説明

国際特許分類[C22C38/18]の内容

化学;冶金 (1,075,549) | 冶金;鉄または非鉄合金;合金の処理または非鉄金属の処理 (53,456) | 合金 (38,126) | 鉄合金,例.合金鋼 (19,815) | クロムを含有するもの (6,130)

国際特許分類[C22C38/18]の下位に属する分類

国際特許分類[C22C38/18]に分類される特許

11 - 20 / 435


【課題】フェライト中の炭素の拡散速度を強磁場を用いて抑制することで、材質制御を行う。
【解決手段】高炭素Si鋼の低温圧延の際のフェライト域脱炭を、1テスラ以上の強磁場中で、500〜Ae3変態点の温度範囲で圧延することで抑制する。 (もっと読む)


【課題】 靭性を向上した熱間工具鋼の製造方法を提供する。
【解決手段】 0.005質量%以上のPを含有する熱間工具鋼の成分組成の溶鋼を得る第1工程と、前記の熱間工具鋼の成分組成の溶鋼にZnを添加する第2工程と、前記のZnを添加した溶鋼を鋳造して鋼塊を得る第3工程とからなり、前記の第2工程は、前記の第3工程の鋳造後の鋼塊の成分組成が、Zn:0.0025超〜0.025質量%、P:0.005質量%以上を含み、かつZn/P:0.5超の熱間工具鋼となるように、Znを添加するものである熱間工具鋼の製造方法である。第3工程の鋳造後の鋼塊の成分組成は、質量%で、C:0.3〜0.6%未満、Si:1.5%以下、Mn:1.5%以下、Cr:3.0〜6.0%未満を含む熱間工具鋼であることが好ましい。MoおよびWは単独または複合で(Mo+1/2W):3.5%以下、あるいはさらにV:1.5%以下を含んでもよい。 (もっと読む)


【課題】 高温軟化抵抗性に優れた高強度金型の製造方法を提供する。
【解決手段】 工具鋼粉末と酸化物粉末との混合粉末であって、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%を含有し、かつ、体積%で酸化物を0.3〜5.0%含有する混合粉末をメカニカルミリングした後、熱間静水圧プレスによって固化し、型彫り面形状に機械加工して焼入れ焼戻しするか、または、焼入れ焼戻しして型彫り面形状に機械加工する高強度金型の製造方法において、前記熱間静水圧プレスは、プレス時の圧力をP(MPa)、温度をT(℃)としたときに、P≦200、T≦1100であり、かつ、Log10P≧−0.00135×T+3.40の条件で行う金型の製造方法である。好ましくは、T≦1050である。そして、前記混合粉末をメカニカルミリングした後、金型基体の表面に固化する高強度金型の製造方法である。 (もっと読む)


【課題】鋼中の酸化物組成をCaO−Al−MgO系に制御することで転動疲労寿命の長い高清浄度鋼を提供することに加え、その溶製方法を提供する。
【解決手段】mass%で、C濃度:0.85〜1.2%、Sol.Al濃度:0.020〜0.035%、Cr濃度:0.50〜2.0%、S濃度:0.0020%以下、Total O濃度:0.0020%以下を有するとともに、連続鋳造後の鋳片から切り出したサンプルを鏡面研磨して顕微鏡観察した際に該鏡面研磨面上に存在する円相当径で1.0μm以上10μm以下の非金属介在物を有し、該非金属介在物を構成する全元素の中でのCa、Al、MgおよびOの占める割合が90atom%以上であるとともに、そのCa濃度が5atom%以上である非金属介在物の全個数のうち、その非金属介在物のCaO濃度が20〜50mass%であるものの個数比率が50%以上であることを特徴とする高清浄度軸受鋼である。 (もっと読む)


【課題】電気伝導性に優れた固体高分子型燃料電池セパレータ用ステンレス鋼、その製造方法、および固体高分子型燃料電池セパレータを提供する。
【解決手段】質量%で、C:0.001〜0.10%、Si:0.001〜1.0%、Mn:0.001〜1.2%、Al:0.001〜0.5%、Cr:15.0〜35.0%、N:0.001〜0.10%を含有し、残部がFeおよび不可避的不純物からなり、表面の酸化皮膜の厚さが20〜600nmであることを特徴とするステンレス鋼及びこの鋼板を、冷間圧延後または冷間圧延材焼鈍後に、水素濃度が30容積%以上であり残部が不活性ガス及び不可避的不純物からなり、露点が−40〜0℃である雰囲気下で、温度が800〜1200℃の熱処理を行なうことで製造する方法。 (もっと読む)


【課題】形状が均一で、金属組織、硬さのバラツキが小さく、研掃能力の安定した低炭素系鋳鋼ショットを提供する。
【解決手段】質量%で、C:0.1〜0.25%、Si:0.1〜0.3%、Mn:0.4〜1.0%、Cr:0.3〜1.0%、P:0.05%以下、S:0.05%以下を含有し、必要により、NiとCuを単独又は合計で0.4〜1.0%、Moを0.1〜0.3%、Alを0.04〜0.12、Bを0.001〜0.05、V、NbおよびTiの1種以上を合計で0.05〜0.5含有する組成の低炭素系鋳鋼ショット。 (もっと読む)


【課題】転動疲労寿命を更に向上させた軸受を得るための球状化熱処理軸受用鋼材を提供する。
【解決手段】本発明の球状化熱処理軸受用鋼材は、所定の化学成分組成を満足し、鋼材の圧延方向に平行な面において、圧延方向に垂直な方向にEPMAライン分析したとき、CrのX線強度値の標準偏差σ1と平均値a1が、下記(1)式の関係を満足すると共に、球状化セメンタイト粒径の標準偏差σ2と平均値a2が下記(2)式の関係を満足するものである。
(CrのX線強度値の標準偏差σ1/CrのX線強度値の平均値a1
≦0.25…(1)
(球状化セメンタイト粒径の標準偏差σ2/球状化セメンタイト粒径の平均値a2
≦0.15…(2) (もっと読む)


【課題】転動疲労寿命の長い軸受材料を提供することを課題とする。
【解決手段】[マグネシウムの濃度]/[酸素の濃度]≦0.2なる式を満足し、被検面積が3000mmである場合に、(長さ×幅)1/2で算出される介在物平均径が3μm以上である酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり100個以下、介在物平均径が10μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり2個以下で、且つ、前記介在物平均径が10μm以上、幅が3μm以上、長さが20μm以上である酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の組成が、[マグネシウムの濃度]/([アルミニウム濃度]+[カルシウム濃度])≦0.1の式を満足する軸受材料は、B10寿命が優れている。 (もっと読む)


【課題】転動疲労寿命を更に向上させた軸受を得るための軸受用鋼材を提供する。
【解決手段】本発明の軸受用鋼材は、C:0.95〜1.10%、Si:0.15〜0.90%、Mn:1.2%以下(0%を含まない)、Cr:0.90〜1.60%、P:0.025%以下(0%を含まない)、S:0.025%以下(0%を含まない)を夫々含み、残部が鉄および不可避不純物からなり、鋼材の圧延方向に平行な面において、圧延方向に垂直な方向にEPMAライン分析したとき、CrのX線強度値の標準偏差と平均値が、下記(1)式の関係を満足する。
(CrのX線強度値の標準偏差/CrのX線強度値の平均値)≦0.25…(1) (もっと読む)


【課題】塑性変形が抑制され、高荷重・高速回転・高温下においても長寿命なピニオンシャフト、及びその製造方法を提供する。
【解決手段】炭素含有量(C(%))が0.80〜1.20質量%、クロム含有量(Cr(%))が0.10〜1.00質量%、マンガン含有量(Mn(%))が0.40〜1.20質量%で、残部が鉄及び不可避不純物からなり、焼入れ性指数DI=D×FMn×FCr<4.00(但し、D=0.14+0.2×C(%)、FMn=1+4.1×Mn(%)、FCr=1+2.33×Cr(%))である合金鋼製であり、転動体が転走する軌道部が、周面の長手方向両端部を除いた部分に形成され、かつ、軌道部の最表面層の残留オーステナイト量が20〜40体積%で、硬さが700〜900Hvであり、軌道部を除いた部分の残留オーステナイト量が0体積%で、硬さが300Hv以下であるピニオンシャフト。 (もっと読む)


11 - 20 / 435