説明

イオン交換基を有するフルオロポリマーを安定化する方法

本発明は、イオン交換基を有する少なくとも1種の半結晶質フルオロポリマー[ポリマー(I)]を少なくとも1種のフッ素化有機分散媒体[媒体(M)]中に懸濁して、分散媒体(M)中のポリマー(I)の分散液(D)を得る工程と、UV線による照射下で前記分散液(D)をフッ素と接触させて、安定化されたポリマーを得る工程とを含む、イオン交換基を含む半結晶質フルオロポリマーを安定化する方法に関する。本発明の更なる目的は、−COFタイプの少量の不安定末端基を有する上で定義された安定な半結晶質フルオロポリマー、本方法によって得られる安定化されたフルオロポリマーまたは安定なフルオロポリマーの燃料電池装置における使用、前記フルオロポリマーを含む膜および膜/電極接合体である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、イオン交換基を有するフルオロポリマー中の不安定末端基を低減する方法、安定なフルオロポリマー、こうしたフルオロポリマーの燃料電池装置における使用、前記安定なフルオロポリマーを含む膜および膜/電極接合体に関する。
【背景技術】
【0002】
燃料電池、特に水素−酸素燃料電池は、環境に対して有害な影響を実質的に及ぼさない発電システムとして現在益々注目を集めている。特に、ポリマー燃料電池は、より高い出力密度を得ることを可能にするので、燃料電池技術の実施のために最も有望な方法として認識されてきた。
【0003】
ポリマー燃料電池の基本要素は、いわゆる「膜/電極接合体」(MEA)である。MEAは高分子膜を含み、高分子膜は陽子伝導性ポリマーからなるとともに、その両面が、導電性かつ触媒的に活性な層(電極層とも呼ばれる)に接触している。前記電極層は燃料の酸化および酸化剤の還元に触媒作用を及ぼし、燃料電池内で必要な導電率を確実にするために寄与している。こうした層は、一般に、活性触媒、一般には貴金属(例えばPt)を中に分散させて含有する膜と同じ陽子伝導性ポリマーから構成されている。
【0004】
スルホン酸基を有する過フッ素化ポリマーは、高分子膜と電極層の両方のための材料として広く用いられてきた。それにもかかわらず、こうしたポリマーは、一般に、例えば、−COFタイプの不安定末端基および/または他の不規則性および/または欠陥を鎖中に含み、それらは燃料電池作動中、分解しやすい部分として挙動する。従って、長期の燃料電池作動中に、膜のポリマーおよび/または電極層のポリマーは上述した弱い点から始まって徐々に分解する。これらの分解現象は、膜および/またはMEAの機械的強度の低下につながり、ピンホール、切断および磨耗などをもたらしかねず、よって発電電圧は漸次減少し、燃料電池寿命は限定されるようになる。
【0005】
膜および/またはMEAの劣化が、膜を通した不可避のガスクロスオーバゆえに生成される過酸化水素の分解から誘導された過酸化物種によって誘発されることは一般に理解されている。かくして、スルホン酸基を有する過フッ素化ポリマーは、いわゆる「アンジッピング(unzipping)反応」により分解することが知られている。この反応においては、−COFタイプの欠陥から始まって、一般にCOOH基として加水分解され、ポリマーの主鎖は、以下で示される反応機構に従って漸次解離する。
−CFCOOH+・OH→R−CF・+CO+H
−CF・+・OH→R−CFOH→R−COF+HF
−COF+HO→R−COOH+HF
式中、Rはフルオロポリマー鎖を表している。
【0006】
上に鑑みて、燃料電池膜および/またはMEAのためのフルオロポリマーの安定性および耐久性が、フェントン試験に照らして一般に判断されてきた。フェントン試験においては、鉄(II)イオン(・OHラジカルにおいてH分解に触媒作用する)の存在下での過酸化水素によるフルオロポリマーの処理の結果として放出されるフッ化物イオンの量を測定する。
【0007】
欠陥および/または不安定末端基を低減することによりフルオロポリマーの安定性を改善する目的で幾つかの方法が過去に提案されてきた。
【0008】
特許引例0001:(特許文献1)(E.I.DUPONT DE NEMOURS AND COMPANY)(1970年10月28日)は、酸素の存在しない状態でフッ素ラジカル発生化合物(例えば、気体状フッ素)にポリマーを接触させることによる固体状態(微粒子として、または予備成形形態として、もしくは成形品として)の高分子量フルオロカーボンポリマーの安定化のための方法を開示している。上述した方法により安定化され得るフルオロカーボンポリマーのなかで、−SOH側基または−SOH側基の前駆体を有するフルオロカーボンポリマーについて特に言及されている。
【0009】
特許引例0002:(特許文献2)(DAIKIN)(2004年12月02日)は、フッ素含有ポリマー(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレンコポリマー)のオレフィン(−CF=CF)末端基および/またはフッ化アシル(−COF)末端基を、アルカリ金属塩基またはアルカリ土類金属塩基もしくはアンモニアのなかから選択される塩基性化合物と前記コポリマーの混合物を、200℃を超える温度において水分の存在下で熱処理することによって安定な−CFH部分に転化する方法を開示している。
【0010】
特許引例0003:(特許文献3)(E.I.DUPONT DE NEMOURS AND COMPANY)(1988年05月10日)は、フッ素ガスとの固/気反応によってペレットの形態下でフッ素化することによりテトラフルオロエチレン/パーフルオロアルキルビニルエーテルコポリマーを安定化する方法を開示している。
【0011】
従って、特許引例0004:(特許文献4)(ASAHI GLASS COMPANY,LTD)(2006年03年23日)は、スルホン酸基を有する過フッ素化ポリマーを提供する方法であって、前記スルホン酸基のための前駆体(例えば、−SOF部分)を有する前記ポリマーを最初に熱処理に供し、次にフッ素ガスに接触させる方法を開示している。熱処理は重要な工程と考えられている。フッ素ガスに接触することにより安定な−CF基に容易に転化され得る−COF部分中の不安定末端基の転化を熱処理が可能にし、それから得られたポリマーは、明確な条件で過酸化水素に接触した時、ポリマー中のフッ素の全量の0.002%未満(0.001%に至るまで)のフッ素イオン放出を示すようになるからである。
【0012】
それにもかかわらず、これらの方法は、イオン交換基を有するフルオロポリマーの膜および/またはMEAの安定性および耐久性が燃料電池スタックでの使用に許容されるように、イオン交換基を有するフルオロポリマー中の不安定基/欠陥の数を低減するために好適な方法ではない。要点として、不安定基の限られた微量(例えばフェントン試験における非零フッ化物放出によって検出される)でさえも電池の耐久性および発電電圧を実質的に損ないかねないということをまとめることが重要である。従って、イオン交換基を有するフルオロポリマーを安定化させる方法であって、フェントン試験においてF放出を実質的に検出しないように、不安定末端基の実質的な排除を有利に可能にする方法が当該技術分野においてなお必要とされている。
【0013】
非晶質ポリマーを安定化する方法も当該技術分野において知られている。従って、特許引例0005:(特許文献5)(AUSIMONT S.P.A)(2002年11月13日)および特許引例0006:(特許文献6)(AUSIMONT S.P.A)(2002年11月13日)は、非晶質過フッ素化ポリマーを安定化する方法であって、前記ポリマーを最初に適する溶媒に溶解させて、0.5〜15重量%の濃度を有する溶液を得、次に前記溶液をUV線の存在下で元素フッ素によるフッ素化に供する方法が開示されている。こうした方法により安定化されたフルオロポリマーは、不安定な極性末端基の実質的な不在、すなわち、FT−IR分光分析による不検出を与えられる。この方法によって得ることが可能な非晶質安定化フルオロポリマーのなかで、フルオロスルホン酸モノマー、例えば、CF=CF−OCF−CF−SOF、CF=CF−O−[CF−CXF−O]−CFCF−SOF[式中、X=Cl、FまたはCF、n=1〜10]およびCF=CF−OCF−CF−CF−SOFから誘導された繰り返し単位を含むコポリマーについて特に言及されている。
【0014】
それにもかかわらず、この方法は、上述した溶媒にフルオロポリマーが可溶化されることを必要とするので適用が限定される。非晶質材料はうまく可溶化される一方で、燃料電池用の膜および/またはMEA中で用いられるための必要な機械的特性を有するイオン交換基を有する半結晶質フルオロポリマーは同等の条件で可溶化しない。更に、特許引例0007:(特許文献5)および特許引例0008:(特許文献6)による方法は、ポリマー回収の負担に関連した不利点がある。実際、上で詳述した溶液から、安定化されたフルオロポリマーを回収することは、例えば溶媒の蒸発など、時間とエネルギーを消費する煩わしい手順を必要とし、従って工業レベルで実施するのは難しい。
【0015】
従って、イオン交換基を含むフルオロポリマーを効率的に安定化する方法であって、大きな溶解度をもたない材料で効率的に機能することが可能であるとともに時間効果と費用効果に優れる方法が当該技術分野においてまだ必要とされている。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】GB第1210794号明細書
【特許文献2】米国特許出願公開第2004242793号明細書
【特許文献3】米国特許第4,743,658号明細書
【特許文献4】米国特許出願公開第2006063903号明細書
【特許文献5】EP第1256591A号明細書
【特許文献6】EP第1256592A号明細書
【発明の概要】
【課題を解決するための手段】
【0017】
従って、本発明の目的は、イオン交換基を含む半結晶質フルオロポリマーを安定化させる方法であって、
− イオン交換基を有する少なくとも1種の半結晶質フルオロポリマー[ポリマー(I)]を少なくとも1種のフッ素化有機分散媒体[媒体(M)]中に懸濁して、分散媒体(M)中のポリマー(I)の分散液(D)を得る工程と、
− UV線による照射下で前記分散液(D)をフッ素と接触させて、安定化されたポリマーを得る工程と
を含む方法である。
【0018】
本発明のもう1つの目的は、少量の−COFタイプの不安定末端基を有するイオン交換基を有する安定な半結晶質フルオロポリマーであり、前記不安定末端基の量が0.05ミリモル/kg未満の量である[ポリマー(F)]。
【0019】
本発明のさらにもう1つの目的は、上述した方法によって得られるフルオロポリマーまたは上のポリマー(F)の燃料電池装置における使用である。
【0020】
本発明のさらに別の目的は、本発明の方法から得られた前記フルオロポリマーまたは上で詳述したポリマー(F)を含む膜および膜/電極接合体である。
【発明を実施するための形態】
【0021】
本出願人は、本発明の方法が、イオン交換基を有するフルオロポリマー中の不安定末端基および/または欠陥を、可溶化を必要とせずに効率的に排除することを可能にすることを驚くべきことに見出した。
【0022】
従って、適する分散媒体にポリマー(I)を分散させることにより、UV線に支援されるフッ素化は不安定末端基の量を低減するのに効果的である。更に、本発明の方法は、単純な分離技術、例えば、デカンテーションおよび濾過などによって、安定化された材料の容易な回収を有利に可能にする。
【0023】
本発明の文脈内で、「イオン交換基を有する少なくとも1種のフルオロポリマー」という記載は、1種または2種以上のポリマー(I)を表すことを意図している。ポリマー(I)の混合物を本発明の目的のために有利に用いることが可能である。
【0024】
本テキストの残りにおいて「イオン交換基を有するフルオロポリマー」および「ポリマー(I)」という表現は、本発明の目的のために、両方ともに複数および単数に理解され、すなわち、本方法を1種または2種以上のポリマー(I)に適用してもよいことが理解される。
【0025】
本発明の目的に関して、「イオン交換基を有するフルオロポリマー」という用語は、
− 少なくとも1個のフッ素原子を含む少なくとも1種のエチレン系不飽和モノマー(以下、フッ素化モノマー)から誘導された繰り返し単位と
− 少なくとも1個のイオン交換基を含む少なくとも1種のエチレン系不飽和モノマー(以下、官能性モノマー)から誘導された実質的な量の繰り返し単位と
を含むあらゆるポリマーを表すことを意図している。
【0026】
「少なくとも1個のフッ素原子を含む少なくとも1種のエチレン系不飽和モノマー[フッ素化モノマー]」という用語は、ポリマー(I)が1種または2種以上のフッ素化モノマーから誘導された繰り返し単位を含むことが可能であることを意味すると理解される。
【0027】
本テキストの残りにおいて「フッ素化モノマー」という表現は、本発明の目的のために、複数および単数の両方に理解される。
【0028】
フッ素化モノマーには、1個または複数の他のハロゲン原子(Cl、Br、I)がさらに含まれていてもよい。そのフッ素化モノマーが水素原子を含まない場合には、それはペル(ハロ)フルオロモノマーと呼ばれる。そのフッ素化モノマーが少なくとも1個の水素原子を含む場合には、それは水素含有フッ素化モノマーと呼ばれる。
【0029】
フッ素化モノマーの例としては、まずは、テトラフルオロエチレン(TFE)、フッ化ビニリデン(VdF)、クロロトリフルオロエチレン(CTFE)、およびそれらの混合物が挙げられるが、これらに限定される訳ではない。
【0030】
場合によっては、そのフルオロポリマーが、一つの第一のモノマー(前記モノマーは上述のようなフッ素化モノマーである)と、少なくとも1種の他のモノマー[以下、コモノマー(CM)]とから誘導される繰り返し単位を含んでいてもよい。
【0031】
以下においては、「コモノマー(CM)」という用語は、1種のコモノマーと、2種以上のコモノマーの両方を包含していることを意図しているものとする。
【0032】
そのコモノマー(CM)は、特に、水素化されている(すなわち、フッ素原子を含まない)[以下、コモノマー(HCM)]またはフッ素化されている(すなわち、少なくとも1個のフッ素原子を含む)[以下、コモノマー(FCM)]のいずれかである。
【0033】
好適な水素化コモノマー(HCM)の非限定的な例としては、まず、エチレン、プロピレン、ビニルモノマーたとえば酢酸ビニル、アクリルモノマーたとえばメタクリル酸メチル、アクリル酸、メタクリル酸、およびアクリル酸ヒドロキシエチル、さらにはスチレンモノマーたとえばスチレンおよびp−メチルスチレンなどが挙げられる。
【0034】
さらに、好適なフッ素化コモノマー(FCM)の非限定的な例としては、以下のものが挙げられる。
− C〜Cフルオロ−および/またはペルフルオロオレフィン、たとえばヘキサフルオロプロペン、ペンタフルオロプロピレン、およびヘキサフルオロイソブチレン;
− C〜C水素化モノフルオロオレフィンたとえば、フッ化ビニル;
− 1,2−ジフルオロエチレン、フッ化ビニリデン、およびトリフルオロエチレン;
− 式CH=CH−Rf0に従うペルフルオロアルキルエチレン[式中、Rf0はC〜Cペルフルオロアルキルである];
− クロロ−および/またはブロモ−および/またはヨード−C〜Cフルオロオレフィンたとえば、クロロトリフルオロエチレン;
− 式CF=CFORf1に従うフルオロアルキルビニルエーテル[式中、Rf1は、C〜Cフルオロ−またはペルフルオロアルキル、たとえば、−CF、−C、−Cである];
− 式CF=CFOXに従うフルオロ−オキシアルキルビニルエーテル[式中、Xは、1個または複数のエーテル基を有する、C〜C12オキシアルキル、またはC〜C12(ペル)フルオロオキシアルキル、たとえばペルフルオロ−2−プロポキシ−プロピルである];
− 式CF=CFOCFORf2に従うフルオロアルキル−メトキシ−ビニルエーテル[式中、Rf2は、C〜Cフルオロ−もしくはペルフルオロアルキル、たとえば、−CF、−C、−C、または1個もしくは複数のエーテル基を有するC〜C(ペル)フルオロオキシアルキル、たとえば−C−O−CFである];
− 次式のフルオロジオキソール:
【化1】

[式中、Rf3、Rf4、Rf5、Rf6は、互いに同じであっても異なっていてもよく、独立して、フッ素原子、場合によっては1個もしくは複数の酸素原子を含む、C〜Cフルオロ−もしくはペル(ハロ)フルオロアルキル、たとえば、−CF、−C、−C、−OCF、−OCFCFOCFである]。
【0035】
上の定義における「実質的な量」という用語は、ポリマーをその特性において修正するために有効である、官能性モノマーから誘導された繰り返し単位の量を表すことを意図している。一般に、実質的な量は、繰り返し単位の全モルを基準にして少なくとも1モル%の量である。
【0036】
本明細書で用いられる「イオン交換基」という用語は、有機化学において意図される一般的な意味を有し、イオン交換と呼ばれる方法においてイオンを捕捉および解放する(すなわち、交換する)能力をエチレン系不飽和モノマーに付与する、前記エチレン系不飽和モノマーの炭素骨格に結合された原子または原子の組み合わせを包含する。
【0037】
イオン交換基の非限定的な例は、特に下式に従う基である。
− SOX[式中、Xはハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択される]
− POZ[式中、Zはハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)、−ORHy(式中、RHyはC1〜6炭化水素基である)および−ORHf’(式中、RHfはC1〜6フルオロカーボン基またはパー(ハロ)フルオロカーボン基である)またはそれらの混合物のなかから選択される]
【0038】
好ましくは、ポリマー(I)はスルホン酸タイプのイオン交換基、すなわち、上で詳述した式−SOXの基を含む。こうした場合、本発明の目的のため、ポリマー(I)が上で詳述したようにフッ素に接触する時、上で詳述したポリマー(I)の式−SOXのイオン交換基がフッ化スルホニルの形態下にある、すなわち、−SOF形態(X=F)下にあることが有利である。この形態はフッ素化条件において安定であり、副反応を起こさせない。これは、例えば、イオン交換基が−SOH形態を取る時に別段に発生しかねない非常に腐食性のHFの放出を有利に回避もする。
【0039】
官能性モノマーが[官能基に任意に含まれるフッ素原子に加えて]官能基に含まれていない少なくとも1個のフッ素原子を含む場合、それはフッ素化官能性モノマーと呼ばれる。官能性モノマーが官能基に任意に含まれるフッ素原子以外のフッ素原子を含まない場合、それは水素添加官能性モノマーと呼ばれる。
【0040】
フッ素化モノマーとフッ素化官能性モノマーは同じモノマーであってもよいか、または異なるモノマーであってもよい。すなわち、官能性フルオロポリマー[ポリマー(I)]はフッ素化官能性モノマーのホモポリマーであることが可能であるか、または1種または2種以上のフッ素化モノマーと、フッ素化または水素添加された1種または2種以上の官能性モノマーとのコポリマーであることが可能である。
【0041】
ポリマー(I)は、繰り返し単位の全モルを基準にして有利には少なくとも1モル%、好ましくは少なくとも2モル%、より好ましくは少なくとも3モル%、なおより好ましくは少なくとも5モル%の、官能性モノマーから誘導された繰り返し単位を含む。
【0042】
ポリマー(I)は、繰り返し単位の全モルを基準にして有利には多くとも75モル%、好ましくは多くとも50モル%、より好ましくは多くとも30モル%、なおより好ましくは多くとも20モル%の、官能性モノマーから誘導された繰り返し単位を含む。
【0043】
好ましくは、ポリマー(I)は、以下の中から選択された少なくとも1種のフッ素化官能性モノマーから誘導された繰り返し単位を含む。
(M1)式(M1)のスルホン化パーフルオロオレフィン:
【化2】

[式中、nは0〜6の間の整数であり、X’はハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択され、好ましくはX’はフッ素であり、好ましいスルホン化フルオロオレフィンは、式(M1−A)および式(M1−B):
【化3】

(式中、X’は上の定義と同じ意味を有する)
に従うスルホン化パーフルオロオレフィンである]、
(M2)式(M2)のスルホン化パーフルオロビニルエーテル:
【化4】

[式中、mは0〜10の間の整数であり、X’はハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択され、好ましくはX’はフッ素であり、式(M2−A)、(M2−B)および(M2−C):
【化5】

(式中、X’は上の定義と同じ意味を有する)
のスルホン化パーフルオロエーテルが好ましく、最も好ましくは、スルホン化パーフルオロビニルエーテルは、上で詳述したようにその−SOF形態であるか、またはその−SOX’形態のいずれかであることが可能である式(M2−D):
【化6】

のパーフルオロ−5−フッ化スルホニル−3−オキサ−1−ペンテン(「SFVE」としても知られている)である]、
(M3)式(M3)のスルホン化パーフルオロアルコキシビニルエーテル:
【化7】

[式中、wは0〜2の間の整数であり、RFおよびRFは互いに同じであっても異なっていてもよく、各出現において独立して、−F、−Clまたは1個以上のエーテル酸素で任意に置換されているC1〜10パーフルオロアルキル基であり、yは0〜6の間の整数であり、X’はH、ハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択され、好ましくはX’はフッ素であり、好ましいスルホン化パーフルオロアルコキシビニルエーテルは上式(M3)に従い、式中、wは1であり、RFは−CFであり、yは1であり、RFは−Fであり、X’はFであり[「PSEPVE」(パーフルオロ−2−(2−フルオロスルホニルエトキシ)プロピルビニルエーテル)とも呼ばれる式(M3−A)]:
【化8】

これは上で詳述したようにその−SOF形態であるか、またはその−SOX’形態のいずれかであることが可能である]、
(M4)式(M4)のスルホン化芳香族(パー)フルオロオレフィン:
【化9】

[式中、Arは好ましくは過フッ素化されたC3〜15の芳香族部分またはヘテロ芳香族部分であり、X’はハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択され、好ましくは、X’はフッ素である]
および
(M5)それらの混合物。
【0044】
任意に、上で規定されたようなフッ素化モノマーおよび官能性モノマーから誘導された繰り返し単位に加えて、ポリマー(I)は、以下の式のビスオレフィンのなかから選択された少なくとも1種のビスオレフィンから誘導された繰り返し単位を更に含むことが可能である。
式:
【化10】

[式中、jは2〜10の間、好ましくは4〜8の間の整数であり、R1、R2、R3、R4は互いに同じであっても異なっていてもよく、H、FまたはC1〜5のアルキルもしくは(パー)フルオロアルキル基である]、
【化11】

[式中、Aの各々は互いに同じであっても異なっていてもよく、各出現において、F、ClおよびHから独立して選択され、Bの各々は互いに同じであっても異なっていてもよく、各出現において、F、Cl、HおよびORから独立して選択され、ここで、Rは、部分的に、実質的に、または完全にフッ素化または塩素化され得る分岐鎖または直鎖のアルキル基であり、Eは、エーテル連結により挿入され得る、任意にフッ素化された2〜10個の炭素原子を有する二価基であり、好ましくは、Eは−(CF−基(mは3〜5の整数である)であり、(OF−2)タイプの好ましいビスオレフィンはFC=CF−O−(CF−O−CF=CFである]、
【化12】

[式中、E、AおよびBは上の定義と同じ意味を有し、R5、R6、R7は互いに同じであっても異なっていてもよく、H、FまたはC1〜5のアルキルもしくは(パー)フルオロアルキル基である]。
【0045】
ポリマー(I)が、上で定義したビスオレフィンから誘導された繰り返し単位を含む場合、ポリマー(I)は、ポリマー(I)のすべての繰り返し単位を基準にして0.01〜5モル%の範囲内の量で前記繰り返し単位を有利に含む。
【0046】
好ましくは、ポリマー(I)は上述したビスオレフィンを含まない。
【0047】
ポリマー(I)は、好ましくは官能性パー(ハロ)フルオロポリマーである。
【0048】
本発明の目的のため、「官能性パー(ハロ)フルオロポリマー」という用語は、実質的に水素原子を含まない官能性フルオロポリマーを表すことを意図している。
【0049】
「実質的に水素原子を含まない」という用語は、官能性パー(ハロ)フルオロポリマーが、
− 少なくとも1個のフッ素原子を含みかつ水素原子を含まない1種または2種以上のエチレン系不飽和モノマー(以下、パー(ハロ)フルオロモノマー)から誘導された繰り返し単位、および
− 少なくとも1個のフッ素原子および少なくとも1個のカチオン交換基を含みかつ(カチオン交換基に任意に含まれる水素原子を除き)水素原子を含まない1種または2種以上のエチレン系不飽和モノマー(以下、官能性パー(ハロ)フルオロモノマー)から誘導された繰り返し単位
から本質的になることを意味するように理解される。
【0050】
パー(ハロ)フルオロモノマーおよび官能性パー(ハロ)フルオロモノマーは同じモノマーであってよいか、または異なるモノマーであってよい。すなわち、官能性パー(ハロ)フルオロポリマーは官能性パー(ハロ)フルオロモノマーのホモポリマーであることが可能であるか、または1種または2種以上のパー(ハロ)フルオロモノマーと1種または2種以上の官能性パー(ハロ)フルオロモノマーのコポリマーであることが可能である。
【0051】
好ましいポリマー(I)は、以下のなかから選択された少なくとも1種の官能性パー(ハロ)フルオロモノマーおよび少なくとも1種のパー(ハロ)フルオロモノマーから誘導された繰り返し単位を含む(好ましくは、繰り返し単位から本質的になる)官能性パー(ハロ)フルオロポリマーから選択される。:
− C〜Cパーフルオロオレフィン、好ましくはテトラフルオロエチレン(TFE)および/またはヘキサフルオロプロピレン(HFP);
− クロロトリフルオロエチレン(CTFE)および/またはブロモトリフルオロエチレンのようなクロロ−および/またはブロモ−および/またはヨード−C〜Cパー(ハロ)フルオロオレフィン;
− 式CF=CFORf1(式中、Rf1はC〜Cパーフルオロアルキル、例えば、−CF、−C、−Cである)に従うパーフルオロアルキルビニルエーテル(PAVE);
− 式CF=CFOX(式中、Xは、パーフルオロ−2−プロポキシ−プロピルのような、1個以上のエーテル基を有するC〜C12パーフルオロオキシアルキルである)に従うパーフルオロ−オキシアルキルビニルエーテル。
【0052】
より好ましいポリマー(I)は、上で定義された少なくとも1種の官能性パー(ハロ)フルオロモノマーから誘導された繰り返し単位を含む(好ましくは、繰り返し単位から本質的になる)テトラフルオロエチレン(TFE)コポリマーから選択される。
【0053】
好ましい官能性パー(ハロ)フルオロモノマーは、特に、上で詳述された式(M2)のスルホン化パーフルオロビニルエーテルおよび上で詳述された式(M3)のスルホン化パーフルオロアルコキシビニルエーテルならびにそれらの混合物である。
【0054】
−SOF形態または−SOX’’形態(式中、X’はハロゲン(Cl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択される)の、好ましくは−SOF形態のPSEPVEおよび/またはSFVEから誘導された繰り返し単位を含むTFEコポリマーからポリマー(I)が選択される時、非常に良好な結果が得られた。
【0055】
なおより好ましいポリマー(I)は、
− −SOF形態または−SOX’’形態(式中、X’’はハロゲン(Cl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択される)の、好ましくは−SOF形態のPSEPVEおよび/またはSFVEから誘導された繰り返し単位5〜20モル%、および
− TFEから誘導された繰り返し単位95〜80モル%
を含む(好ましくは、それら繰り返し単位から本質的になる)TFEコポリマーから選択される。
【0056】
本発明のより好ましい実施形態によると、ポリマー(I)は、上述した式(M2)の少なくとも1種の官能性パー(ハロ)フルオロモノマーから誘導された繰り返し単位を含む(好ましくは、それら繰り返し単位から本質的になる)テトラフルオロエチレン(TFE)コポリマーである。好ましいポリマー(I)は、
− −SOF形態または−SOX’’形態(式中、(式中、X’’はハロゲン(Cl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択される)の、好ましくは−SOF形態の式(M2)の少なくとも1種の官能性パー(ハロ)フルオロモノマーから誘導された繰り返し単位5〜20モル%、および
− TFEから誘導された繰り返し単位95〜80モル%
を含む(好ましくは、それら繰り返し単位から本質的になる)TFEコポリマーである。
【0057】
本発明の最も好ましい実施形態によると、ポリマー(I)は、上述したTFEコポリマー(ここで、官能性モノマーは、−SOF形態または−SOX’’形態(式中、X’’はハロゲン(Cl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されたカチオンである)またはそれらの混合物のなかから選択される)の、好ましくは−SOH形態のSFVEである)から選択される。
【0058】
半結晶質という用語は、検出可能な融点を有するポリマー(I)を表すことを意図している。半結晶質ポリマー(I)が有利には少なくとも0.4J/g、好ましくは少なくとも0.5J/g、より好ましくは少なくとも1J/gの、ASTM D3418に準拠して測定された融解熱を有することが一般に理解されている。
【0059】
本発明の目的に関して、ポリマー(I)が半結晶質であることが必須である。上述したように半結晶質でないポリマーは燃料電池のための膜および/またはMEA中で用いるために適する機械的特性を一般に保有しない。更に、融点を保有せず、および/または0.4J/g未満の融解熱を有するポリマーはプロセス条件において一般に溶解しがちであり、よってUV支援フッ素化後にポリマーの加工を複雑化する。
【0060】
ポリマー(I)が4〜8J/gの融解熱を有した時、特に良好な結果が得られた。こうした要件に従うポリマー(I)が本発明の方法において適切に挙動することが見出され、従って、燃料電池中で用いるために特に適する安定化されたポリマーが効率的に提供される。
【0061】
ポリマー(I)は、有利には少なくとも650g/当量、好ましくは少なくとも700g/当量、より好ましくは少なくとも750g/当量の当量(EW)を有する。
【0062】
ポリマー(I)は、有利には多くとも1500g/当量、好ましくは多くとも1200g/当量、最も好ましくは多くとも1000g/当量の当量を有する。
【0063】
ポリマー(I)がSFVEから誘導された繰り返し単位を含む時、950〜850g/当量の間の範囲内のEWの選択は、良好なイオン伝導性および価値のある機械的特性ならびに耐熱性を得る目的のために特に有利である。
【0064】
ポリマー(I)は、好ましくは粉末の形態下で本発明の方法において用いられる。粉末という用語は、分離している固体粒子を表す現在の意味に従い理解される。
【0065】
ポリマー(I)が粉末の形態下にある時、一般には1〜1000μm、好ましくは5〜500μm、最も好ましくは20〜200μmの平均粒径を有する。
【0066】
ポリマー(I)の粉末の平均粒径が1μm未満である時、フッ素化後の媒体(M)からのポリマー(I)の回収は困難になり、標準デカンテーション手順および/または濾過手順は有効ではない。
【0067】
ポリマー(I)の粉末の平均粒径が1000μmを超える時、ポリマー(I)材料を通したUV線の光学的経路が増加し、粉末粒子の中心に達する前に放射線の実質的な量は吸収されるようになり、従って、UV支援フッ素化の効果が低下する。
【0068】
ポリマー(I)が20〜200μmの平均粒径を有した時、分離の容易さ、媒体(M)中の効率的な分散とフッ素化の効率の両方に関して優れた結果を得た。
【0069】
粒径のこの範囲の選択は、UV線の透過(および従ってフッ素化の効果)を最大化し、取り扱い易く、そして分離の困難を発生させない材料をなお有する狙いで特に有利である。
【0070】
一般に、本方法に供されるべきポリマー(I)は、乳化重合法、その後の凝集から得られる。
【0071】
従って、ポリマー(I)は、一般に乳化重合からの凝塊として本方法に供される。乳化剤からの精製、汚染物からの洗浄および乾燥などの前処理は、凝塊を本発明の方法に供する前に前記凝塊に関して実施することが可能である。乳化剤からの精製、汚染物からの洗浄および乾燥などの前処理は、凝塊を本発明の方法に供する前に前記凝塊に関して実施することが可能である。
【0072】
本発明の方法のために適するフッ素化有機分散媒体[媒体(M)]は、媒体がフッ素化条件においてポリマー(I)を可溶化せず、媒体が前記フッ素化条件で安定である限り特に限定されない。
【0073】
本発明の方法において適する分散媒体の非限定的な例は、特に、パーフルオロアルカン、パーフルオロポリエーテルおよび第三級パーフルオロアミンである。こうした分散媒体は、UV線の最適な透過および拡散を有利に可能にし、一般にフッ素との望ましくない副反応を受けない。
【0074】
媒体(M)は、好ましくは、以下のなかから選択される。
(1)式B−O−[CF(CF)CFO]b1’(CFXO)b2’−B’のパーフルオロポリエーテル
(式中、Xは−Fまたは−CFに等しく、
BおよびB’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
b1’およびb2’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、b1’およびb2’が両方とも零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される)。
前記生成物は特に、特許引例0009:CA第786877号明細書(MONTEDISON S.P.A.)(1968年04月06日)に記載されたようなヘキサフルオロプロピレンの光酸化、および特許引例0010:GB第1226566号明細書(MONTECATINI EDISON S.P.A.)(1971年03月31日)に記載されたような後続の末端基の転化によって得ることが可能であるか、または、特許引例0011:米国特許第3,242,218号明細書(DU PONT)(1966年03月22日)に記載されたようなイオン性ヘキサフルオロプロピレンエポキシドオリゴマー化および後続のフッ素による処理によって調製され得る。
(2)式C’−O−[CF(CF)CFO]c1’(CO)c2’(CFX)c3’−C’’のパーフルオロポリエーテル
(式中、Xは−Fまたは−CFに等しく、
C’およびC’’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
c1’、c2’およびc3’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、c1’、c2’およびc3’のうちの少なくとも2つが零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される)。前記生成物は、特許引例0012:米国特許第3,665,041号明細書(MONTEDISON SPA)(1972年05月23日)に記載されたようなCとCの混合物の光酸化、および後続のフッ素による処理によって製造され得る。(3)式D−O−(CO)d1’(CFO)d2’−D’のパーフルオロポリエーテル
(式中、DおよびD’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
d1’およびd2’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、d1’およびd2’が両方とも零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される)。
前記生成物は、特許引例0013:米国特許第3,715,378号明細書(MONTEDISON SPA)(1973年02月06日)で報告されたようなCの光酸化、および特許引例0014:米国特許第3,665,041号明細書(MONTEDISON SPA)(1972年05月23日)に記載されたような後続のフッ素による処理によって製造され得る。
(4)式G−O−(CFCFCFO)g1’−(CFCFCHO)g2’−(CFCFCHFO)g3’−G’のパーフルオロポリエーテル
(式中、GおよびG’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
g1’、g2’およびg3’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、一般にg2’およびg3’は0であり、g1’、g2’およびg3’のうちの少なくとも2つが零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される)。前記生成物は、特許引例0015:EP第148482A号明細書(DAIKIN INDUSTRIES)(1985年07月17日)において詳述されたように重合開始剤の存在下で2,2,3,3−テトラフルオロオキセタンを開環重合して、式−CHCFCFO−の繰り返し単位を含むポリエーテルを生じさせ、そして任意に前記ポリエーテルをフッ素化および/または塩素化することにより調製され得る。
【0075】
本発明の方法において媒体(M)として特に適するパーフルオロポリエーテルは、GALDEN(登録商標)という登録商標でSolvay Solexis S.p.A.から市販されているパーフルオロポリエーテルである。
【0076】
従って、分散媒体[媒体(M)]が可溶化されたポリマー(I)を実質的に含まないことが理解される。従って、媒体(M)および安定化されたポリマーを回収するために液/固分離に分散液(D)を供する時、前記媒体(M)は有利には実質的にポリマー(I)も、その対応する安定化されたポリマーも含まない。すなわち、溶解された固体の含有率は、有利には0.1重量%未満、好ましくは0.01重量%未満の含有率である。溶解された固体の含有率は、分散媒体(M)を蒸発乾固し、こうして得られた固体残留物を秤量することにより有利に測定することが可能である。
【0077】
本発明の方法によると、分散液(D)をフッ素に接触させる。フッ素ガスを一般に用いるが、フッ素ラジカルを発生できる他の化合物が好適でありうる。フッ素ラジカルが関わる反応が一般に非常に発熱性であるので、フッ素ガスを不活性ガス、例えば、窒素で希釈することが好ましい。フッ素ラジカルが関わる反応が一般に非常に発熱性であるので、フッ素ガスを不活性ガス、例えば、窒素で希釈することが好ましい。
【0078】
UV線という用語は、本発明の目的に関して、可視光線の波長より短いが、軟X線より長い波長を有する電磁放射線を表すことを意図している。UV線は、近UV(波長380〜200nm;略称NUV)、遠UVまたは真空UV(200〜10nm;略称FUVまたはVUV)および極UV(1〜31nm;略称EUVまたはXUV)に細分することが可能である。200〜380nmの波長を有するNUVが本発明の方法に好ましい。単色性放射線または多色性放射線のいずれも用いることが可能である。
【0079】
適するあらゆるUV線源によって本発明の方法においてUV線を提供することが可能である。本発明の方法のために好ましいUV線源は水銀灯である。励起水銀蒸気から放射されたエネルギーの大部分がスペクトルの紫外線部分であることが知られている。低圧放電の場合、供給された全エネルギーの半分超は、253.7nmの短波UV領域で放射される。高圧ランプは、365.0nmの長波UV領域においてランプのエネルギーの約10%を放射するが、より短い波長でもかなりの量を放射する。
【0080】
本方法の温度および圧力は、媒体(M)が運転条件において液体状態のままである限り重要ではない。
【0081】
一般に、0〜150℃の間を含む温度は適する。好ましくは、温度は20〜100℃の範囲内で選択される。
【0082】
1〜20バールの圧力を操作することが可能である。好ましくは、数バールの圧力が好ましい。こうした条件における操作が、更にUV線に少なくとも部分的に透明であるべき、よってフッ素化がなお有効である特殊な高圧反応器を必要としないからである。従って、圧力は、一般に1〜3バールの間に保たれる。
【0083】
本発明の方法は、安定化されたポリマーの分散液(D)からの回収を含め、追加の工程を含むことが可能である。
【0084】
安定化されたポリマーの回収は、当業者に周知された標準液/固分離技術により実現することが可能である。
【0085】
好ましくは、安定化されたポリマーは、デカンテーションおよび濾過の少なくとも1つによって分散液から回収される。
【0086】
一般に、安定化されたポリマーは、分散媒体(M)の残留物を排除するための追加の乾燥工程に供される。
【0087】
例えば、換気された炉内で、または真空下で作動するシステム内で標準手順により乾燥を実行することが可能である。
【0088】
当業者は、安定化されたポリマーから排除されるべき媒体(M)に応じて適する乾燥装置を選択するであろう。
【0089】
本発明のもう1つの目的は、−COFタイプの少量の不安定末端基を有するイオン交換基を有する安定な半結晶質フルオロポリマーであって、前記不安定末端基の量が0.05ミリモル/kg未満の量であるフルオロポリマーである[ポリマー(F)]。
【0090】
本発明のイオン交換基を有する安定な半結晶質フルオロポリマー[ポリマー(F)]は、ポリマー(I)のために上述したすべての特徴を有する。
【0091】
本発明の安定な半結晶質フルオロポリマーは、本発明の方法によって有利に得ることが可能である。それにもかかわらず、−COFタイプの不安定末端基の量が0.05ミリモル/kg未満の量である限り、他のあらゆる方法は本発明のポリマー(F)を製造するために適することが可能である。
【0092】
本発明の目的に関して、「−COFタイプの不安定末端基」という用語は、フルオロアシル基および−COW基(式中、Wは、Cl、Br、NH、OMを表し、Mは水素原子または金属、好ましくはHまたはアルカリ金属である)などのフルオロアシル誘導体を包含することを意図している。
【0093】
不安定−COFタイプ末端基の量は、以下で詳述する方法(実施例の節を参照)に従ってFT−IR分光分析法によって特に測定することが可能である。
【0094】
上述した方法は0.05ミリモル/kgの検出限界を与えられるので、本発明のイオン交換基を有する安定な半結晶質フルオロポリマー[ポリマー(F)]をこうした測定に供する時、事実上−COFタイプ末端基は検出されない。すなわち、ポリマー(F)は、実質的に、あらゆる不安定−COFタイプ末端基を含まない。
【0095】
安定なポリマー(F)は、好ましくは酸形態で提供される。イオン交換基を有するフルオロポリマーの「酸形態」という用語は、イオン交換基が自らに水素カチオン(H)を結合させている形態を意味すると理解されるべきである。イオン交換基が上で詳述したように式−SOXのスルホン酸基を含むのに反して、イオン交換基は−SOH形態下にある。
【0096】
二価鉄イオン200ppmを含む3%過酸化水素の水溶液に、酸形態のポリマー(F)の試料を40℃で16時間にわたり接触させるフェントン試験に供する時、本発明の安定なポリマー(F)は、ポリマー(F)のフッ素の全量を基準にして7.5×10−4%未満のフッ化物アニオンの放出を有利に示す。
【0097】
上で詳述したフェントン試験は、特許引例0016:米国特許出願公開第2006063903号明細書(ASAHI GLASS COMPANY)(2006年03月23日)に記載されている。
【0098】
本出願人は、上述した条件において、ポリマー(F)の全フッ素量を基準にして0.00075%未満のフッ化物アニオンを放出するようにされたポリマー(F)が、上述した
特許引例0017:米国特許出願公開第2006063903号明細書(ASAHI GLASS COMPANY)(2006年03月23日)に記載された材料に対して燃料電池運転において実質的に高まった耐久性を有利に有することを驚くべきことに見出した。
【0099】
従って、イオン交換基を有する安定な半結晶質フルオロポリマーにとって、フェントン試験におけるフッ化物アニオン放出の少ない減少(例えば、25%ほど少ない)でさえも工業的な観点から有意義な値である。なぜならその減少によって、フルオロポリマーからの膜の耐久性が実質的に高まるからである(例えば、OCV試験において耐久性が大幅に高まる)。
【0100】
好ましくは、本発明の安定なポリマー(F)は、上で詳述したフェントン試験に供された時、ポリマー(F)のフッ素の全量を基準にして7.0×10−4%未満のフッ化物アニオンの放出を示す。
【0101】
上述した試験としてのフェントンにおいて放出されたフッ素アニオンに関する検出限界が7.0×10−4%(全フッ素に関するF)に非常に近いので、上で詳述されたフェントン試験に供された時、非常に好ましくは、安定なポリマー(F)が検出可能なフッ化物放出をもたらさないことが理解されるべきである。
【0102】
本発明の好ましい実施形態によると、−COFタイプのほぼ零(すなわち、検出不能)量の不安定末端基を有するとともにフェントン試験において実質的にフッ化物(F)無放出につながる安定なポリマー(F)が提供される。詳述したポリマー(F)は、膜および/またはMEAの破損の主要源として当該技術分野において一般に認められている過酸化物劣化現象を受けないことを立証されているとともに燃料電池運転における大幅に高まった耐久性を有するので、燃料電池において非常に大きな可能性を有する。
【0103】
本発明のなおもう1つの目的は、上述した方法によって得られたイオン交換基を含む安定化された半結晶質フルオロポリマーまたは上の安定なポリマー(F)の燃料電池装置における使用である。
【0104】
こうしたポリマーは、膜の成分として、または電極層中で、もしくは膜/電極接合体全体中でのいずれかで用いることが可能である。
【0105】
従って、本発明のなお他の目的は、上述した方法によって得られたイオン交換基を含む安定化された半結晶質フルオロポリマーまたは上で詳述した安定なポリマー(F)を含む膜および膜/電極接合体である。
【0106】
上述した方法によって得られたイオン交換基を含む安定化された半結晶質フルオロポリマーまたは本発明の安定なポリマー(F)を含む本発明の膜は、当業者に周知された標準技術、例えば、押出、キャスティングおよび/または前もって形成された支持体の含浸によって製造することが可能である。
【0107】
上述した方法によって得られたイオン交換基を含む安定化された半結晶質フルオロポリマーまたは本発明の安定なポリマー(F)を含む本発明のMEAは、当業者に周知された標準技術によって製造することが可能である。例えば、上述した方法によって得られたイオン交換基を含む安定化された半結晶質フルオロポリマーまたは本発明の安定なポリマー(F)と適する金属触媒(例えばPt)とを含むペーストまたはインクが、上述した膜上にキャスティングされる。
【0108】
他の方法では、多層押出プロセスを行って、膜と電極層を共押出することが可能である。
【0109】
以下の実施例を参照することにより本発明をここでより詳しく説明する。実施例の目的は単に例示であり、本発明の範囲を限定しない。
【実施例】
【0110】
−COFタイプの不安定末端基の測定
一定重量まで90℃で予備乾燥に供されたポリマー(F)の試料を50〜300μmの間の平均厚さを有するフィルムに圧縮成形する。例えばNicolet(登録商標)Nexus FT−IR装置(256走査、解像度2cm−1)を用いることにより4000cm−1〜400cm−1の間のFT−IRスペクトルを前記フィルムから記録する。
【0111】
1900〜1700cm−1の間のスペクトル領域における吸収帯の光学密度を測定し、非特許引例0001:(PIANCA,M.End groups in fluoropolymers.J.Fluorine Chem.,1999,95巻,p.71−84)による報告書の表1、ページ73で報告された吸光率を用いてミリモル/kgポリマー(F)として表現された値に変換する。この方法の感度限界は0.05ミリモル/kgである。
【0112】
フェントン試験のプロトコル
イオン交換基を有するフルオロポリマーの過酸化物種による化学侵蝕に対する抵抗を評価するために、特許引例0018:米国特許出願公開第2006063903号明細書(ASAHI GLASS COMPANY)(2006年03月23日)に記載された手順に試験試料を供した。従って、酸形態にある、イオン交換基を有するフルオロポリマーのほぼ0.1gの試験片(例えば、膜から切り出した試験片)をFe2+カチオン200ppmを含有する3%のHの溶液に40℃で16時間にわたりさらした。その後、イオンクロマトグラフィを経由して溶液のフッ化物含有率を定量化し、試験された材料のフッ素の全量に関する溶出フッ化物アニオン(F)の%で表現した。
【0113】
実施例1:
サブセクション(a)乳化重合
22リットルのオートクレーブに以下の試薬を投入した。
− 脱イオン水11.5リットル
− 式CF=CF−O−CFCF−SOFを有するモノマー980g
− 平均分子量521および比n/m=10を有する水中のCFClO(CFCF(CF)O)(CFO)CFCOOKの5重量%溶液3100g
【0114】
540rpmで攪拌されたオートクレーブを60℃の温度に加熱した。6g/リットルのKPS(過硫酸カリウム)を含有する水溶液を150mlの量で添加した。圧力を気体状TFEの添加により13.5バール(絶対圧力)の値で維持した。
【0115】
反応器に1000gのTFEを添加後、175gのモノマーCF=CF−O−CFCF−SOFを添加した。その後、TFE消費後にスルホン化コモノマーを徐々に添加した。従って、オートクレーブにフィードされたTFE200gごとに175gのモノマーCF=CF−O−CFCF−SOFを添加した。
【0116】
攪拌を停止し、オートクレーブを冷却し、TFEをベントすることにより内部圧力を下げることによって233分後に反応を中断した。合計で4000gのTFEをフィードした。
【0117】
ラテックスを16時間にわたり窒素バブリング下で保って、重合から残留モノマーを取り除き、その後、プラスチックタンク内で貯蔵した。生成したラテックスは、固体28.5重量%の濃度を有することが判明した。
【0118】
前記ラテックスを凍結および解凍によって凝集させ、回収された凝集ポリマー粉末を水で洗浄し、150℃で40時間にわたり乾燥させた。−SOF官能基を有するほぼ6kgの半結晶質フルオロポリマー[ポリマー(I)]を得た。
前記ポリマー粉末は6.3J/gの融解熱および120μmの平均粒径を有することが判明した。
【0119】
(b)当量(EW)の測定
乾燥ポリマーのアリコートを圧縮成形して、粉末を270℃で5分にわたり加熱することによりプレス内でフィルムを産出した。寸法10×10cmを有する正方形試験片を前記フィルムから切り出し、水中のKOH溶液(10重量%)中で24時間にわたり処理した。純水で洗浄後、正方形試験片を20重量%HNO溶液により室温で処理した。最後にフィルムを水で洗浄した。この方法で、ポリマーを前駆体(−SOF)形態から酸(−SOH)形態に変換した。
【0120】
150℃で真空で乾燥後、フィルムを希NaOHで滴定した。ポリマーの当量は870g/当量であることが判明した。
【0121】
(c)不安定末端基の測定
実施例1からの少量(3.5mg)の半結晶質ポリマーをプレス下で圧縮成形した。そして5mmの直径および100μmの厚さを有するシートを調製する。Nicolet(登録商標)Nexus FT−IR装置を用いて4000〜400cm−1のスペクトルを記録して、末端基に関連した光学密度を測定した。試料は−COFタイプの不安定末端基14ミリモル/kgを有することが判明した。
【0122】
比較例2:実施例1の非安定化ポリマーからの膜の製造
DSC分析から測定された最終溶融温度よりほぼ5℃高い対応するヘッド温度でブラベンダーコニカル二軸スクリュー押出機を用いて実施例1により得られたポリマーの一部を押し出してペレットを得た。ペレットの幾つかを270℃で5分にわたりホットプレスして、90±5μmの厚さを有するフィルムを得た。
【0123】
その後、フィルムを加水分解して、以下の手順によりパーフルオロスルホン酸膜を得た。
1.80℃の温度で合計で4時間にわたりKOH(10重量%)水溶液中で処理
2.周囲温度(25℃)で脱イオン水中でリンス
3.室温(25℃)で1時間にわたりHNO(20重量%)水溶液中で処理
4.周囲温度(25℃)で脱イオン水中でリンス
【0124】
式(C(CSH)を有する−SOH形態の加水分解された膜の厚さは100±5マイクロメートルであることが判明した。
【0125】
前記加水分解された膜からの試験片を前述したフェントン試験に供し、3.7×10−2%(全フッ素に関する放出されたF)のフッ化物アニオンの量を放出することが判明した。
【0126】
比較例3:実施例1からのポリマーの固相フッ素化および前記ポリマーからの膜の製造
比較例2に記載されたように得られたペレットの一部をガラス反応器に装填し、2Nl/hのフィード速度でフィードされた乾燥ヘリウム下で100℃で3時間にわたり乾燥させて、残留水分を排除した。恒温浴を用いることにより反応器内の温度を設定点で保った。その後、窒素/フッ素の1:1体積による混合物(2Nl/h)を80℃で保たれたガラス反応器にフィードした。異なる反応時間での後続のサンプリングによりフッ素化を監視した。反応から12時間後、残留末端基は4.5ミリモル/kgに近い安定状態に達することが判明し、反応時間を長くすることによって有意ないっそうの減少を達成しなかった。
【0127】
従って、16時間後、残留フッ素を真空下で除去し、5Nl/hの窒素を3時間中にフィードした。こうして処理されたポリマーのペレットにおける試料をFT−IR分析によって検査して、残留不安定末端基を測定した。−COFタイプの残留不安定末端基の全量は、4.3ミリモル/kg、特に−COF部分に関して0.8ミリモル/kgポリマーおよびCOOH部分に関して3.5ミリモル/kgポリマーであることが判明した。
【0128】
こうしてフッ素化されたポリマーを270℃で5分にわたりホットプレスして、90μmの厚さを有するフィルムを得た。フィルムを比較例2において上述したように加水分解して膜を産出した。
【0129】
前記加水分解された膜からの試験片を前述したフェントン試験に供し、3.3×10−3%(全フッ素に関する放出されたF)のフッ化物アニオンの量を放出することが判明した。
【0130】
実施例4:実施例1からのポリマーの分散相フッ素化および前記ポリマーからの膜の製造
Galden(登録商標)D80パーフルオロポリエーテル中に実施例1のポリマー15グラムを懸濁させることにより3重量%ポリマー(I)分散液500gを調製した。メカニカルスターラー、冷却シェルおよび水銀蒸気UV浸漬ランプ(Haereus 150W)を備えた300mlの光化学ガラス反応器に前記分散液を導入した。窒素ガス/フッ素ガスの1:1体積による混合物(2Nl/h)をUV照射下のガラス反応器に25℃で10時間にわたりフィードした。その後、残留フッ素をベントし、安定化されたポリマーを回収した。
【0131】
安定化されたポリマーの試料をFT−IRによって分析して、残留不安定末端基を測定した。−COFタイプの残留末端基の全量は、0.05ミリモル/kgポリマー未満であることが判明した。
【0132】
安定化されたフルオロポリマーを270℃で5分にわたりホットプレスして、90μmの厚さを有するフィルムを得た。フィルムを比較例2において記載したように加水分解して膜を産出した。
【0133】
前記加水分解された膜からの試験片を前述したフェントン試験に供し、7.0×10−4%(全フッ素に関する放出されたF)未満のフッ化物アニオンの量を放出することが判明した。
【0134】
実施例5〜7:比較例2および3ならびに実施例4の膜の燃料電池BOL(寿命の開始)性能の評価
実施例2で製造された膜を25cmの作用面積を有する単一電池(Fuel Cell Technology(登録商標))に組み立て、Arbin(登録商標)50W試験スタンドで試験した。表面上でNAFION(登録商標)ポリマーにより処理された0.5mg/cmのPtを有する市販のE−TEK(登録商標)LT250EWガス拡散電極を用いて膜を組み立てた。
【0135】
比較例3および実施例4の膜を用いて類似の接合体を調製した。
【0136】
以下の運転条件における分極曲線を(膜ごとに)記録した。
− 反応物化学量論比:2.8空気−3.4水素(純水素、5.5グレード)
− 反応物湿度レベル:100%
− 電池温度:75℃
− 運転圧力:2.5バール絶対
【0137】
図1は、本発明による実施例5(比較例2からの膜)、実施例6(比較例3からの膜)および実施例7(実施例4からの膜)で上述したように得られた分極曲線を描いている。横座標は電流密度(A/cm)を表す一方で、縦座標は電池電圧(V)を表す。
【0138】
分極曲線の有意な相違は観察されなかった。これは、本発明の安定化方法が燃料電池中の膜のBOL性能に悪影響を及ぼさなかったことを確認した。
【0139】
実施例8〜10:OCV(開路電圧)における燃料電池耐久性試験
比較例2、比較例3および実施例4で得られたそれぞれ膜を含む実施例5〜7に記載された燃料電池をOCV試験において試験した。
【0140】
OCV試験中、水素および空気を電極に供給することにより燃料電池を以下で詳述する条件Aにおいて開路状態で維持した。空気供給を中断し、アノードで水素をフィードすることにより周期的に(すなわち、100時間ごと)燃料電池の運転を以下で詳述する条件Bに一時的に切り替えた。こうした条件において、水素の交差電流を測定した。10mA/cmより高い水素の交差電流の値を膜の破損状態とみなした。こうした区切点を達成しなかったのに対して、OCV試験は、破損が検出されるまで更なる100時間の運転割当時間にわたりA条件で再開した。
【0141】
運転条件A:
− 反応物の流量:500SCCM・空気−500SCCM・水素(純水素、5.5グレード)
− 反応物湿度レベル:50%
− 電池温度:70℃
− 運転圧力:1.5バール絶対
− 負荷電流:0アンペア
【0142】
運転条件B:
− 反応物の流量:500SCCM・カソード側の窒素−500SCCM・アノード側の水素(純水素、5.5グレード)
− 反応物湿度レベル:100%
− 電池温度:75℃
− 運転圧力:アノード側で1.5バール絶対、カソード側で1バール絶対
− 電池電圧:0.42V
【0143】
実施例8において、実施例5に記載された燃料電池中に組み立てられた、比較例2で調製された膜は試験から200時間後に破損した。
【0144】
実施例9において、実施例6に記載された燃料電池中に組み立てられた、比較例3で調製された膜は試験から500時間後に破損した。
【0145】
実施例10において、実施例7に記載された燃料電池中に組み立てられた、実施例4で調製された膜は試験から少なくとも1000時間以内で破損していない。
【図1】


【特許請求の範囲】
【請求項1】
イオン交換基を含む半結晶質フルオロポリマーを安定化する方法であって、
− イオン交換基を有する少なくとも1種の半結晶質フルオロポリマー[ポリマー(I)]を少なくとも1種のフッ素化有機分散媒体[媒体(M)]中に懸濁して、分散媒体(M)中のポリマー(I)の分散液(D)を得る工程と、
− UV線による照射下で前記分散液(D)をフッ素と接触させて、安定化されたポリマーを得る工程と
を含み、前記ポリマー(I)が、
− 少なくとも1個のフッ素原子を含む少なくとも1種のエチレン系不飽和モノマー(以下、フッ素化モノマー)から誘導された繰り返し単位と、
− 少なくとも1個のイオン交換基を含む少なくとも1種のエチレン系不飽和モノマー(以下、官能性モノマー)から誘導された実質的な量の繰り返し単位と
を含む、方法。
【請求項2】
前記ポリマー(I)が、
(M1)式(M1)のスルホン化パーフルオロオレフィン:
【化1】

[式中、nは0〜6の間の整数であり、X’はハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されるカチオンである)またはそれらの混合物のなかから選択される]、
(M2)式(M2)のスルホン化パーフルオロビニルエーテル:
【化2】

[式中、mは1〜10の間の整数であり、X’はハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されるカチオンである)またはそれらの混合物のなかから選択される]、
(M3)式(M3)のスルホン化パーフルオロアルコキシビニルエーテル:
【化3】

[式中、wは0〜2の間の整数であり、RFおよびRFは互いに同じであっても異なっていてもよく、各出現において独立して、−F、−Clまたは1個以上のエーテル酸素で任意に置換されるC1〜10パーフルオロアルキル基であり、yは0〜6の間の整数であり、X’はH、ハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されるカチオンである)またはそれらの混合物のなかから選択される]、
(M4)式(M4)のスルホン化芳香族(パー)フルオロオレフィン:
【化4】

[式中、Arは好ましくは過フッ素化されたC3〜15の芳香族部分またはヘテロ芳香族部分であり、X’はハロゲン(Cl、Fl、Br、I)、−O(式中、Mは、H、NH、K、Li、Naのなかから選択されるカチオンである)またはそれらの混合物のなかから選択され、好ましくは、X’はフッ素である]、および
(M5)それらの混合物
のなかから選択される少なくとも1種のフッ素化官能性モノマーから誘導される繰り返し単位を含む請求項1に記載の方法。
【請求項3】
前記ポリマー(I)が、上で詳述された式(M2)のスルホン化パーフルオロビニルエーテルおよび上で詳述された式(M3)のスルホン化パーフルオロアルコキシビニルエーテルならびにそれらの混合物のなかから選択される少なくとも1種の官能性パー(ハロ)フルオロモノマーから誘導される繰り返し単位を含むテトラフルオロエチレン(TFE)コポリマーから選択される請求項2に記載の方法。
【請求項4】
前記ポリマー(I)が粉末の形態にある請求項1〜3のいずれか一項に記載の方法。
【請求項5】
前記ポリマー(I)が20〜200μmの平均粒径を有する請求項4に記載の方法。
【請求項6】
媒体(M)が、
(1)式B−O−[CF(CF)CFO]b1’(CFXO)b2’−B’
[式中、
− Xは−Fまたは−CFに等しく、
− BおよびB’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
− b1’およびb2’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、b1’およびb2’が両方とも零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される]
のパーフルオロポリエーテル、
(2)式C’−O−[CF(CF)CFO]c1’(CO)c2’(CFX)c3’−C’’
[式中、− Xは−Fまたは−CFに等しく、
− C’およびC’’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
− c1’、c2’およびc3’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、c1’、c2’およびc3’のうちの少なくとも2つが零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される]
のパーフルオロポリエーテル、
(3)式D−O−(CO)d1’(CFO)d2’−D’
[式中、
− DおよびD’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
− d1’およびd2’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、d1’およびd2’が両方とも零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される]
のパーフルオロポリエーテル、
(4)式G−O−(CFCFCFO)g1’−(CFCFCHO)g2’−(CFCFCHFO)g3’−G’
[式中、
− GおよびG’は互いに同じであっても異なっていてもよく、−CF、−Cまたは−Cから選択され、
− g1’、g2’およびg3’は互いに同じであっても異なっていてもよく、独立して0以上の整数であり、一般にg2’およびg3’は零であり、g1’、g2’およびg3’のうちの少なくとも2つが零とは異なる場合、異なる繰り返し単位は、一般に鎖に沿って統計的に分布される)
のパーフルオロポリエーテル
のなかから選択される請求項1〜5のいずれか一項に記載の方法。
【請求項7】
− 少なくとも1個のフッ素原子を含む少なくとも1種のエチレン系不飽和モノマー(以下、フッ素化モノマー)から誘導された繰り返し単位と
− 少なくとも1個のイオン交換基を含む少なくとも1種のエチレン系不飽和モノマー(以下、官能性モノマー)から誘導された実質的な量の繰り返し単位と
を含み、
−COFタイプの不安定末端基の量が0.05ミリモル/kg未満である、イオン交換基を有する安定な半結晶質フルオロポリマー[ポリマー(F)]。
【請求項8】
二価鉄イオン200ppmを含む3%過酸化水素の水溶液に、酸形態のポリマー(F)の試料を40℃で16時間にわたり接触させるフェントン試験に供した場合、前記ポリマーがポリマー(F)のフッ素の全量を基準にして7.5×10−4%未満のフッ化物アニオンの放出を示す請求項7に記載のポリマー(F)。
【請求項9】
請求項1〜6のいずれか一項に記載の方法によって得られるイオン交換基を含む安定化された半結晶質フルオロポリマーまたは請求項7〜8のいずれか一項に記載の安定なポリマー(F)の、燃料電池装置における使用。
【請求項10】
請求項1〜6のいずれか一項に記載の方法によって得られるイオン交換基を含む安定化された半結晶質フルオロポリマーまたは請求項7〜8のいずれか一項に記載の安定なポリマー(F)を含む膜。
【請求項11】
請求項1〜6のいずれか一項に記載の方法によって得られるイオン交換基を含む安定化された半結晶質フルオロポリマーまたは請求項7〜8のいずれか一項に記載の安定なポリマー(F)を含む膜/電極接合体(MEA)。

【公表番号】特表2010−506986(P2010−506986A)
【公表日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2009−532783(P2009−532783)
【出願日】平成19年10月16日(2007.10.16)
【国際出願番号】PCT/EP2007/060986
【国際公開番号】WO2008/046816
【国際公開日】平成20年4月24日(2008.4.24)
【出願人】(508305960)ソルヴェイ・ソレクシス・エッセ・ピ・ア (53)
【Fターム(参考)】