説明

Fターム[5F140BK17]の内容

Fターム[5F140BK17]の下位に属するFターム

選択成長 (541)

Fターム[5F140BK17]に分類される特許

81 - 100 / 192


【課題】素子分離領域から受ける応力に基づいた、トランジスタの駆動力を低下させる歪みを緩和し、さらに、歪みシリコン技術を用いることでトランジスタの駆動力を向上させることができる半導体装置を提供する。
【解決手段】所定の結晶からなる半導体基板内にソース・ドレイン領域およびチャネル領域を有するトランジスタと、ゲート幅方向から前記チャネル領域を挟むように設けられ、前記所定の結晶と異なる格子定数を有するエピタキシャル結晶が埋め込まれた拡張領域と、を備えた半導体装置を提供する。 (もっと読む)


【課題】配線層間の正常な電気的導通が取れている半導体装置を提供することを課題とする。
【解決手段】基板上又は基板の表面層に少なくとも2層の配線層を備え、前記2層の配線層の内、下層配線層がシリコンからなる際に、前記下層配線層と上層配線層間に炭化珪素層を備えたことを特徴とする半導体装置により上記課題を解決する。 (もっと読む)


【課題】静止耐圧の向上と低オン抵抗化とを両立できる半導体装置及びその製造方法を提供する。
【解決手段】P型の半導体基板111内に下から順にN- 型の第1ドレインオフセット領域112、N- 型の第2ドレインオフセット領域113、及びN- 型の第3ドレインオフセット領域114が形成されている。第2及び第3ドレインオフセット領域113及び114内にP- 型のボディ領域115が形成されている。第2ドレインオフセット領域113の不純物濃度は、第1及び第3ドレインオフセット領域112及び114よりも低い。ボディ領域115のカーバチャー部131は第2ドレインオフセット領域113内に位置する。 (もっと読む)


【課題】 電界効果型半導体装置に関し、従来の作製方法を大幅に変更することなく、サブスレッショルド電流によるoff時のリーク電流を抑制して、on−off比を高くする。
【解決手段】 ソース領域及び第1ドレイン領域の少なくとも一方が金属或いは多結晶半導体からなるとともに、前記金属或いは多結晶半導体と半導体チャネル層との間に形成されたトンネル絶縁膜を有する。 (もっと読む)


【課題】保護素子のターンオン電圧を決める制約を少なくする。
【解決手段】半導体基板1、Pウェル2、ゲート電極4、ソース領域5、ドレイン領域6および抵抗性降伏領域8を有する。抵抗性降伏領域8はドレイン領域6に接し、ゲート電極4直下のウェル部分と所定の距離だけ離れたN型半導体領域からなる。ドレイン領域6または抵抗性降伏領域8に接合降伏が発生するドレインバイアスの印加時に抵抗性降伏領域8に電気的中性領域(8i)が残るように、抵抗性降伏領域8の冶金学的接合形状と濃度プロファイルが決められている。 (もっと読む)


【課題】ノーマリオフ特性が実現され、飽和電流値低下が生じず、ゲート電圧に対するドレイン・ソース間電流特性が良好なHEMTを実現する半導体装置を提供する。
【解決手段】第1半導体層131と、第1半導体層131の主面135上に積層され、第1半導体層131の主面135側に2DEG層137を生じさせる第2半導体層133と、第1半導体層131及び第2半導体層133と比して電子親和力χが大きい半導体材料からなり、2DEG層137と電気的に接続された第3半導体層139と、第2半導体層133及び第3半導体層139上に設けられた絶縁膜157と、第3半導体層139にオーミック接続される第1電極151と、第2半導体層133及び第3半導体層139上に絶縁膜157を介して設けられた第2電極153と、第1電極151との間に第2電極153を介在させ、2DEG層137と電気的に接続された第3電極155とを備える。 (もっと読む)


【課題】オン抵抗が低く、耐圧性及びチャネル移動度が高い電界効果トランジスタ及び電界効果トランジスタの製造方法を提供すること。
【解決手段】MOS構造を有し、窒化化合物半導体からなる電界効果トランジスタであって、基板上に形成されたi型または所定の導電型を有する半導体層と、エピタキシャル成長によって半導体層とソース電極およびドレイン電極のそれぞれとの間に形成された、所定の導電型とは反対の導電型を有するコンタクト層と、エピタキシャル成長によってドレイン電極側のコンタクト層と半導体層との間にゲート電極と重畳するように形成された、所定の導電型とは反対の導電型を有するとともに該コンタクト層よりもキャリア濃度が低い電界緩和層と、エピタキシャル成長によって半導体層上の電界緩和層に隣接する領域に形成された、i型または所定の導電型を有する媒介層と、媒介層上に形成したゲート絶縁膜と、を備える。 (もっと読む)


【課題】簡単な構成で、耐圧を保持しつつ小型化を図ることができる半導体装置を提供する。
【解決手段】ドレイン側拡散層112”Aにおけるチャネル領域116側の側面の少なくとも一部を除いた全面が、酸化膜107により、覆われている。酸化膜107は、拡散層112”Aとシリコン基板101との間の短絡を防止する。このため、酸化膜107の厚みを薄くしても、耐圧を確保できるので、装置の小型化を図ることができる。 (もっと読む)


【解決手段】
共通の能動領域内に少なくとも1つの埋め込み半導体合金を設けることによって得られる異なる歪レベルに基いて、その能動領域内に形成されるプルダウントランジスタ及びパストランジスタの駆動電流能力を調節することができ、それにより能動領域の単純化された全体的な幾何学的構造を提供することができる。従って、能動領域の単純化された構造を伴う最小のチャネル長に基きスタティックRAMセルを形成することができ、プルダウン及びパストランジスタに対する駆動電流の比を調節するためにトランジスタ幅の明白な変化が従来的に用いられている洗練されたデバイスで観察され得るような顕著な歩留まり低下を回避することができる。 (もっと読む)


【課題】炭化珪素半導体装置の、半導体基板と酸化膜との界面近傍における界面準位密度を低減して、チャネル移動度を向上させることのできる炭化珪素半導体装置とその製造方法とを提供すること。
【解決手段】炭化珪素の半導体基板1の表面にシリコン酸化膜を主成分とする酸化物層を形成する工程を含む炭化珪素半導体装置の製造方法において、酸化物層の、炭化珪素エピタキシャル層2と対向しない一方の主表面をIII族元素を含有するガスに加熱雰囲気中で曝露して、酸化物層にIII族原子を含有させる。そして、酸化物層と半導体基板1との界面近傍に拡散させたIII族原子により界面準位を終端させ、炭化珪素半導体装置のチャネル移動度を向上させる。 (もっと読む)


【課題】半導体製造工程におけるストレス印加およびアニールによる転位、結晶欠陥を抑え、チャネル領域において良好なストレスを印加するとともに、低抵抗化と浅接合化の両立を図ることが可能な半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法において、半導体基板表面に前記半導体基板表面の面積に対する開口率が5〜30%の開口部を形成する工程と、前記開口部内に15〜25%の範囲の濃度で前記半導体基板を構成する原子と異なる格子定数を有する第2の原子を含む混晶からなるエピタキシャル層を形成する工程と、前記エピタキシャル層にイオン注入する工程と、所定の温度Tで活性化アニールを行う工程とを備え、前記所定の温度Tは、1150℃以上かつT≦1E−5exp(21541/T)からなる関係を満たす。 (もっと読む)


【課題】異なる特性を有するリセスチャネル型のトランジスタを同一工程で同時に形成する。
【解決手段】ハードマスク71〜73を用いて半導体基板2をエッチングし、ハードマスク71〜73の側面にサイドウォール絶縁膜38を形成し、ハードマスク71,72の側面に形成されたサイドウォール絶縁膜38を選択的に除去し、ハードマスク71〜73とサイドウォール絶縁膜38を用いて半導体基板2をさらにエッチングし、ハードマスク71〜73に覆われていた半導体基板2の一部にそれぞれゲートトレンチ12,22,32を同時に形成する工程と、ゲートトレンチ12,22,32の内部にゲート電極13,23,33を形成する工程と備える。これにより、フィン状領域21f,31fの高さが異なる複数のリセスチャネル型トランジスタを同時に形成することができる。 (もっと読む)


【課題】チャネル領域のゲート幅方向に与える応力を移動度が向上する方向に働かすとともに、ソース・ドレイン領域表面にシリサイド層を形成した際のリークを防止する
【解決手段】半導体基板11に素子形成領域12を挟み、半導体基板11に埋め込まれるように素子分離領域13を形成する工程と、素子形成領域12上にそれを横切るようにダミーゲート52を形成する工程と、ダミーゲート52の両側の素子形成領域12にソース・ドレイン領域の接合位置が素子分離領域13の表面より深い位置にしてソース・ドレイン領域27、28を形成する工程と、半導体基板11上にダミーゲート52の表面を露出させて第1層間絶縁膜42を形成する工程と、ダミーゲート52を除去して溝29を形成する工程と、溝29内の素子分離領域13の上部を除去する工程と、溝29内の半導体基板11上にゲート絶縁膜21を介してゲート電極22を形成する工程とを備えている。 (もっと読む)


【課題】電子移動度が高く、リーク電流が小さく、オン抵抗が低い電界効果トランジスタおよび電界効果トランジスタの製造方法を提供すること。
【解決手段】MOS構造を有する電界効果トランジスタであって、基板上に形成したp型窒化化合物半導体層と、ソース電極およびドレイン電極下部に位置し、イオン注入により形成されたn型コンタクト領域と、前記p型窒化化合物半導体層上にエピタキシャル成長によって積層されるとともに、一端部がドレイン電極側のn型コンタクト領域に隣接し、他の一端部がゲート電極の前記ドレイン電極側にオーバーラップするように形成され、前記n型コンタクト領域よりもキャリア濃度が低いn型窒化化合物半導体からなる電界緩和層と、を備える。 (もっと読む)


【課題】所望のエッチング形状を形成してデバイスに最適な応力を印加することを可能にする半導体装置の製造方法を得ることを目的とする。
【解決手段】本発明の一実施形態における半導体装置の製造方法は、はじめに上面上にゲート絶縁膜2、ゲート電極3およびサイドウォール5が形成された半導体基板1を準備する。次に、ゲート電極3およびサイドウォール5をマスクとして、半導体基板1に異方性エッチングを行い第1の溝9を形成する。次に、ゲート電極3およびサイドウォール5をマスクとして、半導体基板1の第1の溝9が形成された領域に等方性エッチングを行い第2の溝10を形成する。その後、第2の溝10に半導体基板1と格子定数の異なる半導体材料を埋め込みソース・ドレイン領域6aを形成する。 (もっと読む)


【課題】本発明は、効果的な高速動作が可能な半導体装置およびその製造方法を提供することを目的とする。
【解決手段】本発明の一実施形態による半導体装置は、n型Si基板2に埋め込まれ、チャネルを挟んで離間して形成されたソースおよびドレインと、チャネル上に形成されたゲートとを備え、ソースおよびドレインは、SiC3と、SiC3の全面上に形成され、チャネルに応力を与えることが可能な半導体材料よりなるp型SiGeとの積層からなることを特徴とする。 (もっと読む)


【課題】トレンチゲート型トランジスタのオン抵抗とプレーナ型トランジスタの耐圧とを同時に最適化する。
【解決手段】半導体基板10上に、半導体層16A、16Bがエピタキシャル成長により形成される。第1の領域において第1の埋め込み層12が形成され、第2の領域において第2の埋め込み層13が形成される。第1の埋め込み層12はN+型の第1の不純物層12Aと、それより広い範囲に拡散されたN型の第2の不純物層12Bとによって形成される。第2の埋め込み層13はN+型の不純物層のみで形成される。第1の領域において半導体層16Aの表面からN型の第3の不純物層18が深く拡散される。第1の領域にはトレンチゲート型トランジスタが形成され、第2の領域にはプレーナ型トランジスタが形成される。 (もっと読む)


【課題】ビット線の容量を小さくし、高速動作が得られるダイナミックランダムアクセスメモリを得ること。
【解決手段】ソース/ドレイン領域の一方になる第1の導電層6の上に、第1の半導体層11、チャネル半導体層12、ソース/ドレイン領域の他方になり、かつストレージノード26にもなる第2の導電層13が設けられている。第2の導電層13の上にキャパシタ絶縁膜21が設けられる。キャパシタ絶縁膜21を介在させて、ストレージノード26の上にセルプレート22が設けられている。 (もっと読む)


【課題】精度良く形成された第1,第2のゲート電極を実現すると共に、ゲート幅方向の幅が縮小化された素子分離領域を実現する。
【解決手段】第1のMISトランジスタは、第1のゲート絶縁膜13a上に形成された第2の金属膜30aからなる第1のゲート電極30Aと、第1のゲート電極の側面上から第1の活性領域10aにおける第1のゲート電極の側方に位置する領域の上面上に跨って形成された絶縁膜27とを備え、第2のMISトランジスタは、第2のゲート絶縁膜13b上に形成され第1の金属膜14bと第1の金属膜上に形成された導電膜30bとからなる第2のゲート電極30Bと、第2のゲート電極の側面上から第2の活性領域における第2のゲート電極の側方に位置する領域の上面上に跨って形成された絶縁膜27とを備え、第1の金属膜と第2の金属膜とは、互いに異なる金属材料からなり、第1,第2のゲート電極の上面上には絶縁膜が形成されていない。 (もっと読む)


【課題】NFETのチャネル領域に対して引っ張り応力を誘起することが可能な材料の組合せを提供する。
【解決手段】半導体装置は、半導体層および第1格子定数を有する第1材料上に形成された電界効果型トランジスタを具備する。電界効果型トランジスタは、第1材料上のゲート絶縁体と、ゲート絶縁体上に設けられた導電性のゲートと、ゲートの下方の第1材料内に配置されたチャネル領域と、ソース領域と、ドレイン領域とを有する。ソース領域およびドレイン領域は、実効的な格子定数が第1材料よりも小さい第2材料から少なくとも一部が形成され、半導体層内のチャネル領域の両側に配置され、第2材料はチャネル領域に引っ張り応力を誘起する。 (もっと読む)


81 - 100 / 192