説明

Fターム[5F152NN09]の内容

再結晶化技術 (53,633) | 基板材料(積層体を基板として扱う場合も含む) (4,266) | 半導体 (1,904) | 3−5族 (475) | 窒化物 (171)

Fターム[5F152NN09]に分類される特許

81 - 100 / 171


【課題】平面視したときに限定された範囲にp型領域が形成されているIII族窒化物系化合物半導体基板であり、p型領域とその周囲の領域との間に段差がない基板を提供する。
【解決手段】 III族窒化物系化合物半導体下層6の表面にIII族窒化物系化合物半導体を結晶成長させるに先立って、p型領域12を形成したい範囲に相当する範囲内の下層6の表面近傍にマグネシウムとアルミニウムの双方を含ませておく。下層6の限られた範囲の表面近傍にマグネシウムとアルミニウムの双方が含まれていると、その上に上層16を結晶成長したときに、結晶成長する上層16の限られた範囲にマグネシウムが移動してp型領域12になるともに、下層6に含まれているアルミニウムがマグネシウムの移動範囲を制約し、下層6におけるマグネシウムの含有範囲10と上層16におけるマグネシウムの含有範囲12をよく一致させる。 (もっと読む)


第1のコンプライアント材料を含む第1の低粘度層を歪み材料層上に堆積するステップと、第2のコンプライアント材料を含む第2の低粘度層を歪み材料層上に堆積して第1のサンドイッチ構造を形成するステップと、第1の低粘度層および第2の低粘度層のリフローが引き起こされるように第1のサンドイッチ構造を加熱処理し、それによって歪み材料層を少なくとも部分的に緩和させるステップとを含む。 (もっと読む)


【課題】第13族元素窒化物の層から本質的に製造される高電子移動度トランジスタ(HEMT)基板を提供する。
【解決手段】高移動度トランジスタ(HEMT)基板は超臨界アンモニア法においてシードに対し、該シードの成長方向に垂直な方向の結晶成長により得られる単結晶GaNから形成され、表面欠陥密度が約102/cm2であって、該基板上に形成されるトランジスタに対しW-CDMAバンド(約2GHz)が50Wより低くなく、そのゲインが60Vで25dBより低くない性能パラメータを付与する。 (もっと読む)


【課題】Al系III族窒化物単結晶自立基板を製造するためのベース基板として好適に使用できる、結晶レベルでの歪みが低減されており、クラックおよび反りの発生が抑制された自立基板製造用基板を提供する。
【解決手段】不活性ガス中1000℃において分解しない無機物質であって、1000℃以上1600℃以下で還元性ガスと接触することにより分解して揮発性物質を生成する無機物質の単結晶からなるベース基板、ベース基板上に形成された、単結晶Al系III族窒化物、または単結晶Al系III族窒化物と非晶質Al系III族窒化物との混合物からなる厚さ3nm以上200nm以下のAl系III族窒化物薄膜層、Al系III族窒化物薄膜層上に形成された、Al系III族窒化物薄膜層の厚さの100倍以上の厚さを備えたIII族窒化物非単結晶層、を備えて構成される積層体とし、ベース基板とAl系III族窒化物薄膜層との界面に複数の空隙を設ける。 (もっと読む)


【課題】薄膜製造方法を提供する。
【解決手段】
本発明が提供する薄膜製造方法は、以下のステップを含む:オリジナル基板を提供する;エッチング停止薄膜層をオリジナル基板上に形成する;犠牲層をエッチング停止薄膜層上に形成する;気体イオンを注入し、イオン分布濃度ピーク層を形成し、有効転移薄膜層及び残留層を定義する;有効転移薄膜層及び残留層を分離する。犠牲層の厚度を制御することにより、有効転移薄膜層の厚度を効率的に制御することができる。また、有効転移薄膜層厚度を均一にし、ナノメートルオーダーの厚度を達成する。 (もっと読む)


【課題】本発明は、補助基板上に緩和エピタキシャルベース層を得ることを含む、エピタキシャル成長のための基板の作製方法に関する。本発明の目的は、望ましい格子パラメータを有する材料が、異なる格子パラメータを有する別の材料の上で、より効率的に、熱力学的及び結晶学的に高い安定性を有してエピタキシャル成長することを可能にする基板を作ることにある。
【解決手段】この目的は、上記のタイプの方法であって、エピタキシャルベース層の少なくとも一部をキャリア基板上に移してベース基板を形成することと;エピタキシャルベース層の材料をキャリア基板上でさらに成長させることとをさらに含む方法により達成される。 (もっと読む)


【課題】基板のAlGaNが露出した最表面上にIII−V族窒化物半導体結晶を成長させるのに適したIII−V族窒化物半導体結晶の製造方法およびその方法を用いたIII−V族窒化物半導体レーザ素子の製造方法を提供する。
【解決手段】水素と窒素とアンモニアとを含み水素の体積比率が水素の体積と窒素の体積との合計体積の0.2以下であるガス雰囲気または窒素とアンモニアとを含み水素を含まないガス雰囲気においてAlGaNが最表面に露出した基板を900℃以上に加熱する加熱工程と、加熱工程後に基板の最表面上にIII−V族窒化物半導体結晶を成長させる結晶成長工程とを含むIII−V族窒化物半導体結晶の製造方法とその方法を用いたIII−V族窒化物半導体レーザ素子の製造方法である。 (もっと読む)


【課題】 III-V族化合物半導体の結晶成長方法において、半導体下地層と半導体層の界面に高濃度なn型領域が形成されることを抑制する技術を提供すること。
【解決手段】 シリコンをエッチング可能なエッチング材を利用して半導体下地層の表面を洗浄する工程と、洗浄後の半導体下地層をアルコールに浸漬する工程と、浸漬された状態で半導体下地層をガス置換室に搬入する工程と、ガス置換室内を大気から置換ガスに置換する工程と、ガス置換室に連結する反応室に液体から取り出した半導体下地層を搬入する工程と、反応室内で半導体下地層の表面に前記半導体層を結晶成長させる工程を備えている。置換ガスは、シリコン濃度が0.2ppm以下である。 (もっと読む)


【課題】特別な基板を用いなくても結晶欠陥がほとんど無い単結晶薄膜を有する基板を容易に製造することができる方法を提供することを目的とする。
【解決手段】少なくとも、ドナー基板とハンドル基板を準備する工程Aと、前記ドナー基板上に単結晶層を積層成長させる工程Bと、前記単結晶層が形成されたドナー基板の単結晶層中にイオン注入してイオン注入層を形成する工程Cと、前記イオン注入されたドナー基板の単結晶層の表面と前記ハンドル基板の表面を貼り合わせる工程Dと、前記貼り合わせられたドナー基板の前記単結晶層中のイオン注入層で剥離する工程Eとにより前記ハンドル基板上に単結晶薄膜を形成し、少なくとも、前記単結晶薄膜が形成されたハンドル基板をドナー基板として前記A〜Eの工程を繰り返すことを特徴とする単結晶薄膜を有する基板の製造方法を提供する。 (もっと読む)


【課題】性能を確保しながらコストを低減することができる半導体装置の製造方法を提供する。
【解決手段】貫通穴2が形成された基板1上にAlN層3、GaN層4、i−AlGaN層5、n−AlGaN層6及びn−GaN層7を形成する。更に、ソース電極9s、ドレイン電極9d及びゲート電極9gを形成し、半導体素子を形成する。その後、HF溶液中において、貫通穴2に向けて紫外線を照射することにより、AlN層3を基板1から分離する。その後、AlN層3を除去し、GaN層4の裏面に絶縁性の基板を貼り合わせる。 (もっと読む)


【課題】GaN系半導体デバイスの結晶成長用に適した、欠陥密度の小さい高品質のGaN系結晶膜連続膜を備えた結晶基板を得る。
【解決手段】GaN系半導体デバイス形成用基板として用いる結晶基板において、表面がC面のサファイア基板101と、該サファイア基板101上に形成されたGaNバッファ層102と、該GaNバッファ層102上に形成されたエピタキシャル成長GaN層103と、該エピタキシャル成長層103上に形成された、複数の開口部105を有するSiO2膜104と、該SiO2膜104の開口部105にGaN系化合物の選択再結晶化により形成された複数の島状GaN系結晶11と、該島状GaN系結晶11を核とするGaN系結晶の成長により形成されたGaN系結晶連続膜12とを備えた。 (もっと読む)


【課題】キャリア密度の高い化合物半導体膜を製造する方法を提供する。
【解決手段】第1及び第2のドーパント17a、19aと、III族窒化物半導体47の構成元素の原料とを供給して第1半導体層47bを形成する工程S103と、第2半導体層47aを形成する工程S101と、第1半導体層47bと、第2半導体層47aの形成を繰り返す工程S107とを備え、第2のドーパント19aは、第1のドーパント17aと同一の導電型のドーパントとして働き、第2半導体層47aは、アンドープ層、又は、低ドープ層であり、低ドープ層は、第1及び第2のドーパント17a、19aが第1半導体層47bにおける濃度よりも低濃度にドープされ、第1半導体層47bにおいて置換される構成元素の原子半径は、第1のドーパント17aの原子半径よりも大きく、第2のドーパント19aの原子半径よりも小さいことを特徴とする。 (もっと読む)


【課題】複数の窒化物半導体層を含む発光素子構造を成長させるために望ましい窒化物半導体厚膜基板を提供し、ひいてはその基板を用いて優れた特性を有する窒化物半導体発光装置を提供する。
【解決手段】複数の窒化物半導体層を含む発光素子構造を成長させるための窒化物半導体厚膜基板であって、基板は対向する第1と第2の主面を有し、基板の第1主面は3×1018cm-3以上1×1019cm-3以下の高不純物濃度の第1の層領域で形成されており、基板は3×1018cm-3以下1×1017cm-3以上でかつ第1層領域より低い低不純物濃度の第2の層領域をも少なくとも含み、基板の第1主面はその上に前記発光素子構造を成長させるための面であり、発光素子構造の形成後に第1主面の側で部分的に露出される基板の領域が電極を形成するための領域として使用されることを特徴とする。 (もっと読む)


【課題】 反りが少なくクラックが発生しない半絶縁性の窒化物半導体結晶基板及びその製造方法を提供する。
【解決手段】 下地基板の上に、幅或いは直径sが10μm〜100μmであるドット被覆部或いはストライプ被覆部を間隔wが250μm〜2000μmであるように並べたマスクを形成し、HVPE法によって成長温度が1040℃〜1150℃であって、5/3族比bが1〜10であるような3族、5族原料ガスと、鉄を含むガスとを供給することによって下地基板の上に窒化物半導体結晶を成長させ、下地基板を除去することによって、比抵抗が1×10Ωcm以上、厚みが100μm以上、反りの曲率半径が3m以上の自立した半絶縁性窒化物半導体基板を得、更にその基板を用いたデバイスの作製を得る。 (もっと読む)


【課題】III 族窒化物半導体からなる半導体装置の製造方法において、p型のIII 族窒化物半導体の正孔濃度を減少しないようにすること。
【解決手段】III 族窒化物半導体からなる半導体素子の製造方法であって、MgをドープしたIII 族窒化物半導体層の形成後に、400度以上の温度での熱処理工程を複数有した半導体素子の製造方法において、最終以外の400度以上の温度での熱処理工程では、アンモニア雰囲気中において熱処理を行い、最終の400度以上の温度での熱処理工程では、窒素雰囲気中において熱処理を行う。このように熱処理を行えば、p型のIII 族窒化物半導体層の正孔濃度を減少させずに半導体素子を製造することができる。 (もっと読む)


【課題】優れた表面品質をGa側にて有するAlGaInN半導体ウェーハおよびそのようなウェーハの製造方法を実現する。
【解決手段】ウェーハのGa側における10×10μm面積内で1nm未満の根二乗平均表面粗さを特徴とする、AlGaInN(式中、0<y≦1およびx+y+z=1)を含む高品質ウェーハ。このようなウェーハは、例えばシリカまたはアルミナなどの研磨粒子と酸または塩基とを含む化学的機械研磨(CMP)スラリーを用いて、そのGa側にてCMPに付される。このような高品質AlGaInNウェーハの製造方法はラッピング工程、機械研磨工程、およびその表面品質を更に高めるための熱アニールまたは化学エッチングによるウェーハの内部応力を低下させる工程を含んでよい。このCMP方法はAlGaInNウェーハのGa側における結晶欠陥を強調するために有用に適用される。 (もっと読む)


本発明は、電子工学、光学、光電子工学または光起電力工学用の、基板(10)と前記基板(10)の一方の面上に材料を堆積させることにより形成された層(20)とを含む構造体(1)の製造方法に関し、この方法は、前記基板(10)の面(1B)が堆積した材料の層(20)により覆われ、前記基板の他の面(1A)が露出している前記構造体(1)を形成するように、−一方で前記基板(10)を、他方で残りの部分を画定する脆化区域を含む脆化された基板を形成する工程、−前記脆化された基板の2つの面のそれぞれの上に前記材料の層を堆積させる工程、−前記脆化された基板をへき開する工程を含むことを特徴とする。
(もっと読む)


異なる、かつ非直角の成長方向に、膜を互いの上部に重ねて成長させることによって、複数の膜を積み重ねるステップを含む、増加した表面積を有する高品質で自立型の無極性および半極性の窒化物基板を産生するための方法である。この方法は、(a)III族窒化物を自立型(FS)III族基板の第一面の上に成長させることであって、該III族窒化物は無極性または半極性であり、該第一面は無極性または半極性の面であり、該FSIII族基板は、500ミクロンを超える厚さを有する、ことと、(b)該III族窒化物の頂面を得るために、第二面に沿って該III族窒化物をスライス、または研磨することであって、該第二面は無極性または半極性の面であり、該III族窒化物の該頂面は、該無極性または半極性のIII族窒化物基板を備える、こととを含む。
(もっと読む)


【課題】結晶欠陥の発生を低減すると共に反りの発生を防止することにより、品質と生産性に優れた窒化物半導体の製造方法を提供する。
【解決手段】GaNからなる基板1上に第一の窒化物半導体層10を成長させ、その第一の窒化物半導体層10に多数の微細なボイド2aを有する多孔質層2を形成した後、その上に第二の窒化物半導体層を成長させ、上記基板1或いは上記基板1及びボイドを有する多孔質層2を剥離する窒化物半導体の製造方法。 (もっと読む)


本発明は電子工学分野での応用を目的とする、少なくとも1つのIII/N型窒化材料層を具備してなるハイブリッド基板の製造法であって;六方単結晶の結晶構造を有するIII/N型窒化材料でできた原材基板(1)を選択する工程;前記基板内部に多数のナノ空隙(12)を生じさせて活性層(14)の境界となる脆弱領域(13)を作ることを目的として、前記窒化材料の「c」結晶軸に平行もしくは略平行な平面内にある「注入面」(10)と呼ばれる面の一つを通して、1×1016He/cmから1×1017He/cmのヘリウムイオンHeを前記原材基板(1)に注入する工程;および、少なくとも前記ナノ空隙を空隙(12’)へと成長させることが可能な熱授受を含む授受からなる、活性層(14)を原材基板(1)から分離させることが可能な全エネルギー授受を施すことによって前記活性層(14)を移設する工程;からなることを特徴とする製造法に関する。
(もっと読む)


81 - 100 / 171