説明

Fターム[5F152NN05]の内容

再結晶化技術 (53,633) | 基板材料(積層体を基板として扱う場合も含む) (4,266) | 半導体 (1,904) | 4族 (1,311) | SiC (281)

Fターム[5F152NN05]に分類される特許

81 - 100 / 281


【課題】積層欠陥及び貫通転位の密度が十分に低いダイヤモンド薄膜構造とその製造方法を提供する。
【解決手段】本発明のダイヤモンド薄膜構造は、基板と、基板の主方位面の一部を覆うマスク材と、基板の主方位面の表面からエピタキシャル成長するダイヤモンド薄膜とで構成されるダイヤモンド薄膜構造であって、ダイヤモンド薄膜は、マスク材の上に形成され、ダイヤモンド薄膜の結晶方位は基板の結晶方位とそろっており、基板の主方位面の一部にストライプ状の溝が形成され、マスク材は、ストライプ状の溝を覆うように配置されている。 (もっと読む)


【課題】高品質なGe系エピタキシャル膜を大面積で得ること。
【解決手段】Si基板10の主面上にSiGe膜11を化学気相堆積法でエピタキシャル成長させる。SiGeエピタキシャル膜11中にはSi基板10との界面から高密度の欠陥が導入されるが、700乃至1200℃の熱処理を施して貫通転位12をSi基板界面近傍のループ転位状欠陥12´に変化させる。続いて、イオン注入層を形成したSiGeエピタキシャル膜11と支持基板20の少なくとも一方の主面に、表面清浄化や表面活性化などを目的としたプラズマ処理やオゾン処理を施し、主面同士を密着させて貼り合わせる。更に、貼り合わせ界面に外部衝撃を加え、水素イオン注入界面13に沿ってSiGeエピタキシャル膜の剥離を行ってSiGe薄膜14を得、さらにこのSiGe薄膜14の表面に最終表面処理(CMP研磨等)を施して水素イオン注入起因のダメージを除去する。 (もっと読む)


【課題】発光のブルーシフトが抑制された発光デバイスの製造に好適なIII族窒化物結晶基板、エピ層付III族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法を提供する。
【解決手段】本III族窒化物結晶基板1は、III族窒化物結晶基板1の任意の特定結晶格子面のX線回折条件を満たしながら結晶基板の主表面1sからのX線侵入深さを変化させるX線回折測定から得られる特定結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔d1と5μmのX線侵入深さにおける面間隔d2とから得られる|d1−d2|/d2の値で表される結晶基板の表面層の均一歪みが1.7×10-3以下であり、主表面の面方位が、結晶基板のc軸を含む面から[0001]方向に−10°以上10°以下の傾斜角を有する。 (もっと読む)


【課題】シリコン基板を用いてGaN系の良質な半導体結晶層を形成する。
【解決手段】第1領域と第2領域とを表面に有する基板と、前記第1領域の上方に形成された第1半導体と、を含み、前記基板は、表面がSiGe1−x(0≦x≦1)であり、前記第1領域は、前記第2領域により囲まれ、前記第1半導体は、窒素原子を含有する3−5族化合物半導体であり、単結晶であり、且つ前記SiGe1−xと格子整合または擬格子整合し、前記第2領域は、前記第1領域とは性状が異なる半導体基板を提供する。 (もっと読む)


【課題】結晶性に優れた大口径の炭化珪素基板の製造方法を提供する。
【解決手段】炭化珪素基板の製造方法は、単結晶炭化珪素からなる複数のSiC基板20が平面的に見て複数並べて配置された状態で、複数のSiC基板20の一方の主面20C側が支持層10により接続された複合基板2を準備する工程と、複合基板2において隣り合う複数のSiC基板20の端面20B同士を接合する工程とを備えている。そして、複数のSiC基板20の端面20B同士を接合する工程では、隣接するSiC基板20の端面20B同士が互いに対向する領域に面する支持層10の表面を含む領域である接続部が加熱される工程と、当該接続部が冷却される工程とが繰り返して実施される。 (もっと読む)


【課題】基板上に、面内と周縁部の膜厚の均一な塗布膜を形成することを目的とする。
【解決手段】単結晶ウエハ1と半導体層4と、その間の結晶格子の不整合を緩和するバッファ層3を備えた半導体基板の製造方法であって、前記単結晶ウエハの外周端部1aを被覆材2で被覆した後、前記バッファ層3を前記単結晶ウエハ1の一面側に形成する工程と、前記被覆材2を取り除いた後、前記半導体層4を前記バッファ層3上の一面側に形成すると共に、前記単結晶ウエハ1の外周端部1aから前記半導体層4の外周部4bにかけて前記半導体層4の構成材料からなる堆積物4aを堆積させる工程と、前記半導体層4上に塗布液をスピンコート法により塗布する工程と、を具備してなることを特徴とする半導体基板の製造方法を提供する。 (もっと読む)


【課題】歪みの程度がGaNの割れの閾値を上回るならば、GaNが割れ、GaNの半導体デバイスへの使用を受容できないものにする可能性がある。
【解決手段】この半導体構造は、第1の面内無歪み格子定数を有する基板と、基板上に設けられ、第1の面内無歪み格子定数とは異なる第2の面内無歪み格子定数を有する、第1の半導体材料を含む第1の層と、基板と第1の層の間に配置され、第2の半導体材料を含む可変不整合層とを含む半導体構造、およびこの半導体構造の製作方法が提供される。可変不整合層は、第1の層を基板上に直接成長させる場合に生じる応力を下回る程度にまで第1の層の応力が低減されるように構成される。可変不整合層は、第1の層の無歪み格子定数と実質的に整合する面内歪み格子定数を有する層であってもよい。 (もっと読む)


【課題】基板の表面に4H−SiC単結晶層を効率的にエピタキシャル成長させることができる半導体ウエハの製造方法を提供する。
【解決手段】半導体ウエハの製造方法は、Si層形成工程と、Si層密閉工程と、加熱工程と、成長工程とを含む。Si層形成工程では、単結晶SiC基板70の表面にSi層71を形成する。Si層密閉工程では、Si層71が形成された単結晶SiC基板70に3C−SiC多結晶層72を形成することで、Si層71を密閉する。加熱工程では、単結晶SiC基板70を加熱することで、3C−SiC多結晶層72の内側でSi層71を溶融させてSi融液層71aを形成する。成長工程では、加熱制御を行うことで、Si融液層71aが、3C−SiC多結晶層72からCとSiとを取り込むとともに、取り込んだCとSi融液層中のSiとを結合させることで、当該単結晶SiC基板70に4H−SiC単結晶をエピタキシャル成長させる。 (もっと読む)


【課題】成長温度が1050℃以下のAlGaNやGaNやGaInNだけでなく、成長温度が高い高Al組成のAlxGa1-xNにおいても結晶性の良いIII族窒化物半導体エピタキシャル基板、III族窒化物半導体素子、III族窒化物半導体自立基板およびこれらを製造するためのIII族窒化物半導体成長用基板、ならびに、これらを効率よく製造する方法を提供する。
【解決手段】少なくとも表面部分2がAlを含むIII族窒化物半導体からなる結晶成長基板3と、前記表面部分2上に形成され、結晶化されたZrまたはHfからなる単一金属層4と、前記単一金属層4上に形成され、AlxGa1-xN(0≦x≦1)からなる少なくとも一層のバッファ層からなる初期成長層5と、を具える。 (もっと読む)


【課題】大型であって、かつ半導体装置を高い歩留りで製造することができる半導体基板の製造方法を提供する。
【解決手段】第1の炭化珪素基板11の第1の側面S1と、第2の炭化珪素基板12の側面S2とが互いに面するように、処理室60内にベース部30および第1および第2の炭化珪素基板11、12が配置される。処理室60内に、炭素元素と化合することができる固体材料からなる吸収部51が設けられる。第1および第2の側面S1、S2を互いに接合するために、炭化珪素が昇華し得る温度以上に処理室60内の温度が高められる。温度を高める工程において吸収部51が炭化される。 (もっと読む)


【課題】結晶性に優れた大口径の炭化珪素基板の製造方法を提供する。
【解決手段】炭化珪素基板の製造方法は、単結晶炭化珪素からなる複数のSiC基板20を準備する工程と、複数のSiC基板20を平面的に見て複数並べて配置した状態で、複数のSiC基板20の一方の主面20Cに接触するように支持基板10を配置する工程と、支持基板10により複数のSiC基板20同士を接続する工程とを備えている。そして、複数のSiC基板20同士を接続する工程では、支持基板10を加熱する工程と、支持基板10を冷却する工程とが繰り返して実施される。 (もっと読む)


半導体構造及び半導体素子を製造する方法は、ガラスを使用して基板にシード構造をボンディングするステップを含む。シード構造は、半導体材料の結晶を含むことができる。ガラスを使用して基板にボンディングされたシード構造の熱処理を利用して、シード構造内部の歪状態を制御することができる。シード構造を、室温において圧縮歪の状態に置くことができる。ガラスにボンディングされたシード構造を、半導体材料の成長用に使用することができる、又は、さらなる方法では、シード構造を、ガラスを使用して第1の基板にボンディングすることができ、熱処理してシード構造内部の歪状態を制御することができ、第2の基板を、非ガラス質材料を使用してシード構造の反対側の面にボンディングすることができる。 (もっと読む)


【課題】反りが小さいイオン注入III族窒化物半導体基板、ならびにかかる基板を用いたIII族窒化物半導体層接合基板およびIII族窒化物半導体デバイスの製造方法を提供する。
【解決手段】本イオン注入III族窒化物半導体基板2は、両主面20a,20b側に両主面20a,20bからそれぞれ所定の深さDa,Dbで形成されているイオン注入領域20ia,20ibを含む。 (もっと読む)


【課題】窒化物層上にエピタキシャル層を形成したときにクラックが発生することを抑制でき、かつエピタキシャル層が半導体基板から剥がれることを抑制できる半導体基板および半導体基板の製造方法を提供する。
【解決手段】半導体基板10aは、窒化物層12の主面12a上にエピタキシャル層を形成するための半導体基板であって、異種基板11と、異種基板11上に形成された窒化物層12とを備え、窒化物層12は応力緩和領域を有する。 (もっと読む)


【課題】III族窒化物半導体層の欠落部分の少ない高品質のIII族窒化物半導体層接合基板の製造方法を提供する。
【解決手段】本III族窒化物半導体接合基板の製造方法は、主表面20mに現れる表面異状領域22の大きさおよび密度が所定の範囲内のIII族窒化物半導体基板20を準備する工程と、III族窒化物半導体基板20の主表面20m側にイオンを注入する工程と、III族窒化物半導体基板20の主表面20mに異種基板10を接合する工程と、III族窒化物半導体基板20をイオンが注入された領域20iで分離して異種基板10に接合したIII族窒化物半導体層20aを形成することにより、III族窒化物半導体層接合基板1を得る工程と、を備える。 (もっと読む)


【課題】SiCエピタキシャル膜成膜は高温下で行われる為、十分な断熱構造を構築する課題があった。
【解決する手段】
基板を処理する反応室と、反応室内であって、少なくとも基板が載置された領域を囲うように形成され、一端が閉塞された筒形状の被加熱体と、反応室と被加熱体との間であって、被加熱体を囲うように形成され、被加熱体の閉塞された一端側の一端が閉塞された筒形状の断熱材と、反応室の外であって、少なくとも基板が載置された領域の周囲に設けられる誘導加熱部と、反応室内に少なくとも原料ガスを供給するガス供給系と、ガス供給系が少なくとも原料ガスを反応室内へ供給し、基板を処理するよう制御するコントローラと、を備える基板処理装置を提供することで上記課題を解決する。 (もっと読む)


【課題】窒化物半導体からなる電子デバイスにおいてバッファ層に生じるリーク電流を抑制できる窒化物半導体エピタキシャルウェハを提供する。
【解決手段】化合物半導体エピタキシャルウェハは、単結晶基板101と、前記単結晶基板上にエピタキシャル成長された核生成層102と、前記核生成層の上に成長された窒化物半導体の単層あるいは複数層からなるバッファ層103と、前記バッファ層の上にエピタキシャル成長された窒化物半導体のチャネル層104と、前記チャネル層の上にエピタキシャル成長された窒化物半導体のキャリヤ供給層105とから成り、かつ前記核生成層からチャネル層までの合計の膜厚が1μm以下であること。 (もっと読む)


【課題】格子不整合系基板を使用しながら、高品質な単結晶窒化物半導体の結晶成長を実現する半導体ウエハの製造方法を提供する。
【解決手段】半導体基板101の表面にグラフェン層110を設ける工程と、グラフェン層110の炭素原子の配列を示すハニカム構造の中心に、単結晶半導体層の結晶を構成する一の元素を吸着させる工程と、この一の元素に前記結晶を構成する当該元素とは異なる他の元素を結合させ、前記結晶の第1層114を形成する工程と、前記第1層の表面にさらに所定の層数の前記結晶半導体層を結晶成長する工程を備える。 (もっと読む)


【課題】第1基板から窒化物半導体層を容易に剥離する。
【解決手段】SiC基板101の表面で単層又は複数層のグラフェン層111が成長する工程と、グラフェン層との界面で、共有結合性を有することなく、原子レベルのポテンシャルの規則性のみを用いた結合力を伴って窒化物半導体層114が形成される工程と、窒化物半導体層114とグラフェン層111aとの間、あるいはグラフェン層相互間111a,111b,111cのポテンシャルによる接合力以上の力で、窒化物半導体層がSiC基板から剥離される工程とを備える。また、剥離された窒化物半導体層が第2基板130の表面に接合される。 (もっと読む)


【課題】GaN単結晶体を成長させる際および成長させたGaN単結晶体を基板状などに加工する際、ならびに基板状のGaN単結晶体上に少なくとも1層の半導体層を形成して半導体デバイスを製造する際に、クラックの発生が抑制されるGaN単結晶体およびその製造方法ならびに半導体デバイスおよびその製造方法を提供する。
【解決手段】本GaN単結晶体10は、ウルツ型結晶構造を有し、30℃において、弾性定数C11が348GPa以上365GPa以下かつ弾性定数C13が90GPa以上98GPa以下、または、弾性定数C11が352GPa以上362GPa以下である。 (もっと読む)


81 - 100 / 281