説明

国際特許分類[G01N25/18]の内容

国際特許分類[G01N25/18]に分類される特許

71 - 80 / 398


【課題】変圧器鉄心等を構成する電磁鋼板内またはその積層体内における電力損失分布を簡便かつ精度良く測定することができる鉄損測定方法を提案する。
【解決手段】電磁鋼板またはその積層体を被測定物とし、その表面の温度上昇速度から被測定物の交流鉄損値をサーモグラフィにより測定する方法において、所定の励磁条件に到達するまでの昇磁速度を0.004〜0.1T/秒とし、上記励磁条件に到達後、測定時間を1秒以上40秒以内として被測定物の温度上昇速度を測定することを特徴とする電磁鋼板またはその積層体の鉄損測定方法。 (もっと読む)


【課題】検出誤差が生じる可能性を低減できる堆積量検出装置、および検出システムを提供する。
【解決手段】堆積量検出装置は、内燃機関の排気ガス中に含まれる粒子状物質PMが堆積される第1主面31a、および第1主面31aとは反対側に設けられた第2主面31bを有する絶縁体31と、発熱体32と、第1主面31aとの間の温度を検出する第1温度センサ33と、第2主面31bとの間の温度を検出する第2温度センサ34と、複数段階設けられた温度、および温度に対応付けられた堆積量が予め記録された対応関係記録部41と、第1温度センサ33が検出した温度から第2温度センサ34が検出した温度の差分を取ることにより、当該差分が示す温度に基づいて、対応関係記録部41から堆積量を読み出し、読み出した堆積量を、第1主面31aに粒子状物質PMが堆積された堆積量として算出する堆積量算出部42と、を備える。 (もっと読む)


本発明は、計算モデル(Tbearing,estimator)を用いて鉄道車両の輪軸の輪軸ベアリング(1)の温度(TB,est)を推定する方法に関し、該方法では、・前記計算モデル(Tbearing,estimator)は、該計算モデル(Tbearing,estimator)の入力パラメータとして前記鉄道車両の速度(vtrain)と周辺温度(Tamb)とに依存して、前記輪軸ベアリング(1)の温度(TB,est)を推定するように構成されており、・前記輪軸ベアリング(1)と異なりかつ該輪軸ベアリング(1)と直接的または間接的に熱伝導結合している、前記輪軸の別の部品(6)の温度を測定温度(Tmeas)として、運転中に測定し、・前記輪軸ベアリング(1)と異なる部品(6)の温度を、前記計算モデル(Tbearing,estimator)によって推定温度(Tmeas,est)として推定し、・前記輪軸ベアリング(1)の温度(TB,est)の推定に関する前記計算モデル(Tbearing,estimator)の精度を改善するため、前記計算モデル(Tbearing,estimator)は、前記測定温度(Tmeas)と前記推定温度(Tmeas,est)との比較に基づいて該計算モデル(Tbearing,estimator)を常時または一時的または周期的に校正または補償するために用いられる補正項(K)を有することを特徴とする、方法。
(もっと読む)


【課題】 発熱体を有するカンチレバーを用いて試料へ局所加熱をして試料の軟化点や熱伝導を測定する場合に、探針と試料との接触部のみの熱交換とすることで測定ポイントの周辺部に熱影響を与えなくし、接触部のみの軟化点測定および熱伝導測定を可能にした装置を提供する。
【解決手段】 プローブ顕微鏡をベースとした局所の軟化点測定装置および熱伝導測定装置において、探針と試料面の環境を1/100気圧(103Pa)以下とする、あるいは探針側面を断熱材で熱逃げが1/100以下となる厚さにコートすることにより、探針側面からの熱逃げを低減し、略探針と試料面との接触部のみの熱交換となるようにした。 (もっと読む)


【課題】パルスレーザによる物質の分解の可否をシミュレーションによって高速に判定できるようすること。
【解決手段】シミュレーション装置は、物質の凝集エネルギーを計算する凝集エネルギー計算部と、物質に所定の波形と強度を有するパルスレーザを照射する前後における物質の内部エネルギーの差を計算する内部エネルギー差計算部と、内部エネルギーの差と凝集エネルギーに基づいて、パルスレーザの照射による物質の分解の可否を判定する判定部と、を備えている。 (もっと読む)


【課題】被測定物の同一面に加熱光及び検出光を照射して当該試料の熱物性を解析しても、検出光の反射光強度の測定において加熱光の反射光の影響を受け難い熱物性解析装置及び熱物性解析方法を提供することを課題とする。
【解決手段】本発明では、検出光B2を測定部位11aで焦点を結ぶように集光させて照射すると共に加熱光B1を当該測定部位11aに照射し、この測定部位11aからの反射検出光B2aを測定部位11aとは異なる測定位置まで導光し、この測定位置に導光された反射検出光B2aの強度を測定する。前記加熱光B1の照射は、測定部位11aにおいて加熱光B1が焦点を結ぶように照射する場合に比べ、測定位置に到達する反射加熱光B1aの強度が小さくなるように測定部位11aにおいて焦点をぼかし且つその照射範囲sに検出光B2の照射範囲が含まれるように加熱光B1を集光するように照射する。 (もっと読む)


【課題】気体熱伝導度式ガスセンサにおいて、製造が容易なガスセンサを提供する。
【解決手段】雰囲気中のガス濃度を検知する検知素子Rs、および検知素子の温度補償を行う補償素子Rrがブリッジ回路に組み込まれ、検知素子の抵抗値の変化によってガス濃度を検知する気体熱伝導度式ガスセンサ1において、検知素子Rsを白金コイルに高熱伝導材料でコーティングし、放熱速度によって抵抗値が変化する第一の発熱体で構成され、補償素子Rrを白金コイルに低熱伝導材料でコーティングして形成して、第一の発熱体と熱伝導率の異なる材質で形成された第二の発熱体で構成されている。それらをブリッジ回路10に組み込んで気体熱伝導度式ガスセンサ1を構成する。 (もっと読む)


【課題】高性能な真空断熱材を測定することのできる熱伝導率測定装置を提供すること。
【解決手段】少なくとも測定装置の恒温部が真空断熱材で覆って断熱されたことを特徴とする熱伝導率測定装置。 (もっと読む)


【課題】土壌の固有熱抵抗を低コストで測定する。一般に広く普及している機器類を利用する。
【解決手段】土壌の種類毎に予め求められた比抵抗と固有熱抵抗との関係1を記憶している記憶手段2と、調査現場の土壌の種類と調査現場における土壌の比抵抗の計測値とを読み込む入力手段3と、計測値を土壌の種類が一致する関係1に当てはめて固有熱抵抗を求める算出手段4とを備えている。土壌の比抵抗と固有熱抵抗との関係1を土壌の種類毎に予め求めておき、調査現場において土壌の比抵抗を実際に計測し、その計測結果を土壌の種類が一致する関係1に当てはめて調査現場の固有熱抵抗を求めるようにする。 (もっと読む)


【課題】測定対象を限定することなく、しかも大型の測定対象であってもサンプリングすることなく容易に熱伝導率が測定できる熱伝導率測定方法および熱伝導率測定装置を提供する。
【解決手段】本発明の熱伝導率測定方法では、熱伝導率を測定する被測定体Oの表面に熱伝導性の参照体Rをその正面側から当接させて、参照体Rの背面側に設けられたペルチェ素子Pにより参照体Rの背面側から参照体Rの正面側に向かう方向に交流的熱流束Iを生じさせた定常状態で参照体Rの背面側の温度Tと参照体Rの正面側の温度Tとを計測し、これらの温度T,Tの振動的変化の各振幅T10,T20に基づいて被測定体Oの熱伝導率σを導出する。 (もっと読む)


71 - 80 / 398