説明

Fターム[5F152FF03]の内容

再結晶化技術 (53,633) | 結晶化のための手段 (7,250) | レーザ (3,086) | 気体レーザ (1,297) | エキシマレーザ (843)

Fターム[5F152FF03]に分類される特許

41 - 60 / 843


【課題】被剥離層に損傷を与えない剥離方法を提供し、小さな面積を有する被剥離層の剥離だけでなく、大きな面積を有する被剥離層を全面に渡って剥離することを可能とする。
【解決手段】基板上に金属層を形成する工程と、前記金属層上に酸化物層を形成する工程と、前記酸化物層上に絶縁層を形成する工程と、前記絶縁層上に薄膜トランジスタを形成する工程と、前記薄膜トランジスタ上に発光素子を形成する工程と、人間の手又は前記薄膜トランジスタを引き剥がす装置を用いることにより、前記酸化物層の層内または界面において前記基板から前記薄膜トランジスタを剥離する工程とを有する。 (もっと読む)


【課題】光学調整に困難を伴うことなく、3以上のレーザビームを照射面にて合成し、高出力で生産性を向上させることができるレーザを照射する技術の提供。
【解決手段】その技術は、波長の互いに異なるレーザ発振器とダイクロイックミラー、又はそれに加えて偏光子を用いてレーザビームを合成し、高出力で生産性を向上させレーザを照射するものであり、例えばレーザ発振器から射出されたレーザ光1をダイクロイックミラー1を通過させ、レーザ光1とは波長の異なるレーザ発振器から射出されたレーザ光2をダイクロイックミラー1で反射させてレーザ光を合成し、合成されたレーザ光を照射レーザ光とし、照射レーザ光を照射面上に投影するものである。 (もっと読む)


【課題】現在、良質な膜を得るために、下地膜から非晶質シリコン膜までの形成プロセスは、各々の成膜室にて行われている。これらの成膜条件をそのまま用いて同一成膜室にて下地膜から非晶質シリコン膜までを連続形成すると、結晶化工程で十分に結晶化されない。
【解決手段】水素希釈したシランガスを用いて非晶質シリコン膜を形成することにより、下地膜から非晶質シリコン膜までを同一成膜室内で連続形成しても、結晶化工程で十分に結晶化可能となる。 (もっと読む)


【課題】さらなる低温プロセス(350℃以下、好ましくは300℃以下)を実現し、安価な半導体装置を提供する。
【解決手段】本発明は、結晶構造を有する半導体層103を形成した後、イオンドーピング法を用いて結晶質を有する半導体層103の一部にn型不純物元素及び水素元素を同時に添加して不純物領域107(非晶質構造を有する領域)を形成した後、100〜300℃の加熱処理を行うことにより、低抵抗、且つ非晶質な不純物領域108を形成し、非晶質な領域のままでTFTのソース領域またはドレイン領域とする。 (もっと読む)


【課題】多結晶シリコン薄膜の表面の画像を検出して多結晶シリコン薄膜の表面の状態を観察し、多結晶シリコン薄膜の結晶の状態を検査することを可能にする。
【解決手段】多結晶シリコン薄膜の検査装置を、表面に多結晶シリコン薄膜が形成された基板100に光を照射する光照射手段800と、光照射手段800により基板100に照射された光のうち多結晶シリコン薄膜を透過した光または多結晶シリコン薄膜で正反射した光の近傍の多結晶シリコン薄膜からの散乱光の像を撮像する撮像手段820と、この撮像手段820で撮像して得た散乱光の画像を処理して多結晶シリコン薄膜の結晶の状態を検査する画像処理手段740とを備える。 (もっと読む)


【課題】レーザ光のエネルギー強度の弱い部分を遮断し、かつ光の回折による縞を発生させることなく、線状レーザ光を照射面に照射することができる、照射面上に均一強度の線状ビームを照射するレーザアニール方法及びレーザアニール装置の提供。
【解決手段】レーザ発振器101から射出されたレーザ光をスリット102を通過させて強度の弱い部分を遮断し、ミラー103で偏向させ、スリットにできた像を凸型シリンドリカルレンズ104によって照射面106に投影して照射面上に均一強度の線状ビームを照射することでレーザアニールを行う。 (もっと読む)


【課題】絶縁層上に結晶性の良好な半導体層を形成することができる、半導体装置の製造方法を提供する。
【解決手段】絶縁層41上に厚さ4nm〜1μmの非晶質の半導体層43を形成する工程と、この半導体層43に対して、波長が350nm〜500nmの範囲内のエネルギービームを照射することにより、半導体層43を結晶化させる工程とを含んで、半導体装置を製造する。 (もっと読む)


【課題】レーザ処理装置における被処理体へのレーザ照射部のガス雰囲気を良好に形成する。
【解決手段】被処理体にラインビーム形状のレーザ光6を照射して被処理体の処理を行うレーザ処理装置に備えられ、照射雰囲気を形成するガスを被処理体のレーザ光照射部分近傍に噴射するガス噴射手段であって、噴射手段は、ガスの導入部と、ガスが被処理体に向けて噴射されるガス噴射口15と、ガス導入部からガス噴射口に至るガス流路13を有しており、ガス流路13に、ガスの流れ方向に対面してガス流を乱すことでガスの流れ方向と交差する方向のガス流を均す均流面がガスの流れ方向において少なくとも2度以上繰り返し現れるように設けられ、噴射口はレーザ光が通過する長尺な形状を有しているので、被処理体のレーザ光照射部付近に均等な照射雰囲気を形成でき、レーザ光の照射による処理を均等かつ良質に行うことができる。 (もっと読む)


【課題】太陽電池用のシリコン半導体膜を、空気中での塗布膜形成と、その前駆体膜の加熱あるいはレーザー照射により得るための、組成物および塗布型のシリコン−ゲルマニウム膜およびシリコン−ゲルマニウム膜の製造方法を提供する。
【解決手段】四塩化ゲルマニウムを出発原料として合成した主鎖骨格が3次元状のGe−Ge結合から成り、側鎖に有機置換基を有するゲルマニウム樹脂が、シリコン粒子の表面を被覆するよう、ゲルマニウム樹脂とシリコン粒子とを混合粉砕し、該混合粉砕物を有機分散媒中で混合した組成物を製膜した後、熱処理やレーザー照射する。 (もっと読む)


【課題】金属元素を用いた結晶化法において、ゲッタリングのために必要な不純物元素の濃度が高く、その後のアニールによる再結晶化の妨げとなり問題となっている。
【解決手段】
本発明は半導体膜に、希ガス元素を添加した不純物領域を形成し、加熱処理およびレーザアニールにより前記不純物領域に半導体膜に含まれる金属元素を偏析させるゲッタリングを行なうことを特徴としている。そして、半導体膜が形成された基板(半導体膜基板)の上方または下方からレーザ光を照射してゲート電極を加熱し、その熱によってゲート電極の一部と重なる不純物領域を加熱する。このようにして、ゲート電極の一部と重なる不純物領域の結晶性の回復および不純物元素の活性化を行なうことを可能とする。 (もっと読む)


【課題】画素構造を最適化することにより、開口率を向上させたEL表示装置を提供する。
【解決手段】スイッチング用TFTのゲート電極に近接して設けられた半導体層と、電流制御用TFTのゲート電極に近接して設けられた半導体層と、スイッチング用TFTのゲート電極および電流制御用TFTのゲート電極と同一面上に設けられたソース配線と、スイッチング用TFTのゲート電極、電流制御用TFTのゲート電極、およびソース配線を覆う絶縁膜と、ソース配線および前記スイッチング用TFTの半導体層に電気的に接続された第1の接続配線と、電流制御用TFTのゲート電極および前記スイッチング用TFTの半導体層に電気的に接続された第2の接続配線と、電流制御用TFTの半導体層と電気的に接続された画素電極と、発光層と、画素電極と対向する電極とを有するEL素子とを有するEL表示装置。 (もっと読む)


【課題】単結晶半導体層のテーパー形状を有する端部の特性を良好にすることを課題とする。
【解決手段】加速されたイオンを単結晶半導体基板に照射することによって、単結晶半導体基板中に脆化領域を形成し、単結晶半導体基板とベース基板とを、絶縁膜を介して貼り合わせ、脆化領域において単結晶半導体基板を分離して、ベース基板上に絶縁膜を介して第1の単結晶半導体層を形成し、第1の単結晶半導体層に対してドライエッチングを行って、端部の形状がテーパー形状である第2の単結晶半導体層を形成し、第2の単結晶半導体層の端部に対して、ベース基板側の電位を接地電位としたエッチングを行う。 (もっと読む)


【課題】同一の基板内において、半導体膜を選択的に結晶化し非晶質状態と結晶性状態の半導体膜を作り分けること、更に非晶質半導体と微結晶半導体が混在したTFTを得ることが可能となる簡便な方法を得る。
【解決手段】この発明の非晶質半導体膜の結晶化方法においては、基板1上の酸化シリコン膜31が表層となる第一の領域と窒化シリコン膜33が表層となる第二の領域に形成された非晶質半導体膜5に対して、同じ照射条件により連続的にエネルギービームLBを照射することにより、この第一の領域に形成された非晶質半導体膜5のみを結晶性半導体膜52に変換し、第二の領域に形成された非晶質半導体膜5を非晶質半導体膜51に維持するアニール工程を備えたものである。 (もっと読む)


【課題】基材の表面近傍をごく短時間だけ均一に高温熱処理するに際して、基材の所望の被処理領域全体を短時間で処理することのできるプラズマ処理装置を提供することを目的とする。
【解決手段】プラズマトーチユニットの基幹部となる筒状チャンバは、内管1及び外管2からなる二重管と、蓋3、4と、カバー5と、ガスノズル6と、プラズマノズル7とからなる。冷媒流路13、14、17には冷却水が流れる。基材載置台19上に基材20が載置された状態で、筒状チャンバ内にガスを供給しつつ、ソレノイドコイル18に高周波電力を供給することにより、プラズマPを発生させ、プラズマ噴出口21から基材20に照射する。プラズマトーチユニットと基材載置台19とを相対的に移動しながら基材表面を熱処理することができる。 (もっと読む)


【課題】基板裏面からの二次ビームを原因とする干渉の影響を抑え、被照射物を均一にレーザアニールすることができ、且つスループットが良好である半導体装置の作製方法を提供する。
【解決手段】基板上に形成された半導体膜に、少なくとも1つのガルバノミラーとfθレンズとを用いた光学系を用いてパルス発振のレーザビームを照射する半導体装置の作製方法であって、前記基板の屈折率をn、前記基板の厚さをd(メートル)、真空中の光速をc(メートル/秒)とした場合に、前記レーザビームのパルス幅であるt(秒)を、t<2nd/cという式により算出し、前記レーザビームのパルス幅を前記算出したtの範囲から選択して、前記レーザビームを照射する。 (もっと読む)


【課題】ビームスポットの面積を飛躍的に広げ、結晶性の劣る領域の占める割合を低減することができるレーザ照射装置の提供を課題とする。また連続発振のレーザ光を用いつつ、スループットをも高めることができる、レーザ照射装置の提供を課題とする。さらに本発明は、該レーザ照射装置を用いたレーザ照射方法及び半導体装置の作製方法の提供を課題とする。
【解決手段】高調波のパルス発振の第1のレーザ光により溶融した領域に、連続発振の第2のレーザ光を照射する。具体的に第1のレーザ光は、可視光線と同程度かそれより短い波長(890nm以下程度)を有する。第1のレーザ光によって半導体膜が溶融することで、第2のレーザ光の半導体膜への吸収係数が飛躍的に高まり、第2のレーザ光が半導体膜に吸収されやすくなる。 (もっと読む)


【課題】製造工程を複雑化させることなく、光検出素子および駆動素子において高い特性を示すことが可能な撮像装置、表示撮像装置および電子機器を提供する。
【解決手段】光検出素子3におけるI層32I(チャネル領域,半導体層)と、TFT素子2におけるI層22I(チャネル領域,半導体層)とにおいて、それらの厚みおよび不純物濃度がそれぞれ互いに略等しくなっている。I層22I,32Iにおける平均トラップ順位密度がそれぞれ、2.0×1017(cm-3)以下となっている。2種類の半導体層(I層22I,32I)を、同一の工程で簡易に形成することができる。また、光検出素子3およびTFT素子2における特性をそれぞれ、高い値で両立させることができる。 (もっと読む)


【課題】信頼性を向上させると共に、電気的特性を改善することができる薄膜トランジスタの製造方法を提供する。
【解決手段】ガラス基板11上に成膜された非晶質シリコン膜20に、ガラス基板11の裏面側からレーザ光を照射することによって、縦成長モードで多結晶シリコン膜30を形成する。多結晶シリコン膜30は、溶融した半導体の表面に高い密度で形成された種結晶からガラス基板11側に向かって固化することにより形成される。これにより、多結晶シリコン膜30の表面付近には、微結晶シリコン領域を多く含む不完全結晶層32が形成される。そこで、不完全結晶層32をエッチングにより除去して、多結晶シリコン膜33を形成し、多結晶シリコン膜33を活性層とするTFTを製造する。 (もっと読む)


【課題】半導体膜のパルスレーザ光を照射してアニールする際に、適正なパルスエネルギー密度を高くすることなく該パルスエネルギー密度のマージンを大きくすることを可能にする。
【解決手段】パルスレーザ光を出力するレーザ光源と、パルスレーザ光を整形して処理対象の半導体膜に導く光学系と、パルスレーザ光が照射される前記半導体膜を設置するステージとを有し、前記半導体膜に照射される前記パルスレーザ光が、パルスエネルギー密度で最大高さの10%から最大高さに至るまでの立ち上がり時間が35n秒以下、最大高さから最大高さの10%に至るまでの立ち下がり時間が80n秒以上であるものとすることで、結晶化などに適したパルスエネルギー密度を格別に大きくすることなく、そのマージン量を大きくして、良質なアニール処理をスループットを低下させることなく行う。 (もっと読む)


【課題】製造工程を簡略化するとともに、電気的特性のばらつきを少なくした半導体装置の製造方法を提供する。
【解決手段】絶縁膜12の表面に結晶化を促進する金属粒子13を密度が均一になるように散布する。微細孔16の底部に露出した金属粒子13は、その周囲の非結晶シリコン膜20と反応し、微細孔16の内部に多結晶シリコン21を固相成長させる。次に、絶縁膜14上の非晶質シリコン膜20にレーザ光を照射することによって溶融させ、溶融したシリコンを、微細孔16の開口部に表われた多結晶シリコン21の結晶粒を種結晶として液相成長させることにより、微細孔16を基点とする擬似単結晶シリコン膜23を形成する。この擬似単結晶シリコン膜23を活性層28とするTFT10を製造する。 (もっと読む)


41 - 60 / 843