説明

Fターム[5H115SE09]の内容

車両の電気的な推進・制動 (204,712) | 主な制御対象 (12,865) | 動力伝達装置 (2,547) | 動力の切換又は分配するもの (1,025)

Fターム[5H115SE09]に分類される特許

21 - 40 / 1,025


【課題】エンジン動作点の移動及び機械式変速機構の変速制御を同時に行う際、燃費の悪化を抑制しつつ好適な変速を実現する。
【解決手段】第2電動機回転速度NMG2が上昇から下降に転じた後に第2電動機回転速度NMG2が自動変速機18の変速後における第2電動機回転速度NMG2と同期するまでの間は一時的に、エンジン回転速度Nの低下勾配を零にするので、エンジン回転速度Nの目標値を跨ぐ吹き上がり方がどれだけばらついても、エンジン回転速度Nの低下勾配のばらつきが確実に回避される。従って、エンジン回転速度Nの低下勾配が一時的に零とされている期間での自動変速機18の変速制御を安定して実行することができる。また、第2電動機回転速度NMG2の同期後にエンジン回転速度Nを目標回転速度に向かって低下させる制御を単独で実行することができ、目標回転速度への収束時間のばらつきが抑制される。 (もっと読む)


【課題】トランスアクスルに備わるモータジェネレータが過回転になることなく任意の時間で停止させるためのダイナモのブレーキトルクを算出することができる評価ベンチのブレーキトルク算出方法を提供すること。
【解決手段】プラネタリギヤ25を介して接続されたモータジェネレータMG1,MG2を備えるトランスアクスル20の入力側及び出力側にそれぞれダイナモ12,14を接続し、各ダイナモ12,14によりモータジェネレータMG,MG2を回転させて性能評価を行う評価ベンチ10を停止させる際のブレーキトルクk1,k2を算出する方法において、プラネタリギヤ25に関する運動方程式に基づき、各ブレーキトルクk1,k2に関する伝達関数を導出して、ダイナモ12,14の各回転数と停止時間t1とから、ダイナモ12,14及びモータジェネレータMG1,MG2を停止時間t1で同時に停止させるための各ブレーキトルクk1,k2を算出する。 (もっと読む)


【課題】動力分割機構24のリングギアRにオルタネータ40を機械的に連結するのみでは、回生運転時において、駆動輪16側からフライホイール36側への動力の伝達量が十分とならないこと。
【解決手段】動力分割機構24は、1の遊星歯車機構によって構成されており、そのキャリアCには、駆動輪16が機械的に連結され、サンギアSには、フライホイール36が機械的に連結されている。リングギアRに、オルタネータ40に加えて、オイルポンプ44の従動軸を機械的に連結する。これにより、回生運転時にリングギアRに加わる負荷トルクを大きくすることができ、ひいては駆動輪16からフライホイール36に伝達される動力を大きくすることができる。 (もっと読む)


【課題】セミトレーラ式のハイブリッド車両に関し、燃費を効果的に改善する。
【解決手段】トラクタ10及びトレーラ20を有するセミトレーラ式のハイブリッド車両1に、トラクタ10に搭載されたエンジン11と、トラクタ10に搭載された第一の電動発電機13と、トレーラ20に搭載され、第一の電動発電機13に電力を供給可能に接続されるバッテリ25と、トレーラ20に搭載され、発電した電力をバッテリ25に供給する第二の電動発電機26と、トレーラ牽引走行時に、走行用の動力源としてエンジン11及び第一の電動発電機13の少なくとも一方の動力を用いるように制御し、かつ、トラクタ単体走行時に、走行用の動力源としてエンジン11の動力を用いるように制御する動力制御手段60,61とを備えた。 (もっと読む)


【課題】 ハイブリッド動力装置において、トランスミッションにおける適切な変速比の確保とモータ・ジェネレータの増速駆動とを両立させる。
【解決手段】 メインシャフト13の回転は増速ドライブギヤ21および増速ドリブンギヤ22で増速されて第1中間軸20に伝達され、更に変速用の遊星歯車機構Pに伝達される。発電用の第1モータ・ジェネレータMG1は増速ドリブンギヤ22に直接接続されて高速回転するため、その発電効率が高められる。第1クラッチC1を係合すると遊星歯車機構Pにメインシャフト13の回転が等速で入力され、第2クラッチC2を係合すると遊星歯車機構Pにメインシャフト13の回転が増速して入力されるため、第3クラッチC3およびブレーキB1の係合状態との組み合わせでトランスミッションTに複数の変速段を確立することができる。 (もっと読む)


【課題】エンジン始動時にクラッチを係合する際に、エンジンが逆回転するのを抑制可能なハイブリッド車両の制御装置を提供する。
【解決手段】ハイブリッド車両の制御装置は、ハイブリッド車両に搭載され、エンジンと、第1回転電機と、第2回転電機と、動力伝達機構と、クラッチ同期制御手段と、ポンピングロス制御手段と、を備える。動力伝達機構は、相互に差動回転可能な複数の回転要素を備える。クラッチ同期制御手段は、第1走行モードから、第2走行モードへ走行モードを切り替える場合、エンジンの始動前に、第1回転電機のトルクに基づきクラッチの係合要素の回転を同期させる制御を行う。ポンピングロス制御手段は、上述の制御時に、ポンピングロスを大きくする制御を行う。 (もっと読む)


【課題】HV−MT車について、運転フィーリングを通常MT車の運転フィーリングに一致させたいという要求を考慮しながらエネルギー効率(燃費)を向上すること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関とモータ(MG)とを備えたハイブリッド車両に適用され、手動変速機と、摩擦クラッチとを備える。MGトルクが車両減速側の回生トルクに調整されている状態において、運転者によるクラッチペダル操作によりクラッチが完全分断状態に移行したとき(t2)、回生トルクの大きさが「ゼロより大きい微小値A」まで減少させられ、その後、微小値Aに維持される。クラッチの完全分断状態への移行に伴って回生トルクが直ちにゼロに調整される場合と比べて、回生により発生するより多くのエネルギーをバッテリに蓄えることができ(ドットで示した領域を参照)、エネルギー効率(燃費)が向上する。 (もっと読む)


【課題】電動機専用の減速機を設けることなく、容量の小さい電動機を用いることができると共に、小型化及び軽量化を図ることができる自動変速機を提供する。
【解決手段】自動変速機は、入力軸2の回転が伝達される入力側変速部PGS3,PGS4と、入力側変速部PGS3,PGS4から出力される動力を変速して出力部材3に出力する出力側変速部PGS1,PGS2とを備える。出力側変速部PGS1,PGS2は、遊星歯車機構を少なくとも1つ備えると共に、4つの出力側回転要素Y1〜Y4を構成し、第2出力側回転要素Y2に出力部材3が連結され、第3出力側回転要素Y3に電動機MGが連結され、第1出力側回転要素Y1を変速機ケース1に固定する固定状態と、この固定を解除する開放状態とに切換自在な第1ブレーキB1を備え、第3出力側回転要素Y3は全ての変速段で入力軸2の回転速度以下で回転する。 (もっと読む)


【課題】クラッチに関する学習機会を適切に確保することができるクラッチの学習制御装置を提供すること。
【解決手段】エンジンと、制御可能なクラッチと、クラッチを介してエンジンと接続されたモータと、を有するハイブリッドシステムを備え、ハイブリッドシステムの起動時にエンジンの始動要求がある(S1否定)場合、エンジンを運転させてクラッチを係合させたときのクラッチよりもモータ側の回転数の増加に基づいてクラッチの係合度合いに関して学習し(S5〜S8)、起動時にエンジンの始動要求がない(S1肯定)場合、モータに動力を出力させてクラッチを係合させたときのクラッチよりもモータ側の回転数の減少に基づいてクラッチの係合度合いに関して学習する(S2〜S4、S8)。 (もっと読む)


【課題】一方の変速機入力軸にのみモータを取り付けたデュアルクラッチ式変速機において、変速段の切替時等にクラッチの断接によってドライバに与える違和感を解消することができ、効率よくバッテリを駆動することができるハイブリッド電気自動車の制御装置を提供する。
【解決手段】変速ギア機構4は、エンジン1と第1クラッチ2Aを介して接続され且つモータ3が配置された第1入力軸40Aを備えて複数の変速段を有する第1変速機構4Aと、エンジン1と第2クラッチ2Bを介して接続された第2入力軸40Bを備えて複数の変速段を有する第2変速機構4Bと、を備え、ドライバの加速要求を検出するアクセルポジションセンサ58と、ドライバの加速要求が検出されると、第1変速機構4Aの発進変速段の使用時以外は、クラッチ2A,2Bの同時遮断を禁止するクラッチ制御手段60aを備える。 (もっと読む)


【課題】 原動機と電動機とを駆動源として備える車両のHEV走行中において、プレシフトするときの所謂駆動力抜けを防止できる車両の駆動力制御装置を提供する。
【解決手段】 駆動力制御装置は、HEV走行中における奇数段から偶数段へのアップシフトのイナーシャ相t3〜t6中に、モータトルクTeを0にし、第1噛合機構SM1を、前段を確立させるギア列の駆動ギアと第1駆動軸との連結を断つニュートラル状態に切り替えた後、次段よりも変速比の小さい変速段を確立させるギア列の駆動ギアと第1駆動軸とを連結させる状態に切り替える。そして、第2クラッチトルクTc2をエンジンのイナーシャトルクが伝達されるようにTQ1からTQ4に上昇させ、0となったモータトルクTe分のトルクを補填する。 (もっと読む)


【課題】モータ走行時における燃費を向上できる車両用駆動システムを提供すること。
【解決手段】この車両用駆動システム1は、エンジン2と、モータ6と、入力軸41および出力軸42の間の変速比を変更できる変速機4と、エンジン2および変速機4の入力軸41の間に配置されるクラッチ3と、モータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える接続切替装置7と、接続切替装置7を駆動制御する制御装置9とを備える。また、車両用駆動システム1は、エンジン2を動力源とするエンジン走行と、モータ6を動力源とするモータ走行とを切り替え得る。そして、制御装置9は、モータ走行中におけるアクセル開度θが所定の条件を満たすときに、接続切替装置7を駆動制御してモータ6の接続先を変速機4の入力軸41および出力軸42の間で切り替える。 (もっと読む)


【課題】第2モータ/ジェネレータの出力負担を軽減させること。
【解決手段】第1モータ/ジェネレータ20の回転軸21、エンジン10の出力軸11、駆動輪側に向けた出力軸50及び第2モータ/ジェネレータ30の回転軸31が各々連結されるサンローラ41、キャリア43、第1ディスク44及び第2ディスク45と、サンローラ41、第1ディスク44及び第2ディスク45の夫々との間の接触部を介した動力伝達が可能で且つキャリア43に保持された遊星ボール42と、を有し、遊星ボール42の傾転角を変えることで、第1ディスク44の回転速度をサンローラ41の回転速度で除した第1プラネタリギヤ比ρ1と第2ディスク45の回転速度をサンローラ41の回転速度で除した第2プラネタリギヤ比ρ2の変更が可能な動力分割機構40を備え、第2モータ/ジェネレータ30の回転トルクが小さくなるように第2プラネタリギヤ比ρ2を大きくすること。 (もっと読む)


【課題】HV−MT車について、クラッチペダル操作に基づいて変化する内燃機関のトルク及び電動機のトルクのそれぞれの変化タイミングの間のずれの発生を抑制すること。
【解決手段】この動力伝達制御装置は、動力源として内燃機関とモータ(MG)とを備えたハイブリッド車両に適用され、手動変速機と、摩擦クラッチとを備える。MGトルクが、アクセル開度に基づいて決定されるMGトルク基準値と、クラッチ戻しストロークに基づいて決定されるMGトルク制限値とのうち小さい方に調整される。摩擦クラッチの実際のミート開始点及び実際のリリース開始点が検出される。MGトルク制限値の決定に使用されるマップに使用されるクラッチのミート開始点及びリリース開始点が、検出された実際のミート開始点及び実際のリリース開始点に一致するように較正される。 (もっと読む)


【課題】シールドシェルをより好適に固定することを可能とするシールドカバーを提供することである。
【解決手段】シールドカバー70は、筐体11a上に設けられる電力線部30の先端側に設けられノイズを筐体11a側に逃がすためのシールドシェル60よりもさらに先端側に設けられ、筐体11aと電力線部30とを接続する終端接続部50に用いられるシールドカバー70であって、筐体11aの外部側から拘束される拘束部74と、終端接続部50の外形に沿った凹形状を有するフード部72と、シールドシェル60を圧接固定するカール部76と、を備える。 (もっと読む)


【課題】第2歯車機構のプレシフト要求と走行モードの切換要求とが相前後して発生したとき、これに応じたエンジン吹き上がり制御による燃料消費の増大及び騒音発生を抑制できるハイブリッド電気自動車の変速制御装置を提供する。
【解決手段】電動機単独走行中において偶数歯車機構G2に対するプレシフト要求があったときに(S2,4)、エンジン・電動機併用走行への走行モードの切換要求があるまで待機し、この走行モードの接続要求があると(S6がYes)、インナクラッチC1を接続し、電動機3の駆動力を0にしていくと共にエンジン駆動力を増加させて(S8,10)、電動機3の駆動力の瞬断を防止しつつ偶数歯車機構G2に対するプレシフトを実行し(S12)、同時にエンジン・電動機併用走行への走行モードの切換を完了する(S14)。 (もっと読む)


【課題】車両停車中にバッテリのSOC低下に応じて停車発電制御を適切に実行でき、もって確実にバッテリのSOCを回復できるハイブリッド電気自動車の停車発電制御装置を提供する。
【解決手段】PレンジまたはNレンジでの車両停車中においてバッテリのSOCが充電判定値SOC0以上のときには(S10がNo)、インナクラッチC1及びアウタクラッチC2を切断状態に保持して油圧ポンプ駆動のためのエンジン負荷を軽減する一方(S12)、SOCが充電判定値SOC0未満のときには(S10がYes)、電動機3側のアウタクラッチC2のみを接続状態に切り換え(S16)、停車発電制御により電動機3をジェネレータ作動させてバッテリ5を充電する(S18)。 (もっと読む)


【課題】ハイブリッド電気自動車のバッテリ充放電制御装置に関し、登坂路走行時に、バッテリの温度上昇に起因したバッテリの充放電電流の抑制を不要にできるようにする。
【解決手段】走行用トルクを出力しうるエンジン1及び電動発電機4と、電動発電機4による発電電力によって充電可能なバッテリ40と、をそなえたハイブリッド電気自動車に装備され、車両の前方の道路状況を取得する手段60と、取得された車両前方の道路状況に基づいて車両前方に登坂路があるか否かを判定する手段30aと、登坂路ありと判定しない限りバッテリ温度がバッテリ40の上限温度近傍の温度よりも高くなった場合にバッテリ40の充放電を制限し、登坂路ありと判定したら車両が登坂路に進入するまではバッテリ40の温度が第1の所定温度よりも低い第2の所定温度よりも高くなった場合にバッテリ40の充放電を制限する制御手段30dと、を備える。 (もっと読む)


【課題】惰行運転時においてエンジン減速モードとモータ減速モードとの間の制動力の格差に起因する減速感の相違を解消した上で、モータ減速モードでは電動機の回生制御により最大限の発電量を実現できるハイブリッド電気自動車の回生制御装置を提供する。
【解決手段】モータ減速モードによる車両の蛇行運転時において、エンジンと電動機との間のクラッチを切断して、電動機の回生トルクを最大トルクライン上で制御することにより車両の減速エネルギの全てを回生発電に利用すると共に、最大トルクライン上におけるエンジンブレーキ近傍の回生トルクが得られる電動機の回転域でシフトダウンを実行することにより、エンジン減速モードと同様に減速感を実現する。 (もっと読む)


【課題】係合時に回転同期を、係合解除時に伝達トルク低減を要する係合機構を同時に作動させる係合装置を好適に制御する。
【解決手段】係合状態において第1回転電機をロックする第1係合機構(810)と、係合状態において第2回転電機と駆動軸との間のトルク伝達を可能とし且つ係合解除状態において第2回転電機を駆動軸から切り離す第2係合機構(820)を備え、第1係合機構が係合状態となり且つ第2係合機構が係合解除状態となる第1動作状態と、第1係合機構が係合解除状態となり且つ第2係合機構が係合状態となる第2動作状態との間で動作状態を切り替え可能な係合装置(800)を備えたハイブリッド車両を制御する装置(100)は、第2動作状態から第1動作状態への動作状態の切り替え要求が生じた場合に、第1係合機構における回転同期制御を、第2係合機構におけるトルク調整制御に先んじて実行する。 (もっと読む)


21 - 40 / 1,025