ける。ドレイン領域を一部省くことで生じるドレイン電流の流れない無効領域をできる限り減らすため、ソース領域が配置されるセルについてドレイン電流が流れない方向のゲート領域を短くする。 (もっと読む)


【課題】2DEGをチャンネルとして用いる半導体装置において、不純物イオンの侵入による悪影響を排除する。
【解決手段】第1の半導体層である電子走行層11上に、第2の半導体層である電子供給層12が形成されている。これらの界面(ヘテロ接合界面)における電子走行層11側に、2次元電子ガス(2DEG)層13が形成される。ソース電極14からドレイン電極15の間の2DEG層13が形成された領域がこの半導体装置10におけるチャンネル領域となる。このチャンネル領域上の絶縁層17上において、第1のフィールドプレート18が形成されている。すなわち、第1のフィールドプレート18は、2つの主電極のうちの一方から他方に達するチャンネル領域上を覆うように形成されている。 (もっと読む)


【課題】GaN系半導体層内に形成される電子トラップ濃度を低減する。
【解決手段】Si基板10上に接して形成されたAlNを主成分とする下地層12と、前記下地層12上に形成され、前記下地層12上に形成され、前記下地層12から圧縮応力を受ける第1バッファ層14と、前記第1バッファ層14上に形成された第2バッファ層16と、前記第2バッファ層16上に形成されたAlの組成比が0.1以下のGaN系半導体層18と、を具備し、前記第2バッファ層16における前記第1バッファ層14側の面の結晶軸長に対し前記第1バッファ層14と反対の面の結晶軸長が前記GaN系半導体層18に近く、前記第2バッファ層16の伝導帯底エネルギーが前記GaN系半導体層18より高い半導体装置。 (もっと読む)


【課題】ゲート電極の電位の位相差を抑制することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板と、基板上方に形成された電子走行層と、電子走行層上方に形成された電子供給層と、電子供給層上方に形成された複数のゲート電極5gと、複数のゲート電極5gが接続されたゲートパッド8gと、が設けられている。ゲート電極5gのゲート幅がゲートパッド8gから離間するほど小さくなっている。 (もっと読む)


【課題】シリコン基板上に優れた結晶性の窒化物半導体層が形成された窒化物半導体装置を提供する。
【解決手段】シリコン基板10と、シリコン基板10に接するとともにシリコン基板10上の一部分に形成された窒化シリコンからなる選択成長マスク層20とを備え、選択成長マスク層20が形成されていないシリコン基板10上に、当該シリコン基板10に接するように窒化物半導体層30が形成されている。 (もっと読む)


【課題】オン抵抗が低く耐圧および信頼性が高い電界効果トランジスタを提供する。
【解決手段】基板1上に形成されたキャリア走行層3と、前記キャリア走行層上に形成され前記キャリア走行層よりもバンドギャップエネルギーが高いキャリア供給層4a、4bと、前記キャリア供給層から前記キャリア走行層の表面または内部に到る深さまで形成されたリセス部5と、前記キャリア供給層上に形成されたドレイン電極11と、前記リセス部に形成され、前記ドレイン電極側のキャリア供給層と重畳するように延設したゲート電極7と、前記リセス部の底面と前記ゲート電極との間に形成された第1絶縁膜6と、前記ゲート電極と前記ドレイン電極側のキャリア供給層との間に形成され前記第1絶縁膜よりも誘電率が高い第2絶縁膜8aとを備える。 (もっと読む)


【課題】2つのオーミック電極、及び、それらの間に配置されたゲート電極を備えた、ゲート電極形成用電子線の揺らぎに起因するゲート電極形成不良が生じない形で製造できる半導体装置を提供する。
【解決手段】半導体装置1の、ゲート電極20により近い方のオーミック電極(ソース電極14s)として、ゲート電極20と対向する側の少なくとも一方の隅(電子線の描画開始位置側の隅)がカットされた矩形形状のものを採用しておく。 (もっと読む)


【課題】ゲート電極とソース電極との間のゲート寄生容量成分Cgsを低減することができる半導体装置を提供する。
【解決手段】半導体基板11上に形成された動作層12と、この動作層12の表面上に、互いに離間して形成されたドレイン電極13およびソース電極14と、動作層12の表面上において、ドレイン電極13とソース電極14との間に形成されたゲート電極15と、動作層12の表面上において、ドレイン電極13とソース電極14との間に、ゲート電極15を覆うように形成された表面保護膜19と、表面保護膜19の表面上であって、少なくともゲート電極15のドレイン側端部上を含む位置に形成されたソースフィールドプレート電極20と、ソースフィールドプレート電極20に接続されるとともに、ソース電極14に電気的に接続され、これらの電極20、14のよりも狭い幅で表面保護膜19上に形成された複数の配線21を具備する。 (もっと読む)


【課題】ゲートリーク電流の増加が抑制された信頼性の高い電界効果トランジスタを提供する。
【解決手段】 ゲート電極は、第1金属層16および第2金属層17を含み、
第2金属層17は、第1金属層16よりも導電率が高く、
第1金属層16の上方に、第2金属層17が積層され、
ソース電極18およびドレイン電極19は、半導体層12〜14上にオーム性接触し、
ゲート電極は、ソース電極18およびドレイン電極19の間に配置され、かつ、第1金属層16により半導体層上にショットキー性接触し、
半導体層上におけるソース電極18およびゲート電極の間、ならびに、ゲート電極およびドレイン電極19の間は、絶縁膜15Aにより覆われ、
かつ、
第2金属層17下面の全体が第1金属層16上面の上方に重なっているか、または、第1金属層16の厚みが絶縁膜15Aの厚み以上であることを特徴とする電界効果トランジスタ。 (もっと読む)


【課題】リフトオフ法を用いずに、簡易な手法で化合物半導体装置のゲート電極、ソース電極、及びドレイン電極を各種パターンに欠陥を生ぜしめることなく形成する。
【解決手段】AlGaN/GaN・HEMTを製造する際に、化合物半導体層上に保護絶縁膜8を形成し、保護絶縁膜8に開口を形成し、開口を埋め込む導電材料を保護絶縁膜8上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてゲート電極15(又はソース電極45及びドレイン46)を形成し、その後、保護絶縁膜8上に保護絶縁膜16を形成し、保護絶縁膜8,16に開口を形成し、開口を埋め込む導電材料を保護絶縁膜16上に形成し、導電材料上の開口上方に相当する部位にマスクを形成し、マスクを用いて導電材料をエッチングしてソース電極22及びドレイン23(又はゲート電極53)を形成する。 (もっと読む)


【課題】ゲート電極の形成工程におけるフォトレジスト層を露光した際に、露光不良によりレジスト残渣が発生しないようにすること。
【解決手段】本発明の電界効果トランジスタ100は、半導体基板1上にゲート電極を備えた電界効果トランジスタで、半導体基板1上に設けられた誘電体膜2と、この誘電体膜2の開口部に設けられたフット部8と、このフット部8上及び誘電体膜2上に設けられたヘッド部9とを備え、誘電体膜の膜厚t1が、0.9k×λ/2|n1−n2|<t1<1.1k×λ/2|n1−n2|(ただしkは自然数であり、屈折率n1は所定の波長λを有する露光光に対する誘電体膜の屈折率n1(>2.1)、屈折率n2はフォトレジスト層の屈折率)である。 (もっと読む)


【課題】半導体基板上の金属電極と半導体基板の界面に、現像残渣のない半導体装置を提供すること。
【解決手段】半導体基板上に、金属電極が設けられた半導体装置であって、金属電極は、半導体基板の上面視において、細線部と、細線部の電極の長手方向の両端に太線部と、細線部から太線部へ向けて線幅が漸増する線幅漸増部とからなり、細線部の側面と線幅漸増部の側面の境界領域に、曲率を有す円弧が付けられた形状であることを特徴とする半導体装置。 (もっと読む)


【課題】確実なノーマリオフ動作する縦型AlGaN/GaN-HEMTおよびその製造方法を提供する。
【解決手段】n+-GaN基板11の表面にn-GaNバッファ層12、UID-GaN層13、UID-AlGaN層14が順次積層され、UID-AlGaN層の表面に形成されたSiN表面保護膜16と、この表面保護膜の開口部を覆うSiN第1ゲート絶縁膜18と、アパーチャ形成用リセス19内に埋め込まれたn-GaNアパーチャ20と、このアパーチャのn+-GaN基板とは反対側表面と第1ゲート絶縁膜とを少なくとも覆うSiN第2ゲート絶縁膜21と、第1ゲートリセス内の第2ゲート絶縁膜の表面に形成されたゲート電極22と、第1ゲートリセスを挟み、UID-AlGaN層の表面に離間して形成されたソース電極23と、n+-GaN基板のUID-AlGaN層とは反対側の表面に形成されたドレイン電極24とを備える。 (もっと読む)


81 - 100 / 560