説明

Fターム[5F140BF10]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 最下層材料 (6,467) | 金属 (3,194) | 金属化合物(窒化物、酸化物) (807)

Fターム[5F140BF10]に分類される特許

61 - 80 / 807


【課題】本発明は、接合リーク電流を低減可能で、かつトランジスタの信頼性を向上させることの可能な半導体装置及びその製造方法を提供することを課題とする。
【解決手段】ゲート電極61よりも上方に配置されたゲート絶縁膜21、及びゲート電極61の上面61aを覆う水素含有絶縁膜62と、水素含有絶縁膜62を介して、ゲート電極用溝17の上部17Bを埋め込むフッ素含有絶縁膜63と、を備え、ゲート絶縁膜21と接触する第1及び第2の不純物拡散領域65,66の面に、半導体基板13に含まれるシリコンと水素含有絶縁膜62に含まれる水素とが結合したSi−H結合、及び半導体基板13に含まれるシリコンとフッ素含有絶縁膜63に含まれるフッ素とが結合したSi−F結合を有する。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】高誘電率ゲート絶縁膜を用いたCMIS型半導体集積回路において、短チャネル長、且つ狭チャネル幅のデバイス領域では、ソースドレイン領域の活性化アニールによって、高誘電率ゲート絶縁膜とシリコン系基板部との界面膜であるILの膜厚が増加することによって、閾値電圧の絶対値が増加するという問題がある。
【解決手段】本願の一つの発明は、MISFETを有する半導体集積回路装置の製造方法において、MISFETのゲートスタック及びその周辺構造を形成した後、半導体基板表面を酸素吸収膜で覆い、その状態でソースドレインの不純物を活性化するためのアニールを実行し、その後、当該酸素吸収膜を除去するものである。 (もっと読む)


【課題】1回のリソグラフィ工程によりセルフアラインでトンネルトランジスタを製造する方法を提供する。
【解決手段】ゲート絶縁膜及びゲート電極が積層された半導体基板上に第1の絶縁膜を形成しリソグラフィにより第1の絶縁膜の端部に第1の絶縁膜とは薬品選択性が異なりゲート電極位置を画定する第2の絶縁膜を形成する工程と、第1及び第2の絶縁膜をマスクにゲート電極の一端を画定する工程と、第1及び第2の絶縁膜をマスクにして第1導電型不純物を半導体基板に導入しソースを形成する工程と、半導体基板全面に第1の絶縁膜とは薬品選択性が異なる第3の絶縁膜を被覆する工程と、該第3の絶縁膜の一部を除去することにより該第1の絶縁膜を選択的に除去する工程と、第2及び第3の絶縁膜をマスクにしてゲート電極を形成した後、第2導電型不純物を半導体基板に導入しドレインを形成する工程を含むトンネルトランジスタの製造方法。 (もっと読む)


【課題】ゲート絶縁膜界面材料としてGeO2 を用いた場合においてもGeO2 層の劣化を抑制することができ、素子の信頼性向上をはかると共に、プロセスの歩留まり向上をはかる。
【解決手段】本発明の実施形態による電界効果トランジスタは、Geを含む基板10上の一部に設けられた、少なくともGeO2 層を含むゲート絶縁膜20と、ゲート絶縁膜20上に設けられたゲート電極30と、ゲート電極30下のチャネル領域を挟んで前記基板に設けられたソース/ドレイン領域50と、前記ゲート絶縁膜20の両側部に形成された窒素含有領域25と、を備えた。 (もっと読む)


【課題】パターンの微細化、特に、SRAMのセル面積を縮小するためには、隣接ゲートの端部間距離を縮小することが重要となる。しかし、28nmテクノロジノードにおいては、ArFによる単一回露光でパターンを転写することは、一般に困難である。従って、通常、複数回の露光、エッチング等を繰り返すことによって、微細パターンを形成しているが、ゲートスタック材にHigh−k絶縁膜やメタル電極部材が使用されているため、酸化耐性やウエットエッチ耐性が低い等の問題がある。
【解決手段】本願発明は、メモリ領域におけるhigh−kゲート絶縁膜およびメタル電極膜を有するゲート積層膜のパターニングにおいて、最初に、第1のレジスト膜を用いて、隣接ゲート電極間切断領域のエッチングを実行し不要になった第1のレジスト膜を除去した後、第2のレジスト膜を用いて、ライン&スペースパターンのエッチングを実行するものである。 (もっと読む)


【課題】高電子移動度トランジスタの耐圧を高くする。
【解決手段】第1の高電子移動度トランジスタ4と、負の閾値電圧を有する第2の高電子移動度トランジスタ6とを有し、第2の高電子移動度トランジスタ6のソースS2は、第1の高電子移動度トランジスタ4のゲートG1に接続され、第2の高電子移動度トランジスタ6のゲートG2は、第1の高電子移動度トランジスタ4のソースS1に接続されている。 (もっと読む)


【課題】駆動電流を向上したnMOSトランジスタを備えた半導体装置を実現できるようにする。
【解決手段】半導体装置は、半導体基板の素子領域101の上にゲート絶縁膜111を介在させて形成されたゲート電極112と、素子領域101におけるゲート電極112の両側方に形成され、n型不純物及び炭素を含むソースドレイン領域122とを備えている。ソースドレイン領域122を構成するシリコン及びソースドレイン領域122に含まれる炭素の少なくとも一方は、主同位体よりも質量数が大きい安定同位体の存在比が、天然存在比よりも高い。 (もっと読む)


【課題】 ゲート電極の微細化が可能な電界効果型トランジスタを提供する。
【解決手段】 本開示に係る電界効果型トランジスタは、基板10と、基板10上に形成され、フィン領域13と該フィン領域13の両端にそれぞれ形成されるソース領域14とドレイン領域15とを有する半導体層と、フィン領域13の少なくとも2面の一部と接する凸部171を有するゲート電極17と、を備える。 (もっと読む)


【課題】特性の良好な半導体装置を形成する。
【解決手段】本発明は、pチャネル型MISFETをpMIS形成領域1Aに有し、nチャネル型MISFETをnMIS形成領域1Bに有する半導体装置の製造方法であって、HfON膜5上にAl膜8aを形成する工程と、Al膜上にTiリッチなTiN膜7aを形成する工程と、を有する。さらに、nMIS形成領域1BのTiN膜およびAl膜を除去する工程と、nMIS形成領域1BのHfON膜5上およびpMIS形成領域1AのTiN膜7a上にLa膜8bを形成する工程と、La膜8b上にNリッチなTiN膜7bを形成する工程と、熱処理を施す工程とを有する。かかる工程によれば、pMIS形成領域1Aにおいては、HfAlON膜のN含有量を少なくでき、nMIS形成領域1Bにおいては、HfLaON膜のN含有量を多くできる。よって、eWFを改善できる。 (もっと読む)


【課題】n型MOSトランジスタ及びp型MOSトランジスタのそれぞれに共通のゲート電極材料を用い、且つそれぞれの閾値電圧が適切な値に調整された半導体装置を実現できるようにする。
【解決手段】半導体装置は、第1トランジスタ11及び第2トランジスタ12を備えている。第1トランジスタ11は、第1ゲート絶縁膜131と、第1ゲート電極133とを有し、第2トランジスタ12は、第2ゲート絶縁膜132と、第2ゲート電極134とを有している。第1ゲート絶縁膜131及び第2ゲート絶縁膜132は、第1絶縁層151及び第2絶縁層152を含む。第1ゲート電極133及び第2ゲート電極134は、断面凹形の第1導電層155及び該第1導電層155の上に形成された第2導電層156を含む。第1絶縁層151及び第2絶縁層152は平板状であり、第1ゲート絶縁膜131は、仕事関数調整用の第1元素を含んでいる。 (もっと読む)


【課題】GIDLによるホールの発生効率を向上させることが可能な半導体記憶装置を提供する。
【解決手段】フィン3の両側にゲート絶縁膜5を介して設けられ、フィン3にチャネル領域を形成するゲート電極Gと、チャネル領域間のボディ領域にホールを閉じ込めるポテンシャルバリアを形成する不純物拡散層6と、チャネル領域を挟み込むようにしてフィン3に形成されたソース層S/ドレイン層Dとを備え、データ‘1’が書き込まれる際にゲート電圧が負電位かつ基板バイアス電圧およびドレイン電圧が正電位に設定される。 (もっと読む)


【課題】電極材料が拡散するのを抑制し、特性の向上を実現する。
【解決手段】半導体装置を、ゲート電極3とゲート絶縁膜2との間、Al含有オーミック電極4、5とAu配線9との間、及び、ゲート電極3の下方及びAl含有オーミック電極4、5の上方、のいずれかに設けられ、第1TaN層6A、Ta層6B、第2TaN層6Cを順に積層した構造を有する電極材料拡散抑制層6を備えるものとする。 (もっと読む)


【課題】nチャネル型電界効果トランジスタとpチャネル型電界効果トランジスタを有する半導体装置において、nチャネル型電界効果トランジスタ、pチャネル型電界効果トランジスタ共にドレイン電流特性に優れた半導体装置を実現する。
【解決手段】nチャネル型電界効果トランジスタ10と、pチャネル型電界効果トランジスタ30とを有する半導体装置において、nチャネル型電界効果トランジスタ10のゲート電極15を覆う応力制御膜19には、膜応力が引張応力側の膜を用いる。pチャネル型電界効果トランジスタ30のゲート電極35を覆う応力制御膜39には、膜応力が、nチャネル型トランジスタ10の応力制御膜19より、圧縮応力側の膜を用いることにより、nチャネル型、pチャネル型トランジスタの両方のドレイン電流の向上が期待できる。このため、全体としての特性を向上させることができる。 (もっと読む)


【課題】素子分離用ゲート電極のみのしきい値電圧を高くすることができ、素子分離用ゲート電極の底部にチャネルが形成されない半導体装置を提供する。
【解決手段】半導体基板1に形成された複数の活性領域と、これら活性領域同士を区画する素子分離領域と、活性領域内を複数の素子領域に区画する第1素子分離用トレンチ32Aと、隣接する第1素子分離用トレンチ32A間に設けられ、第1素子分離用トレンチ32Aの深さよりも浅く形成されたゲートトレンチ31Aと、絶縁膜25を介して第1素子分離用トレンチ32A内に形成された素子分離用電極32と、ゲート絶縁膜26Aを介してゲートトレンチ31A内に形成されたゲート電極31と、を具備してなり、素子分離用電極32底部に成膜されている絶縁膜25の膜厚が、ゲート電極31の底部に成膜されているゲート絶縁膜26Aの膜厚よりも厚いことを特徴とする。 (もっと読む)


【課題】MISFETにおいて、信頼性寿命の低下を抑制する。
【解決手段】半導体装置100は、少なくとも1つのMISFETを備える。MISFETは、第1導電型の半導体基板101と、半導体基板101上にゲート絶縁膜104を介して形成されたゲート電極105と、半導体基板101におけるゲート電極105の側方に形成された第2導電型のソース領域106と、他方の側方に形成された第2導電型のドレイン領域107と、半導体基板101におけるゲート電極105の下方であり且つソース領域106及びドレイン領域107に挟まれたチャネル領域111とを備える。ゲート絶縁膜104は、ゲート電極105の底面下から側面上にまで亘って形成されている。チャネル領域111において、ドレイン領域107近傍の第1領域における不純物濃度は、チャネル領域111における第1領域以外の第2領域における不純物濃度に比べて低い。 (もっと読む)


【課題】用途によって異なるしきい値電圧を有するトランジスタを有する半導体装置、及び工程数の増加を抑えた当該半導体装置を製造する方法を提供する。
【解決手段】半導体装置100は、半導体基板101上に形成された第1のゲート絶縁膜110aと、第1のゲート絶縁膜110a上に形成された第1のゲート電極109aと、第1のゲート絶縁膜110aの側面上及び第1のゲート電極109aの側面上に形成された第1のサイドウォール絶縁膜140aとを有する第1導電型の第1のMISFET150を備えている。第1のサイドウォール絶縁膜140aの少なくとも一部には、第1のゲート絶縁膜110aに正または負の固定電荷を誘起するための元素が含まれている。 (もっと読む)


【課題】微細化を達成するとともに、ゲート電極等の信頼性を確保する半導体装置の製造方法を提供する。
【解決手段】N型MISトランジスタ及びP型MISトランジスタのそれぞれのゲート形成領域において、N型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第1の金属含有膜F1を、P型MISトランジスタのゲート形成領域の凹部内に形成されたゲート絶縁膜F0上に第3の金属含有膜F3を形成し、第1の金属含有膜F1上及び第3の金属含有膜F3上に第2の金属含有膜F2を形成し、N型MISトランジスタのゲート絶縁膜F0に接する第1の金属含有膜F1の仕事関数がP型MISトランジスタのゲート絶縁膜F0に接する第3の金属含有膜F3の仕事関数よりも小さい。 (もっと読む)


【課題】窒化金属膜から放出される窒素がゲート絶縁膜に到達することを抑制する。
【解決手段】この半導体装置は、半導体基板100、第1ゲート絶縁膜110、シリコン含有第2ゲート絶縁膜122、及び第1ゲート電極を備えている。第1ゲート絶縁膜110は半導体基板100上に形成されており、酸化シリコン又は酸窒化シリコンよりも比誘電率が高い材料から構成されている。シリコン含有第2ゲート絶縁膜122は、第1ゲート絶縁膜110上に形成されている。第1ゲート電極はシリコン含有第2ゲート絶縁膜122上に形成されており、窒化金属層124を有している。第1ゲート絶縁膜110、シリコン含有第2ゲート絶縁膜122、及び窒化金属層124は、pMOSFETの一部を構成している。 (もっと読む)


【課題】GaNを有する窒化物の上にマイクロ波プラズマを用いてゲート絶縁膜を形成する半導体装置の製造方法を提供する。
【解決手段】GaN層13,AlGaN層14aが積層されたFET構造と、フィールド酸化膜15とゲート電極20との間にかけて、形成されたゲート絶縁膜19bを備える。ゲート絶縁膜19bは、アルミナ24aとシリコン酸化膜24bから構成される二層構造とする。 (もっと読む)


61 - 80 / 807