説明

Fターム[5J500AS01]の内容

増幅器一般 (93,357) | 用途 (4,306) | プリアンプ(前置増幅器) (138)

Fターム[5J500AS01]に分類される特許

1 - 20 / 138




【課題】SOI基板にLNA回路を形成した場合や、バルクCMOSプロセスを用いてLNA回路を形成した場合に、NFの劣化の回避と高い線形性の達成とを実現することが可能なCMOS集積回路を提供する。
【解決手段】ゲート電極に信号入力端子が、ドレイン電極に電源端子が、ソース電極に接地端子がそれぞれ接続された電界効果トランジスタを備え、前記電界効果トランジスタはSOI(Silicon−On−Insulator)基板上に形成し、ボディ電位と、ソース電位以下の電位との間を、抵抗素子で接続することを特徴とする、CMOS集積回路が提供される。かかるCMOS集積回路を用いることで、NFの劣化の回避と高い線形性の達成とを実現することが可能となる。 (もっと読む)


【課題】偏波多重光通信システムの適応型非線形補償方法及び装置を提供する。
【解決手段】適応型非線形補償装置は、入力信号に基づき該入力信号の線形歪み値、該入力信号の水平成分の非線形歪み値及び該入力信号の垂直成分の、水平成分に対するクロストーク値を計算し、前記線形歪み値、非線形歪み値及び前記クロストーク値に基づき、前記入力信号の水平成分に対して補償を行う水平偏波量補償ユニット、入力信号に基づき該入力信号の線形歪み値、該入力信号の垂直成分の非線形歪み値及び該入力信号の水平成分の、垂直成分に対するクロストーク値を計算し、前記線形歪み値、非線形歪み値及び前記クロストーク値に基づき、前記入力信号の垂直成分に対して補償を行う垂直偏波量補償ユニットを含む。 (もっと読む)


【課題】消費電力の増加を抑制しつつ、負荷回路からのキックバックを抑制する。
【解決手段】MOSトランジスタM11と、ゲートおよびドレイン間がダイオード接続されたMOSトランジスタM12と、電流源C11とを直列接続してソースフォロア回路10を構成する。MOSトランジスタM11のゲートに入力された、ソースフォロア回路10への入力信号Vinは、MOSトランジスタM11によりほぼ1倍の利得で出力され、さらに、ダイオード接続されたMOSトランジスタM12でほぼ1倍の利得で出力され、これがソースフォロア回路10の出力信号Voutとして出力されるため、結果的に、1段構成のソースフォロア回路と同様の動作をするが、その消費電力は少なくてすむ。 (もっと読む)


【課題】広帯域かつ平坦性の高い利得周波数特性を有するトランスインピーダンスアンプを提供する。
【解決手段】トランスインピーダンスアンプは、コア回路6と、コア回路6の出力信号振幅を検出する出力信号モニタ回路7と、振幅検出値に基づいてコア回路6の利得および周波数ピーキング量を制御する制御回路8を備える。制御回路8は、出力信号モニタ回路7の第一の帯域通過フィルタの通過帯域におけるコア回路6の出力信号振幅が所望の値になるように、出力信号モニタ回路7の第一の振幅検出回路が検出した検出値に基づいて帰還抵抗RFの値を変化させ、出力信号モニタ回路7の第二の帯域通過フィルタの通過帯域におけるコア回路6の出力信号振幅が所望の値になるように、出力信号モニタ回路7の第二の振幅検出回路が検出した検出値に基づいて周波数ピーキング量を変化させる。 (もっと読む)


【課題】高利得、及び低電流消費と共に、非常に高い三次入力インターセプトポイント(IIP3)を有するLNAを提供する。
【解決手段】LNA222は、メイン電界効果トランジスタ(FET)302、キャンセルFET304、第1ソース・ディジェネレーション・インダクタ306、第2ソース・ディジェネレーション・インダクタ308、カスコード・トランジスタ310、及びLNA負荷312を含む。LNA負荷312は、並列に結合されたインダクタ314及びキャパシタ316を含むLCタンク回路である。 (もっと読む)


【課題】 入力電圧が低く、特性を向上させた増幅装置を提供する。
【解決手段】 増幅装置は、一対の受光素子からそれぞれ入力された第1及び第2の電流信号In(+),In(−)を、第1及び第2の電圧信号Vo(−),Vo(+)にそれぞれ変換して出力する第1及び第2のトランスインピーダンスアンプ20と、第1及び第2の電流信号In(+),In(−)の各電流を分流する分流回路24と、第1及び第2の電圧信号Vo(−),Vo(+)の平均電圧値を示す平均信号を生成して出力する平均値検出回路と、平均信号Vav、及び第1及び第2の電圧信号Vo(−),Vo(+)のオフセット電圧値に基づいて、分流回路24に分流される第1及び第2の電流信号In(+),In(−)の各電流値を制御する制御回路23とを含む。 (もっと読む)


【課題】高速プリアンプ回路、検出電子機器、および放射線検出システムを提供する。
【解決手段】プリアンプ回路は、放射線検出器から電流信号を受信して、増幅電圧信号を生成するトランスインピーダンス・アンプを備える。トランスインピーダンス・アンプの出力は、第2増幅ステージに接続される。検出電子機器は、検出器上の第1位置から電流信号を受信して第1電圧信号を生成する第1トランスインピーダンス・アンプと、検出器上の第2位置から電流信号を受信して第2電圧信号を生成する第2トランスインピーダンス・アンプとを有する。第2増幅ステージは、第1増幅電圧信号と第2増幅電圧信号とを与える。差動出力ステージは、第1増幅電圧信号と第2増幅電圧信号を受信し、各々から一対の出力を提供する。読取回路類は、一対の出力の各々を処理する処理構造を有する。処理構造は、タイムスタンプを有する単一のデジタル出力を提供する。 (もっと読む)


【課題】線形性の改善されたノイズ指数および低ノイズ増幅器を提供する。
【解決手段】受信信号強度インジケータ201の出力に基づく可変ネガティブフィードバック203を含む増幅器M1が開示されている。フィードバックは、高受信信号レベルについて増加され、低受信信号レベルについて減少されるとしてもよい。実施形態において、可変フィードバック203は、複数の離散的なインピーダンス設定を含むとしてもよい。振幅および/または時間ヒステリシスは、組み込まれていてもよい。 (もっと読む)


【課題】低周波数帯域の雑音の影響をより一層小さくすることができるスイッチトキャパシター積分回路等を提供する。
【解決手段】スイッチトキャパシター積分回路10は、第1の容量と第2の容量とを有する電圧電荷変換回路20と、第1の容量に充電された電荷を積分する電荷積分回路30とを含む。電圧電荷変換回路20は、第1の期間において、第1の容量に充電された電荷を転送すると共に入力信号に対応した電荷を第2の容量に充電し、第2の期間において、第2の容量に充電された電荷の一部を第1の容量に充電すると共に入力信号に対応した電荷を第1の容量に充電する。電荷積分回路30は、第3の期間において、演算増幅器の入力に接続されるオフセットキャンセル容量の他端と第1の容量の一端とを接続し、第4の期間において、オフセットキャンセル容量の他端と接地電位とを接続する。 (もっと読む)


【課題】 差動増幅回路の出力信号の特性を改善する。
【解決手段】入力データ信号が‘Low’レベルになると、トランジスタ16に流れる電流I1の電流が減少し、抵抗14と抵抗14aとの接続部(ノードD)の電位が高くなる。この電位は、トランジスタ18にゲートに入力(負帰還)され、該ゲート電位が高くなることによって、テイル電流量I_TAILが増加する方向に調整される。入力データ信号が‘High’レベルになると、電流I1の電流が多く流れ、ノードDの電位が下がる。これによって、トランジスタ18のゲート電位(負帰還)が下がり、テイル電流量I_TAILを絞る方向に調整される、これによって入力波形の立上りと立下りとで、それぞれ出力波形との遅延時間の差が小さくなる。 (もっと読む)


【課題】 抵抗及び小さな静電容量を用いた回路により、検出素子の出力信号を直流成分を除いて増幅する小型な信号処理装置を得る。
【解決手段】 入力信号が第1のインピーダンスを介して反転入力端子に入力される第1のオペアンプと、第1のオペアンプの反転入力端子と出力端子とに接続された第2のインピーダンスと、基準電圧が非反転入力端子に入力され、出力端子が第1のオペアンプの非反転入力端子に接続された第2のオペアンプと、第2のオペアンプの反転入力端子と出力端子とに接続された第1の静電容量と第1のスイッチと、第2のスイッチを介して第1のオペアンプの出力端子と前記第2のオペアンプの反転端子とに接続された第3の抵抗と、第3のスイッチを介して第1のオペアンプの出力端子と第2のオペアンプの反転端子とに接続された第4の抵抗とを備えた。 (もっと読む)


【課題】適切にオフセット電圧をキャンセルすることが可能な増幅装置、増幅システムおよびこれを用いた電流電圧変換装置を提供する。
【解決手段】実施形態によれば、増幅装置は、メインアンプと、第1のサブアンプと、第2のサブアンプとを備える。前記メインアンプは、第1の入力電圧と第2の入力電圧との差を増幅した電圧を出力する。前記第1のサブアンプは、入力端子同士を短絡したときの出力電圧に基づいて自身のオフセットキャンセルを行い、前記第1の入力電圧および前記第2の入力電圧が入力されたときの出力電圧に基づいて前記メインアンプのオフセットキャンセルを行う。前記第2のサブアンプは、入力端子同士を短絡したときの出力電圧に基づいて自身のオフセットキャンセルを行い、前記第1の入力電圧および前記第2の入力電圧が入力されたときの出力電圧に基づいて前記メインアンプのオフセットキャンセルを行う。 (もっと読む)


【課題】高速、かつ高品質な受信動作が実現可能な、トランスインピーダンスアンプを含んだ光通信モジュールを提供する。
【解決手段】トランスインピーダンスアンプTIAにおいて、単相電流信号を入力として単相電圧信号に変換するプリアンプPRAMPと、プリアンプPRAMPの出力の単相電圧信号の中心電位を検出する閾値検出回路ATCと、プリアンプPRAMPの出力の単相電圧信号を差動化するとともに増幅するポストアンプPSAMPと、プリアンプPRAMPに電源を供給する電源回路PSPYとを有する。特に、電源回路PSPYは、プリアンプPRAMPの入力電圧信号または出力電圧信号でプリアンプPRAMPの電源端子に流れる変化電流とその変化電流と逆相の変化電流とを出力する。これにより、電源電流変化量を相殺する。 (もっと読む)


【課題】受光素子(フォトダイオード)の出力信号を増幅する初段増幅器を有する増幅回路において、初段増幅器の増幅率を大きくする。
【解決手段】フォトダイオード2で光電変換された電気信号を増幅する初段増幅器31の出力信号に含まれる直流成分をローパスフィルタ34にて抽出し、その抽出した直流成分を打ち消すように、初段増幅器31の入力側にバイアス電流を帰還する。このようにして初段増幅器31の入力側にバイアス電流を流すことによって、初段増幅器31に入力される電気信号の直流成分(照明光等の信号成分)を除去することができ、初段増幅器31の増幅率を大きくすることが可能になる。 (もっと読む)


【課題】利得可変回路の出力振幅の温度依存性を低減する。
【解決手段】自動利得調整回路は、利得可変回路3の出力信号のピーク電圧を検出するピーク検出回路10と、利得可変回路3の出力信号の平均値電圧を検出すると共に、平均値電圧に利得可変回路3の所望の出力振幅の1/2の電圧を加える平均値検出・出力振幅設定回路11と、ピーク検出回路10の出力電圧と平均値検出・出力振幅設定回路11の出力電圧との差分を増幅して、増幅結果を利得制御信号として利得可変回路3の利得を制御する高利得アンプ12とを備える。ピーク検出回路10の入力端子から出力端子までの経路に挿入されるトランジスタのベース−エミッタ接合の数と、平均値検出・出力振幅設定回路11の入力端子から出力端子までの経路に挿入されるトランジスタのベース−エミッタ接合の数とは同一である。 (もっと読む)


【課題】利得周波数特性の広帯域化と群遅延平坦特性とを両立させる。
【解決手段】ソース接地トランジスタM1、ゲート接地トランジスタM2、および負荷抵抗RLからカスコード接続回路11を構成し、ソース接地トランジスタM1のドレイン端子とゲート接地トランジスタM2のソース端子と間に第1のインダクタL1を設ける。 (もっと読む)


【課題】本発明の実施形態は、閾値電圧のオフセットレベルを変化させることにより、チャタリングを抑制することが可能な受信回路を提供する。
【解決手段】実施形態に係る受信回路は、光信号を受信し、前記光信号に対応した光電流を出力する受光素子と、前記光電流を信号電圧に変換して出力する信号電圧生成部と、 前記信号電圧を第1の閾値もしくは第2の閾値と比較する比較器と、前記比較器に入力する基準電圧を出力する基準電圧生成部と、前記比較器の出力に基づいて、前記基準電圧を前記第1の閾値および前記第2の閾値のいずれかに切り替えるスイッチと、を備える。 (もっと読む)


【課題】端子構造の複雑化を回避しつつ、ノイズの影響を抑制できる光信号検出装置、浮遊微粒子検出装置および火災警報装置を提供する。
【解決手段】この光信号検出装置21によれば、光信号検出デバイス14がフォトダイオード101の受光信号を増幅する電流増幅回路102を有するので、微小信号を扱うフォトダイオード101の出力ラインは光信号検出デバイス14内に収まり、出力ラインを短くすることが可能となり入力ノイズの影響を低減できる。また、電流増幅回路102でフォトダイオード101の受光信号を増幅する分だけ、アンプ兼増幅抽出デバイス17のゲインを抑制でき、入力ノイズの影響を低減できる。また、光信号検出デバイス14は、電流増幅回路102が増幅した信号を出力する信号出力端子103が電流増幅回路102を駆動する直流電流を供給するための端子を兼ねているので、2端子デバイスとすることができる。 (もっと読む)


1 - 20 / 138