説明

Fターム[5F140BF10]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 最下層材料 (6,467) | 金属 (3,194) | 金属化合物(窒化物、酸化物) (807)

Fターム[5F140BF10]に分類される特許

201 - 220 / 807


マスキング材料、例えば、フォトレジストを除去するための方法、およびマスキング材料を除去することによって形成される電子デバイスが示される。例えば、マスキング材料を除去するための方法は、マスキング材料を、セリウムおよび少なくとも1つの追加的な酸化剤を含む溶液と接触させる工程を含む。セリウムは塩に含まれてもよい。塩は硝酸セリウムアンモニウムであってもよい。少なくとも1つの追加的な酸化剤は、マンガン、ルテニウムおよび/またはオスミウム含有化合物であってもよい。
(もっと読む)


量子井戸型半導体装置、および量子井戸型半導体装置を形成する方法について示した。本方法は、基板の上部に配置され、量子井戸チャネル領域を有するヘテロ構造を提供するステップを有する。また、この方法は、ソースおよびドレイン材料領域を形成するステップを有する。また、この方法は、ソースおよびドレイン材料領域に溝を形成するステップを有し、ドレイン領域から分離されたソース領域が提供される。また、この方法は、溝内のソース領域とドレイン領域の間に、ゲート誘電体層を形成するステップと、溝内のゲート誘電体層の上部に、ゲート電極を形成するステップとを有する。
(もっと読む)


【課題】III−V族チャネルとIV族ソース−ドレインとを有する半導体デバイス及びその製造方法を提供する。
【解決手段】III−V族材料のエネルギーレベルの密度とドーピング濃度をIII−V族材料とIV族材料のヘテロエピタキシと素子の構造設計によって高める。本発明の方法は、基板100上にダミーゲート材料層を堆積し、フォトリソグラフィでダミーゲート材料層にダミーゲートを区画することと、ダミーゲートをマスクとして使用し、セルフアライン型イオン注入によってドーピングを行い、高温で活性化を行い、ソース−ドレイン108を形成することと、ダミーゲートを除去することと、ソース−ドレインのペアの間の基板にエッチングで凹陥部を形成することと、凹陥部にエピタキシャル法によりチャネル含有スタック素子112を形成することと、チャネル含有スタック素子上にゲート120を形成することと、を含む。 (もっと読む)


【課題】フィン電界効果トランジスタのソース/ドレイン構造を提供する。
【解決手段】基板上のフィンチャネル本体110a、110b、フィンチャネル本体110a、110b、上に配置されたゲート電極115、およびフィンチャネル本体110a、110b、に隣接して配置され、どのフィン構造も実質的に含まない、少なくとも1つのソース/ドレイン(S/D)領域120a,120b及び125a,125bを含むフィン電界効果トランジスタ(FinFET)。 (もっと読む)


幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。これらの構造及び方法のうちの一部は、大部分が既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。これらの構造及び方法のうちの一部は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより一層正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。
(もっと読む)


【課題】 高誘電体ゲート絶縁膜およびシリコン基板との界面を高品質化して、MISFETの特性向上を図る。
【解決手段】 シリコン基板11上にhigh−k膜21とゲート電極24を形成する半導体装置の製造方法において、high−k膜形成後にフッ素雰囲気でアニール処理23を施し、その後のプロセス温度を600℃以下で行う、半導体装置の製造方法。 (もっと読む)


【課題】製造工程中にピラー径の変動が小さいピラー型MOSトランジスタを備えた半導体装置及びその製造方法を提供する。
【解決手段】本発明の半導体装置は、基板対して垂直に立設する第1のピラー及び第2のピラーの側面にゲート絶縁膜を介して形成されたゲート電極と、第1のピラーの先端部及び基端周囲領域に形成された上部拡散層及び下部拡散層と、を備え、第2のピラーのゲート電極と隣接する第1のピラーのゲート電極とは接続されており、第1のピラーのゲート電極には第2のピラーのゲート電極を介して電位が供給され、第1のピラーと、該第1のピラーに隣接する第2のピラーの少なくとも一部とは平面視して、第1のピラー及び第2のピラーの側面を構成する面のうち、熱酸化速度及び/又はエッチング速度が最大の面に対して45°の方向に沿って配置されていることを特徴とする。 (もっと読む)


【課題】MIPS構造等のゲート電極と同時形成が可能であり且つ抵抗が高い抵抗素子を有する半導体装置及びその製造方法を提供する。
【解決手段】基板上に金属含有膜108及びポリシリコン膜109を順次形成する工程と、前記金属含有膜及び前記ポリシリコン膜を抵抗素子形状にパターニングする工程と、前記金属含有膜の少なくとも一部分を除去することにより、前記ポリシリコン膜の下に中空領域119を形成する工程とを備えている。 (もっと読む)


【課題】本発明は、微細半導体素子の加工方法にかかわり、特に、通常high-k/メタルゲートと呼ばれる構造の素子の微細化に適した加工方法に関する。
【解決手段】Si基板上に形成されたHfあるいはZrを含む絶縁膜とその上層あるいは下層あるいは膜中に存在するMg,YあるいはAlとを含む堆積膜の除去を、ドライエッチングとウエットエッチングを、ウエットエッチングを先にして少なくとも1回繰り返して行う。 (もっと読む)


【課題】トランジスタのゲート電極上に第1の誘電体層を形成し、かつ金属層と接合したダマシン構造を形成する方法を提供する。
【解決手段】トランジスタのゲート電極上に第1の誘電体層を形成し、第1の誘電体層上にエッチストップ層を形成し、第1の誘電体層およびエッチストップ層を貫通する開口を形成し、トランジスタのソース/ドレイン(S/D)領域を露出し、開口内に、エッチストップ層の第1の上面と少なくとも部分的に実質的に同じ高さである表面を有する金属層を形成して、トランジスタのS/D領域に接触させ、さらに金属層と接合したダマシン構造を形成する。 (もっと読む)


【課題】縦型MOSトランジスタを備えた半導体装置を形成する際のゲート電極とコンタクトプラグとの短絡を防止することが可能な半導体装置及びその製造方法を提供する。
【解決手段】本発明の半導体装置の製造方法は、前記半導体基板上にシリコン窒化膜(SiN膜)からなるマスク窒化膜のパターンを形成したのちに、溝および半導体ピラーを前記半導体基板に形成する第一工程と、前記マスク窒化膜を残存させたまま、前記溝を覆うゲート絶縁膜を形成したのちに前記半導体ピラーよりも低い高さのゲート電極を形成する第二工程と、前記溝を覆うように、シリコン酸窒化膜(SiON膜)からなるライナー膜を形成したのちに、前記ライナー膜上を覆い、かつ、前記溝内を充填するように層間膜(SOD膜)を形成する第三工程と、前記マスク窒化膜をエッチングにより選択的に除去する第四工程と、を採用する。 (もっと読む)


【課題】ゲート電極とプラグとの接続信頼性を向上することができる技術を提供する。
【解決手段】本発明では、MISFETのゲート電極G1を金属膜MF2とポリシリコン膜PF1の積層膜から構成するMIPS電極を前提とする。そして、このMIPS電極から構成されるゲート電極G1のゲート長に比べて、ゲートコンタクトホールGCNT1の開口径を大きく形成する第1特徴点と、ゲート電極G1を構成する金属膜MF2の側面に凹部CP1を形成する第2特徴点により、さらなるゲート抵抗(寄生抵抗)の低減と、ゲート電極G1とゲートプラグGPLG1との接続信頼性を向上することができる。 (もっと読む)


【課題】MMICのSPDTスイッチなど、半導体デバイスとして用いるのに適したMOS−PHEMTの構造及びその製造方法を開示する。
【解決手段】MOS−PHEMT構造は、Al、HfO、La及びZrOからなる群から選ばれる材料からなるゲート誘電体層107を有することを特徴とし、これにより、このMOS−PHEMTの構造を含む、高周波スイッチデバイスなどの半導体構造が、直流電流の損失及び挿入損失の低下を防ぎ、隔絶性を向上させることができる。 (もっと読む)


【課題】オン抵抗が低いIII族窒化物系電界効果トランジスタおよびその製造方法を提供する。
【解決手段】本発明のIII族窒化物系電界効果トランジスタは、下地半導体層上に第1窒化物半導体層および第2窒化物半導体層が順次積層された窒化物半導体積層体と、窒化物半導体積層体の上面に接する、ソース電極およびドレイン電極と、ソース電極およびドレイン電極の間の窒化物半導体積層体における、第1窒化物半導体層の一部および第2窒化物半導体層が形成されていない領域であるリセス領域と、リセス領域上に形成された窒化物半導体膜と、リセス領域の内壁面、および第2窒化物半導体層の上面に形成された絶縁膜と、絶縁膜上に形成されたゲート電極とを有し、第2窒化物半導体層は、第1窒化物半導体層に比べて広い禁制帯幅を有し、窒化物半導体膜の上面は、第1窒化物半導体層の上面よりも低いことを特徴とする。 (もっと読む)


【課題】高誘電率ゲート絶縁膜およびメタルゲート電極を有するMISFETを備えた半導体装置の信頼性向上を図る。
【解決手段】nチャネル型MISFET用の高誘電率ゲート絶縁膜としてHfとLaとOとを主成分として含有するHf含有絶縁膜4aを形成し、pチャネル型MISFET用の高誘電率ゲート絶縁膜としてHfとAlとOとを主成分として含有するHf含有絶縁膜4bを形成する。それから、金属膜7とシリコン膜8を形成し、これらをドライエッチングでパターニングしてゲート電極GE1,GE2を形成する。その後、ゲート電極GE1,GE2で覆われない部分のHf含有絶縁膜4a,4bをウェットエッチングで除去するが、この際、フッ酸を含有しない酸性溶液でのウェット処理とアルカリ性溶液でのウェット処理とを行ってから、フッ酸を含有する酸性溶液でのウェット処理を行う。 (もっと読む)


【課題】高電圧を印加しても壊れにくい電界効果トランジスタを提供する。
【解決手段】電界効果トランジスタは、基板1、チャネル層3及びバリア層4と、バリア層4上にこの順で離間して設けられたソース電極6、ゲート電極7およびドレイン電極8とを備え、ソース電極6の直下に第1のn型不純物拡散領域12が設けられ、ドレイン電極8の直下に第2のn型不純物拡散領域13が設けられ、第2のn型不純物拡散領域の下側の前記チャネル層3および第2のn型不純物拡散領域の前記ゲート電極側の前記チャネル層3および前記バリア層4に第3のn型不純物拡散領域15が設けられる。第3のn型不純物拡散領域15は第2のn型不純物拡散領域13よりも低いn型不純物濃度を有し、ゲート電極とドレイン電極との間に電圧が印加されたときバリア層4およびチャネル層3においてその絶縁破壊強度を超える電界集中が生じることを抑制する。 (もっと読む)


【課題】金属ゲートとストレッサーを有するゲルマニウムフィンFETを提供する。
【解決手段】集積回路構造は、n型フィン電界効果トランジスタ(fin field effect transistor、FinFET)とp型FinFETからなる。n型FinFETは、基板上の第一ゲルマニウムフィン、第一ゲルマニウムフィンの上面と側壁上の第一ゲート誘電体、及び、第一ゲート誘電体上の第一ゲート電極からなる。p型FinFETは、基板上の第二ゲルマニウムフィン、第二ゲルマニウムフィンの上面と側壁上の第二ゲート誘電体、及び、第二ゲート誘電体上の第二ゲート電極からなる。第一ゲート電極と第二ゲート電極は、ゲルマニウムの固有エネルギーレベルに近い仕事関数を有する同一材料で形成される。 (もっと読む)


【課題】MIPS構造を採るメタル膜とコンタクトプラグとの界面抵抗を低減できるようにする。
【解決手段】まず、半導体基板1の上に、ゲート絶縁膜3を形成し、形成したゲート絶縁膜3の上に、TiN膜4及びポリシリコン膜5を順次形成する。続いて、ポリシリコン膜5にTiN膜4を露出するコンタクトホール5aを形成する。続いて、ポリシリコン膜5における第1のコンタクトホール5aの少なくとも底面及び壁面上に金属膜7を形成する。 (もっと読む)


【課題】
幅広い電子デバイスのアレイ及びシステムにおける電力消費を低減する一式の新たな構造及び方法が提供される。一部の構造及び方法は、大部分が、既存のバルクCMOSのプロセスフロー及び製造技術を再利用することで実現され、半導体産業及びより広いエレクトロニクス産業がコスト及びリスクを伴って代替技術へ切り替わることを回避可能にする。一部の構造及び方法は、深空乏化チャネル(DDC)設計に関係し、CMOSベースのデバイスが従来のバルクCMOSと比較して低減されたσVTを有することと、チャネル領域にドーパントを有するFETの閾値電圧VTがより正確に設定されることとを可能にする。DDC設計はまた、従来のバルクCMOSトランジスタと比較して強いボディ効果を有することができ、それにより、DDCトランジスタにおける電力消費の有意義な動的制御が可能になる。様々な効果を達成するようDDCを構成する手法が数多く存在し得る。
(もっと読む)


【課題】ナローチャネル特性の劣化を抑制する。
【解決手段】素子分離領域STIは、半導体基板100に形成されたトレンチ104内に設けられており、トレンチ104の側壁上に形成された下地絶縁膜105を有している。素子形成領域100a上にはゲート絶縁膜112が形成されており、ゲート絶縁膜112は高誘電率膜110を有している。高誘電率膜110の第1の部分110aは、素子形成領域100aにおける上面上に形成されており、高誘電率膜110の第2の部分110bは、素子形成領域における上部側面104a上に下地絶縁膜105を介して形成されている。第2の部分110bと下地絶縁膜105との間には、MISトランジスタの閾値電圧を変更する金属を含有する第1のキャップ膜106が設けられている。 (もっと読む)


201 - 220 / 807