説明

Fターム[5F140BJ20]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ソース・ドレイン電極 (8,852) | 2層目より上層の材料 (1,508) | 金属 (1,434) | 金属化合物(窒化物、酸化物) (313)

Fターム[5F140BJ20]に分類される特許

161 - 180 / 313


【課題】CMIS集積回路装置等の量産において、MISFETのゲート長等の変動により、Vth等の電気特性が変動する問題が、短チャネル化によって、深刻な問題となってきている。この問題を解決するために、先行する変動要因プロセスの変動を後続の変動要因プロセスを逆側に振って、変動要因を相殺するフィード・フォーワッド技術が種々検討されている。これらのフィード・フォーワッド技術は、相殺プロセスの効果が全体に及ぶため、単一種類のMISFETを搭載した製品では、比較的容易に適用できるものの、複数種類のMISFET搭載した製品では、適用が困難である。
【解決手段】本願発明は、ゲート電極パターニング工程およびオフセット・スペーサ成膜工程の結果に基づいて、多変量解析の手法により、ハロー注入量を調整するものである。 (もっと読む)


【課題】ゲート絶縁膜とゲート電極を工夫することにより、ゲート空乏化を抑制しつつ実効仕事関数を制御することを可能とする。
【解決手段】P型の絶縁ゲート型電界効果トランジスタの第1トランジスタ2と、N型の絶縁ゲート型電界効果トランジスタの第2トランジスタ3とを有し、前記第1トランジスタ2のゲート絶縁膜21と前記第2トランジスタ3のゲート絶縁膜21は、前記ゲート電極側に金属不純物22が存在していて、前記第1トランジスタ2のゲート電極23NがN型のポリシリコンである、もしくは前記第2トランジスタ3のゲート電極23PがP型のポリシリコンである、もしくは前記第1トランジスタ2のゲート電極23NがP型のポリシリコンであり前記第2トランジスタ3のゲート電極23PがP型のポリシリコンであることを特徴とする。 (もっと読む)


【課題】信頼性や製造歩留まりを向上し得る半導体装置の製造方法を提供する。
【解決手段】半導体基板10の第1の主面上に、ゲート電極24とソース/ドレイン拡散層32とを有するトランジスタ33を形成する工程と、半導体基板の第1の主面上及びトランジスタ上に第1の絶縁膜38を形成する工程と、第1の絶縁膜に、ゲート電極に達するコンタクトホール40を形成する工程と、コンタクトホール内及び第1の絶縁膜上に、プラズマCVD法により導電膜42,44を形成する工程と、第1の絶縁膜の表面が露出するまで導電膜を研磨し、コンタクトホール内に、導電膜を含む導体プラグ44を埋め込む工程とを有し、導電膜を形成する工程の前に、第1の主面の反対側の面である第2の主面に存在する第2の絶縁膜29のうち、第2の主面の周縁部に存在する第2の絶縁膜をエッチング除去する工程を更に有している。 (もっと読む)


【課題】素子形成領域間の分離絶縁膜を保護し、接合リークなしに素子と配線膜とを電気的に接続することができる半導体装置およびその製造方法を提供すること。
【解決手段】半導体基板1に形成されて素子形成領域2を画定する分離絶縁膜3と、素子形成領域2に形成された素子と、素子および分離絶縁膜3を覆うように半導体基板1上に形成された層間絶縁膜5と、層間絶縁膜5をエッチングして形成されたコンタクトホール内に埋め込まれて素子と電気的に接続する配線膜6、7とを備え、少なくとも分離絶縁膜3と層間絶縁膜5との間に、前記エッチングによる分離絶縁膜3の浸食を防止するための3層以上の絶縁膜4a、4b、4cが積層されてなる保護積層膜4が形成されていることを特徴とする半導体装置。 (もっと読む)


【課題】ゲートラストプロセスで形成されたゲート構造において、ソース・ドレイン領域に接続するコンタクトとゲート電極とのショートを防ぐ。
【解決手段】半導体装置100は、ゲートラストプロセスで形成された第1のゲート210を含む。第1のゲート210は、絶縁膜中に形成された第1の凹部内の底面に形成されたゲート絶縁膜、当該第1の凹部内のゲート絶縁膜上に形成されたゲート電極、および当該第1の凹部内のゲート電極上に形成された保護絶縁膜140を含む。また、半導体装置100は、第1のゲート210の両側方のN型不純物拡散領域116aに接続され、第1の凹部よりも径が大きい第2の凹部内に埋め込まれたコンタクト134を含む。 (もっと読む)


【課題】n型MISトランジスタのゲート電極、及びp型MISトランジスタのゲート電極の双方を精度良く実現する。
【解決手段】第1のMISトランジスタと第2のMISトランジスタとを備えた半導体装置において、第1のMISトランジスタは、半導体基板10における第1の活性領域10a上に形成された第1のゲート絶縁膜13aと、第1のゲート絶縁膜13a上に形成され、シリコン膜14aとシリコン膜14a上に形成された第1の金属シリサイド膜20aとからなる第1のゲート電極26aとを備え、第2のMISトランジスタは、半導体基板10における第2の活性領域10b上に形成された第2のゲート絶縁膜13bと、第2のゲート絶縁膜13b上に形成され、フルシリサイド化された第2の金属シリサイド膜20Bからなる第2のゲート電極26bとを備え、第1の金属シリサイド膜20aは、第2の金属シリサイド膜20Bに比べて膜厚が薄い。 (もっと読む)


【課題】 ゲート絶縁膜が大気やメタル電極のエッチング液等に曝されて劣化することなく、仕事関数の異なるnMOS、pMOSに適したメタルゲートMISFETを含む半導体装置の製造方法を提供する。
【解決手段】 メタル電極を有するn型MISトランジスタ及びp型MISトランジスタを備えた半導体装置の製造方法であって、単結晶シリコン基板100上に設けられたゲート絶縁膜102と、ゲート絶縁膜102上に設けられた第一の金属膜103、第二の金属膜104、第三の金属膜105、導電層106を備えたゲート電極108とを備えた構造であって、熱工程によって第二の金属膜104の構成元素を第一の金属膜103を通してゲート絶縁膜102中へ拡散させることによって、n型MISトランジスタ及びp型MISトランジスタそれぞれに適した仕事関数に変化させる。 (もっと読む)


【課題】本発明は、MOSトランジスタの電流駆動能力をより向上させることができる半導体装置を提供する。
【解決手段】本発明に係る半導体装置は、半導体基板1、PMOSトランジスタP1、およびSiC層10を備えている。半導体基板1は、シリコンから成る。PMOSトランジスタP1は、半導体基板1の上面内に形成される。SiC層は、PMOSトランジスタP1のチャネル領域の下方から、PMOSトランジスタP1を構成する電極領域内若しくは電極領域下に渡って、形成される。 (もっと読む)


【課題】金属シリサイド層の異常成長を防止する。
【解決手段】半導体基板1にゲート絶縁膜5、ゲート電極6a,6b、ソース・ドレイン用のn型半導体領域7bおよびp型半導体領域8bを形成する。それから、サリサイド技術によりゲート電極6a,6bおよびソース・ドレイン領域上に金属シリサイド層13を形成する。そして、金属シリサイド層13の表面を還元性ガスのプラズマで処理してから、半導体基板1を大気中にさらすことなく、金属シリサイド層13上を含む半導体基板1上に窒化シリコンからなる絶縁膜21をプラズマCVD法で堆積させる。 (もっと読む)


【課題】完全空乏化型のトランジスタ特性を維持しつつ、良好なS値と大きなドレイン電流が得られる縦型SGT構造を有する半導体装置を提供する。
【解決手段】本発明の半導体装置は、完全空乏化が可能な太さに形成された複数の半導体の基柱5と、複数の基柱5の各々の外周面に設けられたゲート絶縁膜10と、複数の基柱5の隙間を埋めて複数の基柱5の各々の外周面を覆うゲート電極11と、を備えていることを特徴とする。 (もっと読む)


【課題】工程増を招くことなく、各ゲートについて均一で十分なフル・シリサイド化を実現する、信頼性の高い半導体装置及びその製造方法を提供する。
【解決手段】ゲート電極の表層部分及びソース/ドレイン領域16a,16bの表層部分がシリサイド化されている状態において、半導体基板1にフラッシュランプアニールを施す。この処理により、ソース/ドレイン領域16a,16bには(NiPt)2Si層19bが形成された状態が保持されて、ゲート電極のみが選択的にフル・シリサイド化され、フル・シリサイドゲート電極21が形成される。 (もっと読む)


【課題】基板とゲート絶縁膜との界面近傍における窒素濃度を必要以上に高くすることなく、ゲート絶縁膜中の窒素濃度を高める。
【解決手段】電界効果トランジスタのゲート絶縁膜は、半導体基板に近い第1領域と、第1領域よりもゲート電極に近い第2領域とで窒素濃度のピークが異なっており、第1領域における窒素濃度のピークは、2.5atomic%〜10atomic%であり、第2領域における窒素濃度のピークは、第1領域における窒素濃度のピークよりも高い。 (もっと読む)


【課題】ソース領域およびドレイン領域をシリサイド化しても、リーク電流を可及的に抑えることを可能にする。
【解決手段】半導体領域7を有するシリコン基板2と、半導体領域に離間して形成されたソース/ドレイン領域11a、15a、11b15bと、ソース領域とドレイン領域との間の半導体領域上に形成された絶縁膜9aと、絶縁膜上に形成されたゲート電極10aと、ゲート電極の側部に形成された側壁絶縁膜13aと、第1ソース/ドレイン領域上に形成され、少なくとも{111}面となる表面を有する単結晶シリコン層17a、17bと、少なくとも単結晶シリコン層の{111}面上に形成され、かつ側壁絶縁膜に接する部分を有し、この部分と単結晶シリコン層との界面が単結晶シリコン層の{111}面であるNiSi層21a、21bと、NiSi層に接する第1のTiN膜23a、23bと、を有する第1のMOSFETと、を備えたことを特徴とする。 (もっと読む)


【課題】製造時における半導体素子へのプラズマダメージの影響を小さくすることができる半導体装置の製造方法を提供する。
【解決手段】半導体基板上に半導体素子を形成する工程と、マイクロ波をプラズマ源とし、半導体基板の表面近傍において、プラズマの電子温度が1.5eVよりも低く、かつプラズマの電子密度が1×1011cm−3よりも高いマイクロ波プラズマを用いたCVD処理によって半導体素子上に膜を形成する工程とを含む。 (もっと読む)


【課題】コストを低減した半導体装置を提供する。
【解決手段】半導体基板100表面部にチャネル領域101を挟むように形成された拡散層102と、チャネル領域101上に形成されたゲート絶縁膜103を有し、N型MOSFETのゲート電極104は第1のニッケルシリサイド層104a及び第1のニッケルシリサイド層104a上に形成され第1のニッケルシリサイド層104aよりニッケル含有率が高い第2のニッケルシリサイド層104bからなり、P型MOSFETのゲート電極104は第2のニッケルシリサイド層104bよりニッケル含有率が高い第3のニッケルシリサイド層からなる。 (もっと読む)


【課題】絶縁膜を研磨せずに、該絶縁膜からゲート電極の上面を露出させることが可能な半導体装置とその製造方法を提供すること。
【解決手段】シリコン基板1の上にゲート絶縁膜5を形成する工程と、ゲート絶縁膜5の上にゲート電極7aを形成する工程と、ゲート電極7aを覆うように液状の絶縁性材料20を塗布する工程と、絶縁性材料20に鋳型100を押し当てることにより、ゲート電極7aの上方の絶縁性材料20を押し流す工程と、絶縁性材料20を硬化して絶縁膜21にする工程と、硬化の後、ゲート電極7a上に高融点金属膜を形成する工程と、高融点金属膜をアニールすることにより、ゲート電極7aの全体をシリサイド化する工程とを有する半導体装置の製造方法による。 (もっと読む)


低コンタクト抵抗を示すMOS構造(100,200)と、このようなMOS構造の形成方法が提供される。一方法では、半導体基板(106)が提供され、前記半導体基板上にゲートスタック(146)が形成される。前記半導体基板内に、前記ゲートスタックと整合された不純物ドープ領域(116)が形成される。前記不純物ドープ領域から延びる隣接するコンタクトフィン(186)が形成され、前記コンタクトフィン上に金属シリサイド層(126)が形成される。前記コンタクトフィンの少なくとも1つに存在する前記金属シリサイド層の少なくとも一部に対するコンタクト(122)が形成される。
(もっと読む)


【課題】ダマシンゲートプロセスにおいて、ゲート電極用溝形成時に層間絶縁膜が後退せず、短絡の原因となる導電層の残渣が発生しない半導体装置の製造方法を提供する。
【解決手段】チャネル形成領域を有する半導体基板10にダミーゲート絶縁膜12とダミーゲート電極13を形成し、ダミーゲート電極をマスクとして基板にソース・ドレイン領域19を形成し、酸化シリコンよりフッ酸耐性を有する絶縁性材料によりダミーゲート電極より厚い膜厚でダミーゲート電極を被覆して第1絶縁膜21を形成し、その上に第1絶縁膜と異なる絶縁性材料で第2絶縁膜22を形成し、第2絶縁膜の上面から第1絶縁膜の頂部、さらにダミーゲート電極が露出するまで第1絶縁膜と第2絶縁膜とを平坦化除去し、ダミーゲート電極及びダミーゲート絶縁膜を除去し、得られるゲート電極用溝の底部にゲート絶縁膜を形成し、その上にゲート電極を形成し、電界効果トランジスタとする。 (もっと読む)


【課題】トランジスタの側壁絶縁膜に関連する新たな提案を行う。
【解決手段】基板と、前記基板上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、前記ゲート電極の側面に形成された第1の側壁絶縁膜と、前記第1の側壁絶縁膜の表面及び前記基板の上面に形成された第2の側壁絶縁膜と、前記第2の側壁絶縁膜の表面に形成された第3の側壁絶縁膜と、前記第2の側壁絶縁膜の一部が除去されて前記第1の側壁絶縁膜と前記第3の側壁絶縁膜との間に形成された溝、に埋め込まれている絶縁膜とを備えることを特徴とする半導体装置。 (もっと読む)


【課題】LCDドライバなどで小型化によるプラグの高抵抗化を抑制し、かつ、高耐圧MISFETのゲート電極と配線間の耐圧不良を改善できる技術を提供する。
【解決手段】LCDドライバにおいて、高耐圧MISFETでは、電界緩和用絶縁領域3上にゲート電極10bの端部が乗り上げている。そして、高耐圧MISFET上の1層目の層間絶縁膜上にソース配線あるいはドレイン配線となる配線HL1が形成されている。このとき、半導体基板1Sとゲート絶縁膜8の界面からゲート電極10bの上部までの距離をa、ゲート電極10bの上部から配線HL1が形成されている層間絶縁膜の上部までの距離をbとすると、a>bとなっている。このように構成されている高耐圧MISFETにおいて、配線HL1は、高耐圧MISFETのゲート電極10bと平面的な重なりを有しないように配置されている。 (もっと読む)


161 - 180 / 313