説明

Fターム[5F140CD09]の内容

Fターム[5F140CD09]に分類される特許

21 - 40 / 186


【課題】半導体素子、例えばFETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフまたはエンハンスメントモード動作する半導体素子及び製造方法を提供する。
【解決手段】基板10上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、該窒化物半導体層30にオミック接合されたドレイン電極50と、該ドレイン電極50と離間して配設され、該窒化物半導体層30にショットキー接合されたソース電極60と、該ドレイン電極50と該ソース電極60との間の窒化物半導体層30上及び該ソース電極60の少なくとも一部上にかけて形成された誘電層40と、該ドレイン電極50と離間して誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されたゲート電極70とを含む。 (もっと読む)


【課題】FETのソース領域にショットキー電極を形成し、内部にオミックパターン電極を備え、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフ動作すると共に高耐圧及び高電流で動作可能な、半導体素子及び製造方法を提供する。
【解決手段】内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、窒化物半導体層30にオーミック接合されたドレイン電極50と、ドレイン電極50と離間され、窒化物半導体層30にショットキー接合されるソース電極60と、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成された誘電層40と、ドレイン電極50と離間されるように誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上部に形成されたゲート電極70とを含む。 (もっと読む)


【課題】低オン抵抗、高耐圧及び高信頼性を達成する。
【解決手段】窒化物半導体装置110は、第1半導体層3、第2半導体層4、第1電極10、第2電極7、第3電極8、第1絶縁膜6及び第2絶縁膜5を備える。第1半導体層3は、窒化物半導体を含む。第2半導体層4は、第1半導体層3上に設けられ、孔部4aを有する。第2半導体層4は、第1半導体層3よりも広い禁制帯幅を有する窒化物半導体を含む。第1電極10は、孔部4a内に設けられる。第1電極10の一方側に第2電極7、他方側に第3電極8が設けられ、それぞれ第2半導体層4と電気的に接続される。第1絶縁膜6は、酸素を含有する膜であって、第1電極10と孔部4aの内壁とのあいだ、及び第1電極10と第2電極7とのあいだに設けられ、第3電極8と離間して設けられる。第2絶縁膜5は、窒素を含有する膜であって、第1電極10と第3電極8とのあいだで第2半導体層4に接して設けられる。 (もっと読む)


【課題】高電子移動度トランジスタの耐圧を高くする。
【解決手段】第1の高電子移動度トランジスタ4と、負の閾値電圧を有する第2の高電子移動度トランジスタ6とを有し、第2の高電子移動度トランジスタ6のソースS2は、第1の高電子移動度トランジスタ4のゲートG1に接続され、第2の高電子移動度トランジスタ6のゲートG2は、第1の高電子移動度トランジスタ4のソースS1に接続されている。 (もっと読む)


【課題】 高耐圧MOS型トランジスタなどの高耐圧半導体装置における耐圧を向上させ、またドレインオフセット層などの内部電界強度が経時的に変化し、耐圧が変動することを防止する。
【解決手段】 半導体装置、例えば高耐圧MOS型トランジスタは、半導体層2、それと反対導電型の低不純物濃度ソース層3および低不純物濃度ドレイン層4、高不純物濃度ソース層5および高不純物濃度ドレイン層6、厚い絶縁膜8、ゲート絶縁膜9、ゲート電極10を有する。さらにゲート電極10の両側に例えば狭いギャップをもって隣接すると共に電気的フローティングとされた導電性プレート11が厚い絶縁膜8上に設置される。 (もっと読む)


【課題】高耐圧MOS型トランジスタなどの高耐圧半導体装置における耐圧を向上させ、またドレインオフセット層などの内部電界強度が経時的に変化し、耐圧が変動することを防止する。
【解決手段】半導体装置、例えば高耐圧MOS型トランジスタは、半導体層2、それと反対導電型の低不純物濃度ソース層3および低不純物濃度ドレイン層4、高不純物濃度ソース層5および高不純物濃度ドレイン層6、ドレイン側オフセット絶縁膜8a、ソース側オフセット絶縁膜8b、ゲート絶縁膜9、ゲート電極10を有する。ゲート電極10の表面には表面絶縁膜20が形成されており、ドレイン側オフセット絶縁膜8a上の、ゲート電極10と隣接する領域には、少なくとも一部が表面絶縁膜20と接する状態で形成された第1導電性プレート11aが設けられている。 (もっと読む)


【課題】良好なノーマリ・オフ動作を可能とすることに加え、アバランシェ耐量が大きく、外部のダイオードを接続することを要せず、確実に安定動作を得ることができる信頼性の高い高耐圧のHEMTを得る。
【解決手段】化合物半導体積層構造2に形成された電極用リセス2Cを、ゲート絶縁膜6を介して電極材料で埋め込むようにゲート電極7を形成すると共に、化合物半導体積層構造2に形成された電極用リセス2Dを、少なくとも電極用リセス2Dの底面で化合物半導体積層構造2と直接的に接するように電極材料で埋め込み、化合物半導体積層構造2とショットキー接触するフィールドプレート電極8を形成する。 (もっと読む)


【課題】高耐圧特性と低オン抵抗特性とを両立した化合物半導体装置を実現する。
【解決手段】化合物半導体装置を、キャリア走行層2及びキャリア供給層3を含む窒化物半導体積層構造4と、窒化物半導体積層構造の上方に設けられたソース電極5及びドレイン電極6と、窒化物半導体積層構造の上方のソース電極とドレイン電極との間に設けられたゲート電極7と、ゲート電極とドレイン電極との間に少なくとも一部が設けられたフィールドプレート8と、窒化物半導体積層構造の上方に形成された複数の絶縁膜9、10とを備えるものとし、フィールドプレートとドレイン電極との間でゲート電極の近傍よりも複数の絶縁膜の界面の数を少なくする。 (もっと読む)


【課題】高速スイッチング動作を行う場合でも、アバランシェブレークダウンを抑制でき、スイッチング損失低減や素子破壊を抑制することが可能な構成とする。
【解決手段】横型FWD7などの横型素子において、SRFP21の全抵抗Rの抵抗値を90kΩ〜90MΩ、好ましくは270kΩ〜27MΩ、より好ましくは900kΩ〜9MΩとすることにより、2ndピーク時のアノード電流IAなどの電流が大きくなることを抑制できる。これにより、高速スイッチング動作を行う場合でもアバランシェブレークダウンを抑制でき、横型FWD7のスイッチング損失低減や素子破壊を抑制することが可能となる。 (もっと読む)


【課題】MOS型デバイスのゲート絶縁膜の破壊を防止すると共に、信頼性を向上させ、かつ、チップサイズの増加を抑制した、窒化物系半導体装置を提供することができる、窒化物系半導体装置を提供することを目的とする。
【解決手段】ショットキー電極30が、ソース電極24とドレイン電極26とが対向する領域の、ソース電極24とドレイン電極26とが対向する方向と略直交する方向にゲート電極28と並んで形成されている。ショットキー電極30は、AlGaN層20とショットキー接合されており、ソース電極24に電気的に接続されている。 (もっと読む)


【課題】ゲート電極の端部でのバイアス電界集中が緩和され、且つ動作時のオン抵抗の増大が抑制された化合物半導体装置を提供する。
【解決手段】キャリア供給層22、及びキャリア供給層22との界面近傍において二次元キャリアガス層23が形成されるキャリア走行層21を有する化合物半導体層20と、化合物半導体層20の主面200上に配置されたソース電極3及びドレイン電極4と、ソース電極3とドレイン電極4間で主面200上に配置されたゲート電極5と、ゲート電極5とドレイン電極4間で主面200上方に配置されたフィールドプレート6と、フィールドプレート直下の二次元キャリアガス層が形成される領域内に配置された、上方にフィールドプレート若しくはゲート電極が配置されていない二次元キャリアガス層が形成される領域よりも導電率が低い低導電性領域210とを備える。 (もっと読む)


【課題】ドレインオフセット領域を有する高周波増幅用MOSFETにおいて、微細化およびオン抵抗低減を図る。
【解決手段】ソース領域10、ドレイン領域9およびリーチスルー層3(4)上に電極引き出し用の導体プラグ13(p1)が設けられている。その導体プラグ13(p1)にそれぞれ第1層配線11s、11d(M1)が接続され、さらにそれら第1層配線11s、11d(M1)に対して、導体プラグ13(p1)上で裏打ち用の第2層配線12s、12dが接続されている。 (もっと読む)


【課題】オン電圧の低減と、破壊耐量確保、高速スイッチングを同時に実現できる横型IGBTを提供する。
【解決手段】n型バリア層15を形成することでエミッタ側のキャリア濃度を高くしてオン電圧の低減を図りつつ、n型バリア層15を隣り合うエミッタ間に形成しないようにすることで、ターンオフ時間の改善を図る。また、このような構造により、スイッチング時の破壊耐量の向上も図ることも可能となる。したがって、オン電圧の低減と、破壊耐量確保、高速スイッチングを同時に実現できる横型IGBTとすることが可能となる。 (もっと読む)


【課題】電界効果トランジスタにおいて、フィールドプレート終端での高電界の集中を緩和し、もって高耐圧半導体装置として利用可能とする。
【解決手段】本電界効果トランジスタ30は、GaN系エピタキシャル基板32の電子走行層上に、ゲート電極38を挟んで配置されたソース電極34及びドレイン電極36を備え、ゲート電極38及びソース電極34はドレイン電極36を囲み、ソース電極34の上部に、ゲート電極38の上方を通過してドレイン電極36側に庇状に突き出したフィールドプレート170が形成され、GaN系エピタキシャル基板32の表面層とフィールドプレート170との間に、誘電体膜46が形成され、誘電体膜46は、フィールドプレート170の直下領域においてフィールドプレート終端面と面一状態となるように切れ込み、その下端からドレイン電極36に接続するようにドレイン電極36に向かって延びている。 (もっと読む)


【課題】電界効果トランジスタにおいて、フィールドプレート終端での高電界の集中を緩和し、もって高耐圧半導体装置として利用可能とする。
【解決手段】本電界効果トランジスタ30は、GaN系エピタキシャル基板32の電子走行層上に、ゲート電極38を挟んで配置されたソース電極34及びドレイン電極36を備え、ゲート電極38の上部に、ドレイン電極36側及びソース電極34側に庇状に突き出したフィールドプレート40が形成され、基板32の表面層とフィールドプレート40との間に誘電体膜46が形成され、誘電体膜46は、フィールドプレート40のドレイン電極36側及びソース電極34側の終端面と面一状態となるように切れ込み、ドレイン電極36側の下端からドレイン電極36に接続するようにドレイン電極36に向かって延びており、且つ、ソース電極34側の下端からソース電極34に接続するようにソース電極34に向かって延びている。 (もっと読む)


【課題】電界集中を緩和し、高い耐圧を得ることが可能な半導体装置を提供する。
【解決手段】
半導体層上において、第1フィールドプレートFAは、第1絶縁膜上に、第1電極102と第2電極103との間に相互に間隔を置いて配置され、第2フィールドプレートFBは、第2絶縁膜上に、第1電極102上方から第2電極103上方までの間に相互に間隔を置いて配置され、
第1電極および第2電極側末端のFBは、第1電極または第2電極およびそれに隣り合うFAに重なり、
前記第1電極および第2電極側末端FB以外の一方のFAまたはFBは、第1電極から第2電極への方向と垂直方向に隣り合う複数の他方のFAまたはFBに重なり合い、前記第1電極および第2電極側末端FB以外の他方のFAまたはFBは、第1電極から第2電極への方向に隣り合う2つの前記一方のFAまたはFBに重なり合う半導体装置。 (もっと読む)


【課題】 ミリ波以上の周波数において、安定して、高い利得および動作周波数が得られる電界効果トランジスタを提供する。
【解決手段】 基板11上の動作層13の上に、ソース電極14、ドレイン電極15、ゲート電極18、絶縁膜17が形成され、
ゲート電極18は、ソース電極14とドレイン電極15の間に配置され、
絶縁膜17は、ゲート電極18とドレイン電極15の間に配置され、
フィールドプレート電極19は、絶縁膜17上に形成され、かつ、ソース電極14と電気的に接続され、
ゲート電極18上部は、ソース電極14側およびドレイン電極15側に突出し、
フィールドプレート電極19下端は、ゲート電極18下端よりも下方に配置され、
フィールドプレート電極19上端は、ゲート電極19上部においてドレイン電極15側に最も突出した部分よりも下方に配置されている電界効果トランジスタ。 (もっと読む)


【課題】パワーMOSFETを備える半導体装置のコストの低減を図る。
【解決手段】半導体装置1では、P型の半導体基板2上に、N型の半導体層3が積層されている。そして、半導体装置1は、LDMOS領域5に、ボディ領域8、ドレインバッファ領域9、ソース領域11およびゲート電極14などからなるLDMOSFETを備えている。すなわち、半導体装置1は、LDMOSFETを備えながら、厚膜SOI基板ではなく、N型の半導体層3が直上に設けられたP型の半導体基板2を採用している。そして、フィールド絶縁膜13上に7つのフィールドプレート15が設けられ、そのフィールドプレート15の間隔がボディ領域8側(ソース領域11側)ほど小さくされている。 (もっと読む)


トランジスタを有する半導体チップが記載されている。前記トランジスタは、ゲート誘電体にわたって設けられたゲート電極を有する。前記ゲート電極は、前記ゲート誘電体上に設けられた第1ゲート材料、及び前記ゲート誘電体上に設けられた第2ゲート材料を有する。前記第1ゲート材料は前記第2ゲート材料とは異なる。前記第2ゲート材料はまた、前記ゲート電極のソース領域又はドレイン領域にも設けられている。
(もっと読む)


【課題】本発明は、逆流電流への耐性を高めるレイアウトパターンを有する半導体装置を提供することを目的とする。
【解決手段】半導体基板10の表面領域に形成され、対向して延在するソース領域20及びドレイン領域30、31、32、33と、前記半導体基板の表面上に形成され、前記ソース領域20及びドレイン領域の間で前記ソース領域に沿って延在するゲート40とを含む複数のトランジスタセルと、前記複数のトランジスタセルの周囲を囲み、前記半導体基板10の基準電位を定める基板電極80とを備えた半導体装置100、101、102において、
前記半導体基板の表面領域の、前記ゲートに両側を挟まれた前記ドレイン領域の延在方向における端部と、前記基板電極との間の前記ドレイン領域の延長線上に、前記ドレイン領域と同電位の電流集中緩和電極70、71、72が設けられたことを特徴とする。 (もっと読む)


21 - 40 / 186