説明

Fターム[5F152NN05]の内容

再結晶化技術 (53,633) | 基板材料(積層体を基板として扱う場合も含む) (4,266) | 半導体 (1,904) | 4族 (1,311) | SiC (281)

Fターム[5F152NN05]に分類される特許

161 - 180 / 281


【課題】炭化珪素を基板とする半導体素子において、基板の欠陥密度に関わらず、炭化珪素エピタキシャル層の非極性面上において、電極/炭化珪素界面、あるいは酸化膜(絶縁膜)/炭化珪素界面の電気的特性と安定性を向上させる手段を提供する。
【解決手段】炭化珪素からなる半導体基板と、前記半導体基板上に形成されるゲート絶縁膜と、前記ゲート絶縁膜上に形成されるゲート電極とを有する半導体素子。前記半導体基板表面の前記ゲート絶縁膜との接合面は、巨視的には非極性面に平行であり、かつ微視的には非極性面と極性面からなり、前記極性面ではSi面またはC面のいずれか一方の面が優勢である。炭化珪素からなる半導体基板と、前記半導体基板上に形成される電極とを有する半導体素子。前記半導体基板表面の前記電極との接合面は、巨視的には非極性面に平行であり、かつ微視的には非極性面と極性面からなり、前記極性面ではSi面またはC面のいずれか一方の面が優勢である。 (もっと読む)


【課題】
歪み層/歪み印加結晶層構造において、歪み印加結晶層構造より発生する結晶欠陥によ
る歪み層の結晶性劣化を低減し、かつ絶縁層上に歪み層/歪み印加結晶層構造を薄膜で形
成した基板の形成方法を提供する。
【解決手段】
Si基板上の絶縁層と、別の半導体基板上のSiGe層とを、半導体張り合わせ技術を
用いて接合し、SiGe層側の半導体基板を研磨等により除去する。 (もっと読む)


【課題】炭化珪素エピタキシャル層中の基底面転位を減らすことができる炭化珪素半導体基板の製造方法を提供する。
【解決手段】デバイスが作り込まれる炭化珪素エピタキシャル層(ドリフト層)と炭化珪素単結晶ウエハからなる下地基板との間に、 炭化珪素単結晶ウエハ中の基底面転位がエピタキシャル成長層中に伝播する際に貫通刃状転位に変換される変換効率の高い層(転位変換層)を、エピタキシャル成長によって設ける。この転位変換層のドナー濃度をドリフト層のドナー濃度よりも低く設定することにより、ドリフト層が単層であるよりも、より多くの基底面転位を貫通刃状転位に変換することができる。 (もっと読む)


本発明は、電子工学、光学、光電子工学または光起電力工学用の、基板(10)と前記基板(10)の一方の面上に材料を堆積させることにより形成された層(20)とを含む構造体(1)の製造方法に関し、この方法は、前記基板(10)の面(1B)が堆積した材料の層(20)により覆われ、前記基板の他の面(1A)が露出している前記構造体(1)を形成するように、−一方で前記基板(10)を、他方で残りの部分を画定する脆化区域を含む脆化された基板を形成する工程、−前記脆化された基板の2つの面のそれぞれの上に前記材料の層を堆積させる工程、−前記脆化された基板をへき開する工程を含むことを特徴とする。
(もっと読む)


【課題】ラマン分光法を用いた簡易な応力測定方法を見出し、これに基づいて、GaN活性層を有する化合物半導体基板において、バッファ層における応力を制御し、全体として応力フリーの化合物半導体基板を提供する。
【解決手段】厚さ100〜1000μmの六方晶SiC、単結晶Si、単結晶Si上に立方晶SiC層が形成されたもののうちのいずれかからなる台基板1上に、バッファ層2、厚さ0.5〜5μmのGaN活性層3を順次積層し、前記バッファ層2を、厚さ3〜250nmのAlxGa1-xN単結晶層(0.5<x≦1)2a‐1の上に、厚さ3〜250nmのAlyGa1-yN単結晶層(0.2≦y≦0.3)2b‐1が形成され、さらに、厚さ3〜250nmのAlxGa1-xN単結晶層2a‐nおよび厚さ3〜250nmのAlzGa1-zN単結晶層(0≦z<0.5)2c‐nの2層を1組としたものが1〜500組積層されている構成とする。 (もっと読む)


【課題】結晶欠陥の発生を低減すると共に反りの発生を防止することにより、品質と生産性に優れた窒化物半導体の製造方法を提供する。
【解決手段】GaNからなる基板1上に第一の窒化物半導体層10を成長させ、その第一の窒化物半導体層10に多数の微細なボイド2aを有する多孔質層2を形成した後、その上に第二の窒化物半導体層を成長させ、上記基板1或いは上記基板1及びボイドを有する多孔質層2を剥離する窒化物半導体の製造方法。 (もっと読む)


【課題】レーザダイオード、トランジスタ、光検出器などの半導体構造に使用され、相分離を抑制または解消するとともに発光効率を向上させるIII族窒化物4元及び5元材料系並びに方法を提供する。
【解決手段】典型的な実施形態では、半導体構造は、ほぼ相分離なく形成された第1導電型のBAlGaN材料系を用いた4元材料層と、ほぼ相分離のないBAlGaN材料系を用いた4元材料活性層と、ほぼ相分離なく形成された逆導電型のBAlGaN材料系を用いた別の4元材料層を備えている。 (もっと読む)


【課題】SOI基板の作製時に発生する金属汚染の影響を抑える。
【解決手段】半導体基板に水素イオンを照射し損傷領域を形成した後、ベース基板と半導体基板を接合させる。加熱処理を行って、半導体基板を劈開させSOI基板を作製する。SOI基板の半導体層上に、Arなど第18族元素を含んだ半導体でなるゲッタリングサイト層を形成する。加熱処理を行って、半導体層中の金属元素をゲッタリングサイト層にゲッタリングさせる。エッチングにより、ゲッタリングサイト層を除去することで、半導体層の薄膜化を行う。 (もっと読む)


【課題】 向上された緩和、かなり低い欠陥密度、および改善された表面品質を有する
緩和されたSiGeオンインシュレータ基板を形成する方法を提供すること。
【解決手段】 方法が、第1の単結晶Si層の表面上にSiGe合金層を形成するステ
ップを含む。第1の単結晶Si層は、Ge拡散に対する耐性がある下の障壁層との界面を
有する。次に、界面での、または界面付近での機械的な分断を可能にする欠陥を形成する
ことができるイオンが構造内に注入され、その後、注入されたイオンを含む構造に、第1
の単結晶Si層およびSiGe層を通るGeの相互拡散を可能にする加熱ステップを施し
て、障壁層の上に、実質的に緩和された単結晶であり均質のSiGe層を形成する。改善
された性質を有するSiGeオンインシュレータ、およびそれを含むヘテロ構造も提供さ
れる。 (もっと読む)


本発明は、結晶表面を有する結晶ベース基板の上に結晶ゲルマニウム層を形成する方法を提供する。この方法は、ベース基板を洗浄して表面から汚染物および/または自然酸化物を除去する工程と、水素プラズマ、Hフラックス、またはGeHの分解で得られる水素のような水素源および/またはN、He、Ne、Ar、Kr、Xe、Rn、またはそれらの混合物のような非反応性ガス源にベース基板を露出させながら、ベース基板の表面上にアモルファスゲルマニウム層を形成する工程と、ベース基板をアニールしてアモルファスゲルマニウム層を結晶化して、結晶ゲルマニウム層を形成する工程と、を含む。また、この方法は、本発明の具体例にかかる方法を用いて光起電セルまたは光分解セルを形成する方法、またはCMOSデバイスを形成する方法、および本発明の具体例にかかる方法で形成した結晶ゲルマニウム層を含む基板を提供する。
(もっと読む)


【課題】SiC結晶基板中の、特に基底面転位(BPD)密度を低減し、さらに、この低減に伴う基板表面の凹凸を平坦化できる炭化珪素半導体基板の製造方法の提供。
【解決手段】オフ角1度乃至8度の炭化珪素基板1上にエピタキシャル成長層を形成する際に、前記エピタキシャル成長に先立ち、前記炭化珪素基板のtanオフ角以上の凹凸断面のアスペクト比を有する平行線状の凹凸を前記基板表面に形成した後、エピタキシャル成長層を形成する炭化珪素半導体基板の製造方法において、前記凹凸の高さが0.25μm乃至5μmである炭化珪素半導体基板の製造方法とする。 (もっと読む)


炭化ケイ素パワーデバイスが、n型炭化ケイ素基板上でp型炭化ケイ素エピタキシャル層を形成すること、および、そのp型炭化ケイ素エピタキシャル層上で炭化ケイ素パワーデバイス構造を形成することによって作製される。n型炭化ケイ素基板は、p型炭化ケイ素エピタキシャル層を露出するように、少なくとも部分的に除去される。オーミック接触部が、露出されているp型炭化ケイ素エピタキシャル層の少なくとも一部の上で形成される。n型炭化ケイ素基板を少なくとも部分的に除去すること、および、p型炭化ケイ素エピタキシャル層上でオーミック接触部を形成することによって、p型基板を使用することの欠点を低減する、または解消することができる。関連の構造もまた述べられている。
(もっと読む)


【課題】化合物半導体を用いた半導体デバイスにおける界面準位や結晶欠陥等を低減することが可能な化合物半導体の熱処理方法を提供する。
【解決手段】被処理体Wの表面に電磁波を照射することにより化合物半導体に関する熱処理を施すようにする。これにより、化合物半導体を用いた半導体デバイスにおける界面準位や結晶欠陥等を低減することができる。 (もっと読む)


【課題】半導体素子において、半導体基板に存在するBasal Plane転位に起因する素子特性の低下を抑制する。
【解決手段】半導体基板101と、半導体基板101の表面に形成された半導体層102と、半導体層102の上に形成されたゲート絶縁膜111と、ゲート絶縁膜111によって半導体層102から絶縁されたゲート電極113を備える。炭化珪素エピタキシャル層102は、ウェル領域105とゲート絶縁膜111との間にn型不純物を含む蓄積型チャネル層115を有し、ウェル領域105と蓄積型チャネル層115との間にp型の不純物を含むBasalPlane転位を刃状転位に変化させるための転位変化層116を有している。半導体基板101におけるBasal Plane転位の密度は10cm−2以上であり、半導体層102の表面のうちゲート電極113に対向する部分におけるBasal Plane転位の密度は10cm−2以下である。 (もっと読む)


【課題】結晶性の良い窒化物半導体よりなる窒化物半導体基板を用い裏面に電極を形成した発光素子、受光素子等の窒化物半導体素子を提供する。
【解決手段】窒化物半導体と異なる材料よりなる基板の上に、窒化物半導体を100μm以上の膜厚で成長させ、前記基板を除去することによって得られた窒化物半導体基板であり、該窒化物半導体基板の表面の凹凸差が±1μm以下になるまで表面研磨した研磨面に成長される。好ましくは、前記表面の凹凸差が±0.5μm以下である。前記窒化物半導体基板はn型不純物がドープされている。 (もっと読む)


【課題】複雑な処理を必要とせずに高濃度のGeを含有するSiCGe結晶を成長する方法を提供する。
【解決手段】基板上のSiGe結晶薄膜を炭化することによりSiCGe結晶薄膜を製造する。 (もっと読む)


【課題】パワーデバイスなどへの適用に適したIII族窒化物半導体を用いた窒化物半導体積層構造の形成方法、およびこの形成方法により形成される窒化物半導体積層構造部を有する窒化物半導体素子の製造方法を提供すること。
【解決手段】III族窒化物半導体からなる窒化物半導体積層構造の形成工程において、キャリヤガスをHとするMOCVD法によって、まず、ウエハの上にn型GaN層(第1層)およびMgを含むp型GaN層(第2層)が形成される。次いで、このp型GaN層(第2層)に対してp型化アニール処理をせずに、p型GaN層(第2層)の上に、さらにn型GaN層(第3層)およびp型GaN層(第4層)が形成される。このように、n型GaN層(第1層)およびn型GaN層(第3層)に挟まれたp型GaN層(第2層)に含まれるMg濃度とH濃度とを比較すると、Mg濃度の方が大きい値となっている。 (もっと読む)


【課題】 シリコン基板上に窒化物半導体領域を設けると、半導体ウエーハに反りが発生する。
【解決手段】 シリコン基板2の上に窒化物半導体から成るバッファ領域3を介してHEMT用の窒化物半導体から成る主半導体領域4を設ける。前記バッファ領域4を、第1の多層構造バッファ領域5と第2の多層構造バッファ領域8とで構成する。第1の多層構造バッファ領域5を複数のサブ多層構造バッファ領域6と複数の単層構造バッファ領域7で構成する。サブ多層構造バッファ領域6を、交互に配置された複数の第1及び第2の層で構成する。第1の層をアルミニウムを第1の割合で含む窒化物半導体で形成する。第2の層をアルミニウムを含まない又は前記第1の割合よりも小さい第2の割合で含む窒化物半導体で形成する。第2の多層構造バッファ領域8を第3及び第4の層で構成する。第3の層のアルミニウム割合を第1の割合よりも低くする。 (もっと読む)


半導体構造は、窒化物半導体材料の第1の層、前記窒化物半導体材料の第1の層上の実質的に歪みのない窒化物中間層、及び前記窒化物中間層上の窒化物半導体材料の第2の層を含む。前記窒化物中間層は第1の格子定数を有し、アルミニウム及びガリウムを含むこと、並びにn型ドーパントで導電的にドープすることができる。前記第1の層及び前記第2の層は、全体として少なくとも約0.5μmの厚さを有する。前記窒化物半導体材料は、前記第1の層が前記窒化物中間層の一方の側において、前記第2の層が前記窒化物中間層の他方の側で受け得るより大きい引っ張り歪みを受けることができるような、第2の格子定数を有することが可能である。
(もっと読む)


【課題】パワーデバイスなどへの適用に適したIII族窒化物半導体素子およびその製造方法を提供すること。
【解決手段】この電界効果トランジスタにおける窒化物半導体積層構造部5には、n型GaN層6、p型GaN層7およびn型GaN層8に跨る壁面16を側面とするメサ状積層部15が形成されている。メサ状積層部15の壁面16には、ゲート絶縁膜9が形成され、このゲート絶縁膜9上にはゲート電極10が形成されている。また、n型GaN層6(引き出し部19)にはドレイン電極12が形成され、n型GaN層8の上面にはソース電極11が形成されている。そして、メサ状積層部15は、窒化物半導体積層構造部5に形成された高転位領域18および低転位領域17のうち、低転位領域17に形成されている。 (もっと読む)


161 - 180 / 281