説明

国際特許分類[H01J49/10]の内容

電気 (1,674,590) | 基本的電気素子 (808,144) | 電子管または放電ランプ (32,215) | 粒子分光器または粒子分離管 (1,755) | 細部 (827) | イオン源;イオン銃 (433)

国際特許分類[H01J49/10]の下位に属する分類

国際特許分類[H01J49/10]に分類される特許

121 - 130 / 338


【課題】衝突セル(24)内の不要人工イオンの形成あるいは再形成を最小にする。
【解決手段】本発明は誘導結合高周波プラズマ質量分析(ICPMS)に関し、衝突セルを用いてイオン・ビームから不要な人工イオンを反応気体と選択的に反応させることにより除去する。本発明は、膨張チャンバ(3)と、衝突セル(24)を内蔵した第二真空チャンバ(20)の間に設けた高真空の第一真空チャンバ(6)を提供する。第一真空チャンバ(6)は第一イオン光学装置(17)を有する。衝突セル(24)は第二イオン光学装置(25)を内蔵する。第一真空チャンバ(6)の設置は、プラズマ源(1)からの気体負荷に原因があると思われる衝突セル(24)内の残留圧を最小にすることにより衝突セル(24)への気体負荷を減少する。 (もっと読む)


【課題】 被検出ガス分子の正確な分子量を十分な感度で計測すると共に同時に分子構造の解析を十分な感度で行える質量分析装置を提供する。
【解決手段】 イオン化した被検出ガスを質量分析する質量分析機構を備える質量分析装置であり、正電荷の金属イオンを付着させてイオン化する第1イオン源11と、電子を衝撃させてイオン化する第2イオン源17の2つのイオン源を独立して備え、さらに第1のイオン源と第2のイオン源との間の位置には隙間領域を有している。この構成により被検出ガスに関する分子量の計測と分子構造の解析とを高い感度で行うことが可能となる。第1イオン源と質量分析機構の間に第2イオン源を位置させるとともに、被検出ガスを第1イオン源に導入する。 (もっと読む)


【課題】本願発明の課題は、従来のESIの欠点であった感度が低い点を解消することである。
【解決手段】本願発明は、エレクトロスプレー装置のニードルから液体試料が噴霧され、該試料が質量分析器に導入される前に、イオン化剤液滴を添加することにより、質量分析の感度を向上させるものである。具体的には、エレクトロスプレー装置のニードルの先端近傍、質量分析器のコーン先端近傍および該針先と該コーンの中間の位置に、シリンジから数μLのイオン化剤液滴を滴下することにより試料にイオン化剤を添加する。 (もっと読む)


【課題】本願発明の課題は、試料にレーザーを照射することにより、試料をイオン化し、該イオン化した試料を質量分析器に導き、試料の同定を行う方法において、簡便な装置により感度を向上させることである。
【解決手段】本願発明は、イオン化剤を混合した液体試料を噴霧装置により微細液滴(ミスト状)とし、該微細液滴試料にレーザー光を照射した。これにより、単に液滴にレーザー光を照射するのに比べて、感度が数百倍向上した。 (もっと読む)


【解決手段】開示されるイオン源において、試料導入用キャピラリー管(2)を介して、イオン源の試料チャンバ(1)内に、気相で試料を導入する。酸化銅等の酸化剤で被覆された加熱表面(6)に導入された試料を入射することにより、試料に含まれる炭素が酸化されて、二酸化炭素が形成される。形成された二酸化炭素分子を、電子ビーム(3)を用いた電子衝撃イオン化によりイオン化する。得られたイオンを質量分析器に送り、質量分析を行なう。 (もっと読む)


【課題】イオン導入管の入口端に対するイオン化プローブからの噴霧流の中心軸の角度(噴霧角)の調整を可能とするとともに、そのためにハウジングに形成した開口を有効に活用する。
【解決手段】イオン化室2を内部に形成するハウジング23は、噴霧角が45°、90°になるような位置にプローブ装着開口24、25を有する。両プローブ装着開口24、25にはイオン化プローブ20の装着が可能であるとともに、イオン化室2内を透視するための透明窓を有する窓部材30の装着も可能である。そこで、いずれか一方のプローブ装着開口24、25にイオン化プローブ20を装着したとき、使用しない他方のプローブ装着開口に窓部材を取り付ける。それにより、その窓部材30の透明窓を通してイオン導入管30の入口端30a付近の汚れ状況などを確認することができる。 (もっと読む)


システム(20)および方法は、例えば質量分析検出で使用するためのサンプリング・システムにおける収集機器−表面間距離を制御するために画像分析手法を利用する。そのような手法は、収集機器(23)又は表面(22)に落ちたその影の画像を取得し、線平均輝度(LAB)技術を利用して収集機器と表面との実際の距離を決定することを含む。次に、実際の距離は、必要に応じて自動化された表面サンプリング操作において収集機器−表面間距離を再最適化するためにターゲット距離と比較される。
(もっと読む)


システム(20)および方法が、レーザ・センサ(42)を含む距離測定装置(40)を利用して、例えば質量分光検出で使用される試料収集プロセス中に収集機器−表面間距離を制御する。レーザ・センサは、収集機器(23)と固定位置関係で配置され、レーザ・センサと表面(22)の間の実際の距離に対応する信号がレーザ・センサにより生成される。収集機器が表面から試料収集に望ましい距離で配置されたときに、レーザ・センサと表面の間の実際の距離が、レーザ・センサと表面の間のターゲット距離と比較され、必要に応じて、実際の距離がターゲット距離に近づくように調整される。
(もっと読む)


【課題】ハウジングへのイオン化プローブの取付け・取外し作業の効率化を図りつつ、部品点数の増加を抑えてコストを抑制する。
【解決手段】フランジ部22に貫設したシャフト25の頭部にレバー26を設け、シャフト25の周面に係止ピン27を突設する。ハウジング30にはシャフト25が挿入される挿入孔35を形成し、その挿入孔35の上部には係止ピン27が回動可能なざぐり35aを設ける。凹部33に収容されたマイクロスイッチ40を被覆する保護プレート52はざぐり35aの一部にせり出している。イオン化プローブ20がハウジング30にセットされ、レバー26が回動操作されると、係止ピン27が保護プレート52の下方に入り込み、その係合によってイオン化プローブ20はハウジング30に固定される。保護プレート52はスイッチ40の保護とイオン化プローブ20の固定との2つの機能を果たす。 (もっと読む)


【課題】分析装置の精度を向上させる。
【解決手段】走査型アトムプローブ200は、試料3の表面を走査する引出電極5と、試料3に電圧を供給する直流高圧電源2と、直流高圧電源2により供給された電圧により引出電極5と試料3の間に生じた電界によって、試料3の表面の原子又は原子団を試料3から脱離させたときに、脱離したイオン8を検出する位置感知型イオン検出器11とを備える。位置感知型イオン検出器11は、イオン8の入射により電子を放出する電子増倍板25と、電子増倍板25から放出された電子の一部が入射する螺旋状の遅延回路線41と、電子増倍板25から放出された電子のうち、遅延回路線41の線間を通過した電子が入射する導電板42とを含む。 (もっと読む)


121 - 130 / 338