説明

Fターム[5F140BF04]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 最下層材料 (6,467) | 半導体 (3,081)

Fターム[5F140BF04]に分類される特許

81 - 100 / 3,081


【課題】チャネル形成領域に対しトランジスタの電流駆動能力を向上させる方向に応力をかけ、さらに電流駆動能力が向上し、性能が向上された半導体装置を提供する。
【解決手段】半導体基板1aの活性領域1cが素子分離絶縁膜2で区画され、チャネル形成領域、ゲート絶縁膜、ゲート電極8a、ソース・ドレイン領域及び被覆応力膜を有するNTrを有し、ソース・ドレイン領域の両側部に位置する素子分離絶縁膜2aの表面は、ソース・ドレイン領域の表面より低い位置に形成されており、ゲート電極8a、活性領域1c、及び表面がソース・ドレイン領域の表面より低い位置に形成された素子分離絶縁膜2aを被覆して、チャネル形成領域に対し引張応力を印加する被覆応力膜が形成されている構成とする。 (もっと読む)


【課題】半導体装置の信頼性を向上させ、半導体装置の製造歩留まりを向上させる。
【解決手段】半導体基板1の主面に酸化膜として絶縁膜2を形成し、絶縁膜2上に窒化シリコン膜を形成してから、素子分離用の溝4aをプラズマドライエッチングにより形成し、溝4aを埋めるように酸化シリコンからなる絶縁膜6をHDP−CVD法で形成し、CMP処理により溝4aの外部の絶縁膜6を除去し、溝4a内に絶縁膜6を残す。それから、窒化シリコン膜を除去する。その後、絶縁膜2をウェットエッチングで除去して半導体基板1を露出させるが、この際、半導体基板1の主面に140ルクス以上の光を当てながら絶縁膜2をウェットエッチングする。 (もっと読む)


【課題】閾値電圧(Vth)の経時的に変動する現象を抑制することで、高信頼性を保つことが可能なMIS型半導体装置を提供する。
【解決手段】本発明は、半導体ボディ領域とゲート絶縁膜の間に半導体ボディ領域とは逆の半導体極性のチャネル層を有するMIS型半導体装置であり、当該半導体装置のフラットバンド電圧Vfbを−10ボルト以下とすることにより、半導体ボディ領域表面近傍に誘起されるキャリア電荷密度を当該半導体装置の動作保証範囲内において所定量以下に抑制する。 (もっと読む)


【課題】微細CMOSと中高耐圧MOSFETとの混載を前提とする集積回路(半導体装置)において、中高耐圧MOSFETのチャネル長やしきい値電圧のばらつきを抑制して、設計仕様どおりの安定した回路動作の実現や出力電流密度の向上を図ることができる技術を提供する。
【解決手段】本発明における特徴は、チャネル領域CHの幅(チャネル長)を小さくしたことにある。具体的には、ゲート電極Gと平面的に重なるチャネル領域CHの幅をLとし、ゲート電極Gの厚さをtとした場合、チャネル領域CHの幅Lが、ゲート電極Gの厚さtの1/5倍以上1倍以下になるようにチャネル領域CHを形成する。これにより、チャネル領域CHの幅Lを小さくすることができ、しきい値電圧のばらつきを小さくすることができる。 (もっと読む)


【課題】プラズマ酸化によりシリコン基板上に形成される酸化膜の金属汚染量を低減すること。
【解決手段】酸化膜の形成方法は、不活性ガスと、前記不活性ガスに対する混合割合が0よりも大きく且つ0.007以下である酸化ガスと、を含む混合ガスからプラズマを生成する工程と、前記プラズマを用いてシリコン基板の表面に酸化膜を形成する工程と、を含む。 (もっと読む)


【課題】 SiO/SiC界面における界面準位自体を低減することが出来るSiC半導体を用いたMOS構造、およびその酸化膜の形成方法を提供する。
【解決手段】 SiC半導体基板1を処理炉内に用意し、処理炉内を比較的低い700℃に設定して、SiC半導体基板1の基板表面を酸素ガス雰囲気中にさらす。この熱酸化により、SiC半導体基板1の基板表面には、SiOから成る中間層2が約1nmの極薄い厚さで形成される。次に、中間層2上にSiO膜を約50nmの厚さに堆積して、SiOから成る堆積層3を形成する。次に、SiC半導体基板1が酸化しない温度および時間で、堆積層3をアニーリングする。このアニーリングは、赤外線ランプなどの急速加熱装置により、SiO膜の融点である1200℃に近い、この1200℃の融点よりも低い例えば1000〜1100℃程度の温度で、短時間に急速に行われる。 (もっと読む)


【課題】FETの駆動力性能や遮断性能などを向上できる半導体装置を提供する。
【解決手段】半導体装置は、半導体基板と、前記半導体基板上に形成され、オフ状態とオン状態とで閾値電圧を可変させるFETからなる半導体素子と、を備える。前記半導体素子は、前記半導体基板のチャネル形成箇所の上方に形成される絶縁膜と、前記絶縁膜の上方に配置されるゲート電極と、前記絶縁膜と前記ゲート電極との間に介挿され、前記チャネルとの間よりも、前記ゲート電極との間で、より多くの電子の授受を行なうチャージトラップ膜と、を有する。 (もっと読む)


【課題】チャネル形成領域に対しトランジスタの電流駆動能力を向上させる方向に応力をかけ、さらに電流駆動能力が向上し、性能が向上された半導体装置を提供する。
【解決手段】半導体基板(1a,1b)の活性領域(1c,1d)が素子分離絶縁膜(2,6a)で区画され、チャネル形成領域、ゲート絶縁膜、ゲート電極(8a,8b)、ソース・ドレイン領域及び被覆応力膜を有するNTrとPTrを有し、活性領域におけるゲート長方向が<100>方向であり、素子分離絶縁膜としてNTrにおけるソース・ドレイン領域の両端部に第1の引張応力膜6aが形成され、ソース・ドレイン領域の両端部以外に第1の圧縮応力膜2が形成され、PTrの素子分離絶縁膜は第1の圧縮応力膜2が形成され、被覆応力膜としてNTrに第2の引張応力膜が形成され、PTrに第2の圧縮応力膜が形成されている構成とする。 (もっと読む)


【課題】携帯電話などに使用されるハイパワーアンプの出力段は、多数のLDMOSFETセルを集積し、通常、複数のLDMOSFETを構成するLDMOSFET部を有する。このLDMOSFETセルにおいては、裏面のソース電極と表面のソース領域との間の抵抗を低減するために、半導体基板に高濃度にボロンドープされたポリシリコンプラグが埋め込まれている。本願発明者らが、このポリシリコンプラグについて、検討したところによって、熱処理に起因してポリシリコンプラグの固相エピタキシャル成長により、ポリシリコンプラグが収縮し、それによってシリコン基板に歪が発生し、リーク不良等の原因となることが明らかとなった。
【解決手段】本願発明は、LDMOSFETを有する半導体集積回路装置において、半導体基板に埋め込まれたシリコン系導電プラグのボロン濃度が、固溶限界内に於いて、8.1x1020atom/cm以上である。 (もっと読む)


【課題】Finger形状のソース電極、ドレイン電極と接続される各N+型ソース層、N+型ドレイン層を取り囲むようにP+型コンタクト層が構成される場合でも、サージ電圧印加時に各Finger部の寄生バイポーラトランジスタが均一にオンする。
【解決手段】互いに平行に延在する複数のN+型ソース層9、N+型ドレイン層8を取り囲むようにP+型コンタクト層10を形成する。N+型ソース層9上、N+型ドレイン層8上及びN+型ソース層9が延在する方向と垂直方向に延在するP+型コンタクト層10上にそれぞれ金属シリサイド層9a、8a、10aを形成する。金属シリサイド層9a、8a、10a上に堆積された層間絶縁膜13に形成されたコンタクトホール14を介して、該各金属シリサイド層と接続するFinger形状のソース電極15、ドレイン電極16及び該Finger形状の各電極を取り囲むP+型コンタクト電極17を形成する。 (もっと読む)


【課題】窒化物半導体装置の、ソース・ドレイン間のオン抵抗を低減する。
【解決手段】ソース・ドレイン間を走行する窒化物半導体層と下地となる窒化物半導体層の間に、両窒化物半導体層より電子親和力が大きく、下地となる窒化物半導体よりも格子定数の大きい材料を形成する。その結果、ゲート電圧の印加によりゲート絶縁膜の下方に形成されるチャネルと、ゲート部以外で形成される二次元電子ガスを、深さ方向において近づけることができ、オン抵抗の低減が可能となる。 (もっと読む)


【課題】チャネル移動度の低下を抑制しつつ閾値電圧を制御する炭化珪素半導体装置の製造方法の提供を目的とする。
【解決手段】本発明の炭化珪素半導体装置の製造方法は、(b)二酸化珪素膜が形成された炭化珪素基板を窒化処理する工程と、(c)窒化処理された炭化珪素基板を水蒸気を含んだ酸素雰囲気で熱処理する工程とを備える。工程(c)は、(c1)窒化処理された炭化珪素基板を投入した熱処理炉の温度を不活性ガス雰囲気中で昇温又は降温する工程を含む。工程(c1)は、窒化処理直後のチャネル移動度をμch、昇温又は降温開始時刻をt=0、熱処理開始時刻をt=t1、熱処理終了時刻をt=t2、熱処理炉からの基板取出時刻をt=t3、ボルツマン定数をk、時刻tにおける熱処理炉の温度をT(K)とした場合に、式(1)により求められる炭化珪素基板中のチャネル移動度の低下率が10%以下となるように昇温速度及び/又は降温速度を決定する。 (もっと読む)


【課題】第2の部分の寄生容量を低下させることにより、半導体装置の特性を向上させる。
【解決手段】MISトランジスタは、半導体基板上に設けられたゲート絶縁膜と、ゲート絶縁膜上に設けられ、第1の幅W1を有する第1の部分と第2の幅W2を有する第2の部分とを有するゲート電極を有する。第2の部分の側壁上には、酸化シリコン膜が設けられている。第2の部分に接するゲート絶縁膜は、第1の部分に接するゲート絶縁膜よりも厚くなっている。 (もっと読む)


【課題】高耐圧トランジスタ形成に適した半導体装置の新規な製造方法を提供する。
【解決手段】
半導体装置の製造方法は、シリコン基板に第1導電型第1領域と、第1領域に接する第2導電型第2領域を形成し、ゲート絶縁膜を形成し、第1領域と第2領域とに跨がるゲート電極を形成し、ゲート電極上から第2領域上に延在する絶縁膜を形成し、ゲート電極をマスクとし第2導電型不純物を注入してソース領域およびドレイン領域を形成し、ゲート電極および絶縁膜を覆って金属層を形成し熱処理を行って、ソース領域、ドレイン領域及びゲート電極にシリサイドを形成し、層間絶縁膜にソース領域、ドレイン領域、ゲート電極に達する第1、第2、第3コンタクトホール、及び絶縁膜に達する孔を形成し、第1〜第3コンタクトホール及び孔に導電材料を埋め込み、第1〜第3導電ビアと、孔の内部に配置された導電部材とを形成する。 (もっと読む)


【課題】高集積化することができる半導体装置、金属膜の製造方法及び半導体装置の製造方法を提供することである。
【解決手段】実施形態に係る半導体装置は、半導体基板と、前記半導体基板に形成され、ヒ素を含むヒ素拡散層と、前記ヒ素拡散層上に形成された金属膜と、を備える。前記金属膜は、タングステン、チタン、ルテニウム、ハフニウム及びタンタルからなる群より選択された少なくとも1種の金属、並びにヒ素を含む。 (もっと読む)


【課題】 出力回路用、或いは、アナログ回路用の2種類の特性に夫々特性が最適化されてなるトランジスタを備えた半導体装置を低コストで提供する。
【解決手段】
同一基板101上に、出力回路用の第1のトランジスタ1aと、アナログ回路用の第2のトランジスタ1bが搭載された半導体装置であって、各トランジスタのゲート絶縁膜が、ドリフト領域107上面の一部の領域において、膜厚の厚い厚膜絶縁膜108bとなっており、ボディ領域103に向かって延伸するドリフト領域107を、第1のトランジスタ1aでは当該厚膜絶縁膜108bのボディ領域103側境界Aを超えて延伸させ、第2のトランジスタ1bでは当該厚膜絶縁膜108bのボディ領域側境界Aよりも内側にとどまるように延伸させる。 (もっと読む)


【課題】 本発明はドライプラズマエッチングを用いた基板のエッチング方法に関する。
【解決手段】 ドライプラズマエッチングシステム内で誘電体層をシリコン及びポリシリコンに対して選択的な均一エッチングを行う方法及びシステムが記載されている。エッチング用化学は、たとえばCH2F2やCHF3のようなフルオロハイドロカーボンを有する。高いエッチング選択性及び受容可能な均一性は、CH2F2の流速やドライプラズマエッチングシステムと結合する出力を含むプロセス条件を選択することによって実現されて良い。それにより、エッチングプラズマ中での活性エッチングラジカルとポリマー生成ラジカルとの適切なバランスがとられる。 (もっと読む)


【課題】相互接続構造の珪化物層と、ロープロファイルバンプを含む、バンプ間ショートを防止したパワーMOSFETからなる半導体デバイスおよび製造方法を提供する。
【解決手段】基板上にソース領域160およびドレイン領域170を有し、珪化物層174が、ソース領域およびドレイン領域の上に配置されている。第1の相互接続層194が、珪化物層上に形成されており、ソース領域に接続される第1のランナー196と、ドレイン領域に接続される第2のランナー198とが配置される。第2の相互接続層214が、第1の相互接続層上に形成されており、第1のランナーに接続される第3のランナー216と、第2のランナーに接続される第4のランナー218とを含む。第3の相互接続層234が形成され、ソースパッド236、ソースバンプ240が電気的に接続される。 (もっと読む)


【課題】FETデバイスにおける閾値電圧をより良く制御できるデバイスの提供。
【解決手段】基板101と、基板101の上のSiGe層103と、SiGe層上の半導体層105と、基板、SiGe層及び半導体層に隣接した絶縁層109aと、絶縁層に隣接した一対の第1のゲート構造体111と、絶縁層上の第2のゲート構造体113とを含む電界効果トランジスタ(FET)と、FETを形成する方法である。絶縁層は、SiGe層の側面、並びに半導体層の上面、半導体層の下面及び導体層の側面に隣接していることが好ましい。SiGe層は、炭素を含むことが好ましい。一対の第1のゲート構造体が、第2のゲート構造体に対して実質的に横断方向にあることが好ましい。さらに、第1のゲート構造体の対は、絶縁層によりカプセル封入されることが好ましい。 (もっと読む)


【課題】耐圧の向上が図られる半導体装置を提供する。
【解決手段】n-型半導体領域には、ドレイン領域となるn-型の拡散領域が形成されている。n-型の拡散領域の周囲を取囲むようにp型の拡散領域が形成されている。p型の拡散領域には、ソース領域となるn+型の拡散領域が形成されている。n-型の拡散領域の直下には、p-型の埋め込み層13が形成されている。n-型の半導体領域の領域には、高電位が印加されるn+型の拡散領域が形成され、そのn+型の拡散領域の表面上には電極が形成されている。電極とドレイン電極とは、配線20によって電気的に接続されている。配線20の直下に位置する部分に、p-埋め込み層13に達するトレンチ3aが形成されて、ポリシリコン膜81が形成されている。 (もっと読む)


81 - 100 / 3,081