説明

エポキシ官能性ハイブリッドコポリマー

シロキサン及びシラン含有の種々のラジアルエポキシ樹脂並びに中間体の製造のために、汎用的な合成方法論が確立された。エポキシシロキサン又はエポキシシランのラジアルコポリマーとして記載され得る種々のハイブリッド有機/無機材料を得るために、この化学的アプローチが開発された。当技術分野で知られたエポキシ‐官能性シロキサン/シランとは構造的に異なる、良好な有機相溶性を有する反応性の疎水性Si含有樹脂にアクセスするために、その方法論が使用され得る。これらのハイブリッドラジアルエポキシ樹脂は、電磁線及び熱で硬化可能なシーラント、封入剤及び接着剤を含む種々の接着剤及びコーティング用途に使用され得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反応性の有機/無機ハイブリッド分子及びコポリマーに関する。
【背景技術】
【0002】
エポキシ官能性UV及び熱硬化性材料は、接着剤、フィルム及び複合材の分野において広く普及している。エポキシ系材料を使用する利点には、一般的に良好な接着性、広範囲の種々の硬化メカニズム及び硬化速度、相当に安価で容易に入手可能な原材料、並びに良好な耐薬品性が含まれる。2〜3挙げるとすれば、シアネートエステル及びマレイミド樹脂のようなやや最近になって開発された化学にもかかわらず、エポキシ技術の広範囲に渡る用途及び寿命はその有用性についての証である。典型的なエポキシ材料の一般的な許容にもかかわらず、熱硬化性及びUV硬化性の材料を使用する産業において、いくつかの欠陥が認められている。化学的に後述する普通のエポキシ樹脂は、典型的には比較的剛性で高Tgの材料に硬化する。エポキシ系材料の高温域での使用温度は、一般に、多くの要求の激しい応用分野について必要とされるよりも幾分低い、150℃〜180℃の範囲にある。最後に、高い湿度の条件下における多くのエポキシ材料の吸湿性は、数重量%のオーダーにある。このレベルの吸湿性は、多くの用途について、特にエレクトロニクス接着剤及びコーティングの分野において、好ましくないものである。
【0003】
最も一般的なエポキシ樹脂は、ビスフェノールA ジグリシジルエーテル(DGEBPA)又はエポキシ化ノボラック樹脂(例えばShell Chemical社によって販売されているEPON(登録商標)シリーズの樹脂)のような芳香族分子である。エピクロロヒドリンのアルコールとの反応(又は同等な合成プロセス)から得られるこれらの樹脂が、熱硬化の用途に最も一般的に活用される。UV硬化系については、脂環式タイプのエポキシ系(例えばUnion Carbide社により販売されているERL 4221又はERL 6128)が、それらの早いカチオン性硬化速度のためにより一般的に使用される。アミノ‐又はカルボキシル‐末端ゴムのビス(エポキシド)との鎖延長から普通に誘導されるゴム化エポキシは、典型的なフィルム形成性のエポキシ官能性材料である。これらの系の全てが、エポキシをベースとする系に関する前述の一つ以上の欠陥に悩まされている。市販のほとんどの硬化脂環式エポキシ材料の剛性が、特に注目に値するものである。
【0004】
典型的なエポキシ材料の可撓性、熱安定性及び耐湿性を改良するための一つのアプローチは、硬化したエポキシマトリックス中へのシロキサン系樹脂の導入である。カルビノール‐末端のシロキサンを用いるビス(エポキシド)の鎖延長、並びにSiH官能性シロキサン材料上での不飽和エポキシドのヒドロシリル化による種々の「エポキシシロキサン」の合成を含めて、この目標に向けて種々のアプローチが為されて来た。後者の分類の材料について、SiH官能性、エポキシ官能性及び残留遷移金属触媒(特に白金)の存在が種々の不安定な生成物をまねくということが適正に注目されてきたので、これらの合成中に出来るだけ多くのSiH官能性を充分に消費しようとする試みが為されて来た。多くのシリコーン主鎖(backbone)上の水素化珪素(silicon-hydride)官能性の完全な消費が挑戦的な合成のゴールであることは、当分野における熟練者らに良く知られている。
【0005】
ロジウム系の触媒の使用が、これらのヒドロシリル化反応の間にSiH基の存在下で重合しようとするエポキシ官能性の傾向を低減させることが示されてきた。ある種のジシラン及びジシロキサンのモノヒドロシリル化を含む技術が、SiH官能性化分子及び中間体を得るために使用されてきた。いくつかの文献引用が、SiH及びエポキシ官能性の両方を有する材料を合成できる可能性について言及している。これらの中間体の使用を含む限定的な例は、高度に制御された分子形態及び/又はエポキシ含有量を有する生成物を生成しない。水素化珪素‐末端のポリ(ジメチルシロキサン)と二官能性ポリエーテル(典型的にはアリル‐末端のポリ(プロピレングリコール))のエポキシ‐末端キャップされた線状コポリマーも記載されて来た。結果的に得られる線状コポリマーは、有機材料との改良された相溶性(compatibility)を呈する。そのような線状コポリマーは、それらの不可欠なビス官能性(bis-functionality)(線状ポリマー当り最大2個のエポキシ基)によって制限され、ポリ(エーテル)由来のものを超えて、シラン無機繰り返し単位又は有機ジエンを導入するように延長されてはいない。これは、適度に高い架橋密度を要求する用途におけるこれらのポリマー材料の有用性を大きく減少させる。これらの線状コポリマーの分子構造は、そのような材料が1段(one step)重合特有の統計的な分子量分布を呈するほど充分に特定されていない。材料の分子量分布及び粘弾性特性の一般的な効果は良く知られている。
【0006】
SiH‐末端又はオレフィン‐末端のジエンシロキサンコポリマー(上で議論したエポキシ‐官能性材料への先駆物質)のいずれかの合成及び使用も資料に記載されてきているが、ここで議論するようなラジアル構造への拡張を想定した合成方法が開発されてはいなかった。
【0007】
一般に、エポキシドとシロキサンの両方の官能性を含む、当分野において既知の樹脂は、通常の、産業上有用なエポキシド樹脂、例えば上述のようなエポキシノボラック、DGEBPA、並びに代表的な脂環式エポキシド、例えば上述のようなERL‐4221及びERL‐6128との相溶性をあまり呈さない。当分野において知られた「エポキシシロキサン」(epoxysiloxanes)に関するこの乏しい「有機相溶性」(organic compatibility)は周知である。炭化水素樹脂とのブレンドが試みられる場合に非常にしばしば、巨視的相分離が迅速に生じる。シロキサン材料のアルキレンオキシ側鎖での官能化が、ある有機材料において相溶性を向上させると知られているが、多くの用途(例えばエレクトロニクス接着剤及びコーティング)に対して、得られるシロキサン材料の高められた親水性が問題となる。
【発明の開示】
【発明が解決しようとする課題】
【0008】
従って、本発明の目的は、通常の炭化水素系のエポキシ樹脂において良好な相溶性を備える疎水性エポキシシロキサンの工業的に可能な合成を提供することである。更に本発明の目的は、1)高度に制御可能な分子形態(およそ一つの多分散性)、2)適応可能な珪素:炭化水素比、及び3)エポキシ官能性(典型的には2より大きい)の可変レベルを備えた新規な、線状及び「ラジアル」(radial)形態のエポキシ‐官能性シロキサン又はシラン/炭化水素コポリマーの合成を提示することである。最後に、本出願に発明に係る材料は、1)市販のほとんどのエポキシシロキサン樹脂に関する改良された炭化水素相溶性、2)炭化水素系エポキシに関する改良された疎水性、3)炭化水素系エポキシに関する改良された熱安定性、4)市販の多くのエポキシに関する高いUV反応性、及び5)UV硬化用途について使用される通常の脂環式エポキシに関する改良された材料特性、のような従来の材料に見られなかったいくつかの望ましい特徴を呈する。
【0009】
加えて、本発明の中間体オレフィン末端及びSiH末端のラジアルコポリマーは、また新規で且つ有用なものである。例えば、アルケニル‐末端の樹脂は、それ自体で、或いは他の材料と組み合わせて、反応性中間体として使用され得る。同様に、SiH‐末端の材料は、ヒドロシリル化硬化組成物のための反応性架橋剤として使用され得る。
【課題を解決するための手段】
【0010】
シロキサン及びシラン‐含有の種々のラジアルエポキシ樹脂を製造するための多角的な合成方法論が確立された。この化学的アプローチは、一般にエポキシシロキサン又はエポキシシランラジアルコポリマーとして記載され得る種々のハイブリッド有機/無機材料を得るために開発されたものである。その方法論は、当技術分野において既知のエポキシ‐官能性シロキサン/シランと構造的に異なる、良好な有機相溶性を備えた、反応性の疎水性Si‐含有樹脂をアクセスするために使用され得る。
【0011】
これらのハイブリッドラジアルエポキシ樹脂は、電磁線(radiation)及び熱で硬化可能なシーラント、封入剤及び接着剤を含めた、種々の接着剤及びコーティングの用途に使用され得る。
【発明を実施するための最良の形態】
【0012】
エポキシ‐官能性シロキサン材料を製造するために用いられた最も一般的な技術は、不飽和のエポキシドの、ポリマー性で且つ小さい分子の種々のヒドロシロキサン(例えば、それぞれポリ(メチルヒドロシロキサン)及び1,1,3,3‐テトラメチルジシルオキサン)とのヒドロシリル化によるものであった。このタイプのプロセスは、同様にシリコーン樹脂上に有機‐適合化性基(例えばヘキシル、オクチル又はエチレンオキシ基)を結合するためにも通常使用される。この合成のアプローチが商業的に及び学術的に興味ある多くの材料を生み出してきているが、極めて高いレベルの炭素系成分がシロキサンに結合されない限り、シロキサン「主鎖」(backbone)から伸びる有機基の基本分子構造が、しばしば有機材料中で制限された溶解性を有する材料を生成する。相対的に大量の有機官能性の導入がシロキサンの多くの無機的性質(例えば、多くのアルキレンオキシ‐変性シロキサンがかなり親水性である)を希釈するのみならず、ヒドロシロキサンの広範な/完全な官能化がしばしば合成的に困難である。これらの表現の多くが、同様に不飽和有機基を備えるシラン系樹脂にも当てはまる。
【0013】
本発明は、新規なエポキシシロキサン及びエポキシシランの開発に際して、有機/無機比の広範なチューニング(tuning)を考慮にいれたアプローチを提供する。加えて、その合成手順は、交互に生じるシロキサン/シランと炭化水素ブロックの反復付加により多分散性の少ない又は無い生成物を生み出す。その合成スキームの汎用性が、望ましい未硬化の及び硬化済みの特性を備える構造的にユニークな有機/無機の多くのハイブリッド材料の合成を可能にして来ている。その結果得られる材料は、光硬化性、電子ビーム硬化性又は熱硬化性である。更に、その材料は、接着剤、シーラント、コーティング、並びに有機発光ダイオードのためのコーティング又は封入剤などを含む、種々の用途を有する。特に、通常の商業的なUV硬化性及び熱硬化性の反応性材料との改良された適合性を得るために、最適な炭素含有のハイブリッド材料が目標とされている。かくして、本発明の材料を市販の炭素系樹脂とブレンドすると、基本の有機材料の好ましい特性(例えば強度、基材湿潤性、及び付着性)を維持しながら、シロキサンの多くの所望の性質(可撓性、疎水性、熱安定性)が達成される。本発明のエポキシシロキサン及びエポキシシランは、種々の材料にシロキサン‐タイプの特性を付与するために、従来の炭素系エポキシと同様な多くの方法で広く使用されることが可能である。
【0014】
基本的な合成の方法論は、通常二つより多い官能性を有する中央の炭化水素の「コアー」(core)への、交互に生じるシロキサン(又はシラン)と炭化水素ブロックの制御された付加を含んでいる。その結果得られるラジアルコポリマーの構造は、任意に、SiH末端、又はオレフィン末端であり得て、そして一般に次の構造によって表現され得る。
【0015】
【化1】

【0016】
そこでは、nが1〜100であり、コアーが炭化水素単位であるように特定され、ブロックBが有機単位であり、そしてブロックAがシロキサン単位及び/又はシラン単位である。好ましい態様において、nが1〜5であり、そしてqが3〜20である。更に好ましい態様において、qが3〜6である。ブロックBがポリエーテル単位を含有する場合には、qが3以上でなければならない。
【0017】
【化2】

【0018】
そこでは、nが0〜100であり、qが3〜20であり、コアーが炭化水素単位であるように特定され、ブロックBが有機単位であり、そしてブロックAがシロキサン単位及び/又はシラン単位である。好ましい態様において、nが0であり、そしてqが3〜6である。
【0019】
【化3】

【0020】
この態様では、nが1〜100であり、qが3〜20である。好ましい態様では、nが1〜5であり、qが3〜6である。
【0021】
上記の三つの態様に全てにおいて、Rが独立して、H、線状又は分岐状のアルキル、シクロアルキル、芳香族、置換芳香族、或いは環状リングの一部であって、O、S、N、P又はBのような、但しそれらに限定されない、ヘテロ原子を含有しても良い。
【0022】
それに続く例はこの構造の最も一般的に検討されるバージョンを最も良く示すが、当業者は本発明の範囲に入る他の自明な可能性を理解するであろう。しばしば、コアーが複数の不飽和置換基を有する炭化水素部分である。例えば、好適な有機のコアーが、テトラアリルビスフェノールA;2,5‐ジアリルフェノールアリルエーテル;トリメチロールプロパントリアリルエーテル;ペンタエリトリトールテトラアリルエーテル;トリアリルイソシアヌレート;トリアリルシアヌレート;又はそれらの混合物から得られるものである。qが3より小さい場合には、ジアリルビスフェノールA;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン又はそれらの混合物も使用され得る。ブロックBは、しばしばアルキル(例えばエチル)、シクロアルキル(例えばジシクロペンタジエニル)又は芳香族(例えばジアルキルスチリル)から得られる。ブロックBは、線状又は分岐状のアルキル単位、ヘテロ原子を含む線状又は分岐状のアルキル単位、シクロアルキル単位、ヘテロ原子を含むシクロアルキル単位、芳香族単位、置換された芳香族単位、ヘテロ芳香族単位、又はそれらの混合物の1種又は2種以上を含み得るものであって、そこではヘテロ原子が非限定的に酸素、硫黄、窒素、燐及び硼素を含む。ブロックBは、好ましくは1,3‐ビス(アルファメチル)スチレン;ジシクロペンタジエン;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン;5‐ビニル‐2‐ノルボルネン;2,5‐ノルボルナジエン;ビニルシクロへキセン;1,5‐ヘキサジエン;1,3‐ブタジエン;又はそれらのある組合せに由来するものである。オレフィン末端構造が単離される場合には、その不飽和の末端基が、典型的にはブロックBとして使用されたビス(オレフィン)の未反応末端から直接得られる。ブロックAは、しばしば、1,1,3,3‐テトラメチルジシロキサン;1,1,3,3,5,5‐ヘキサメチルトリシロキサン;1,1,3,3,5,5,7,7‐オクタメチルテトラシロキサン;ビス(ジメチルシリル)エタン(1,1,4,4‐テトラメチルジシルエチレン);1,4‐ビス(ジメチルシリル)ベンゼン;1,3‐ビス(ジメチルシリル)ベンゼン;1,2‐ビス(ジメチルシリル)ベンゼン又はそれらの混合物から得られる。そのエポキシ末端基は、性質上しばしば脂環式又はグリシジルであるが、それらに限定されるものではない。
【0023】
一般的に言えば、ここに記載される合成方法論は、二官能性のオレフィン(有機ブロック)及び二つのSiH基を含有する化合物(例えばSiH‐末端のシロキサンオリゴマー又はSiH‐末端のシラン;「無機ブロック」)と共に、不飽和のコアー分子のほとんどに適用され得る。しばしば生じる実際上の条件は、過剰のビス(オレフィン)化合物及びビス(水素化珪素)化合物がその生成物から除去され得ることである。減圧蒸発による除去が最もしばしば好んで用いられる。典型的には、そのプロセスを経済的なものにするために、減圧蒸留によって除去されるので、その過剰の試薬が容易に収集されてリサイクルされ得る。逆に、二官能性の繰り返し単位類(ジエン又はビス(SiH)化合物)のいずれかの化学的特性がある反応条件下で一つの末端のみで反応し得るような場合には、そのような試薬の理論量が使用され得る。そのような場合には、過剰の試薬を除去できる必要性は、その合成プロセスから削除される。従って、ある場合には二官能性試薬の一つの末端の反応が、ある程度までの更なる反応に対して(大体制御された反応条件下で)その分子の他の末端を失活させるが、この効果はここに記載されるプロセスに必要ではない。この効果の通常の例は、TMDS又はTMDEの不飽和の種々の材料とのヒドロシリル化反応において見出されることが可能である。適当な反応条件下で、そのSiH結合の一つがヒドロシリル化反応に関与するが、公知のように、より高温でより活性な触媒が使用されるまで、第2のSiH基は関与しない。更に他の場合において、選択性を取得し、且つ大過剰の繰り返し単位分子を用いる必要性を避けるために、大きく異なる反応性の反応基を有する二官能性の試薬が使用され得る。これの優れた例は、そのノルボルネニル2重結合でのヒドロシリル化を、そのシクロペンタジエニル2重結合での場合よりも数桁も迅速に受ける、ジシクロペンタジエン(DCPD)のヒドロシリル化において見出すことが出来る。そのような位置選択性で且つ化学選択性の反応が知られているけれども、リサイクルと組み合わせたビス(水素化珪素)及びビス(オレフィン)の過剰量の使用は、しばしば最も効率的な工業上の鎖/腕延長プロセスであって、多くの場合、最も純粋な生成物を得る。いずれかの二官能性の試薬を用いる鎖延長プロセスの間にその両方の末端でその試薬が反応する場合、これは、本発明の多官能性でラジアルの分子形態を取り扱うときの望ましくない分子量増加、多分散性及びゲル化をすぐに引き起こすことに注目することが重要である。
【0024】
SiH‐末端のラジアルコポリマーを得るために、コポリマーの有機/無機「腕」(arms)をその核(core)から望ましい「ジェネレーション」(generation)に線状に又は放射状に拡張させた後に、この分子が不飽和のエポキシ分子で末端キャップされる。この不飽和エポキシ分子の性質は、そのラジアルコポリマーの目的とされる最終用途に応じて広範囲に変わり得る。例えば、カチオン的に開始されるUV硬化の用途に使用するためのハイブリッド脂環式エポキシ樹脂を生成するために、ビニルシクロへキセンオキシドで末端キャップしても良い。熱硬化性材料については、アリルグリシジルエーテルが理論的な末端キャップ先駆物質である。
【0025】
同様に、シロキサン又は他の無機のコアーから外側へその有機/無機ブロックを拡張することは、本発明の範囲内である。このことは、ある用途に対して有用であり得る、その材料の無機:有機の比を高めるのに有効な方法である。かくして、そのような化合物が以下の構造に示され、又はイメージされる。
【0026】
【化4】

【0027】
この場合には、コアーが無機組成、しばしばSiH‐末端のシロキサンである。コアーの好ましい環状物の例は、1,3,5,7‐テトラメチルシクロテトラシロキサン(D')である。他の可能性のあるコアー組成は、テトラキス(ジメチルシロキシ)シラン;オクタキス(ジメチルシロキシ)オクタプリスモシルセクイオキサン;及びそれらの混合物である。次いで、ブロックCが有機ジエンであり、ブロックDが無機のビス(SiH‐官能性)材料である。これらのブロック及びエポキシ‐末端の構造に関する記載内容は、ブロックBに対応するブロックC、及びブロックAに対応するブロックDと共に、有機コアー材料について上述されたものと同様である。同様に、nが1〜100であり、qが1〜20の範囲にあり得るが、オレフィン末端材料については、nが0〜100の範囲にあっても良い。ブロックCがエーテル単位を含有する場合には、qが3以上でなければならない。
【0028】
同様に、無機のコアーを有する構造は、以下の二つの構造において示されるように、オレフィン又はSiH端末の官能性を有し得る。
【0029】
【化5】

【0030】
【化6】

【0031】
それらの例は、電磁線及び熱での硬化性組成物において使用するためのハイブリッド材料の有用性を示す。「電磁線」(radiation)の用語は、ここでは一般に、電磁スペクトルのマイクロ波からガンマ領域までの範囲にあるエネルギーを有する電磁線として定義される。指摘されるように、熱源及び電子ビームエネルギー源もまた、本発明の組成物を硬化させるのに使用され得る。後に記載される系を開始/硬化させるための可能な方法の範囲は、当業者に良く知られた使用エネルギーの性質及び開始剤によって本質的に特定される。
【0032】
当業者が、硬化した、及び未硬化の組成物の特性を調整するために、充填剤、レオロジー改質剤、染料、接着促進剤等のような種々の添加剤を組み合わせて、本発明の反応性有機/無機ハイブリッドコポリマーを使用し得ることが更に理解される。使用され得る無機充填剤には、タルク、粘土、非晶質の又は結晶性のシリカ、ヒュームドシリカ、マイカ、炭酸カルシウム、窒化アルミニウム、窒化硼素、銀、銅、銀‐コート銅、はんだ等が非限定的に含まれる。ポリ(テトラフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、グラファイト又はポリ(アミド)繊維のようなポリマー充填剤も使用され得る。使用の可能性のあるレオロジー改質剤には、ヒュームドシリカ又はフッ素化ポリマーが含まれる。接着促進剤には、γ‐メルカプトプロピルトリメトキシシラン、γ‐グリシドオキシプロピルトリメトキシシラン、γ‐アミノプロピルトリメトキシシラン、γ‐メタクリルオキシプロピルトリエトキシシラン、β‐(3,4‐エポキシシクロヘキシル)エチルトリメトキシシラン等が含まれる。染料及び他の添加剤も所望のように含まれ得る。
【実施例】
【0033】
この合成手順に関する特定の実際的側面が、以下の非限定的な実施例によって最適に例示される。
【0034】
実施例1.テトラアリルビスフェノールA/TMDSアダクト1の合成
500mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗(addition funnel)、内部温度プローブ及び電磁攪拌機を備え、そして少量の窒素流れ下に設置した。そのフラスコに1,1,3,3‐テトラメチルジシロキサン(364ml、2.06mol;「TMDS」Hanse Chemie社)を投入した。添加用漏斗にTMDS(5ml)とテトラアリルビスフェノールA(20.0g、51.5mmol;「TABPA」Bimax社)の混合物を投入した。およそ2mlのこの溶液を、主反応容器の攪拌されたTMDSに添加した。そのポット(pot)温度を〜50℃まで高めて、その温度でジクロロ‐ビス(シクロオクタジエン)Pt(50ppmPt、2mg/mlの触媒錯体の2‐ブタノン溶液0.95ml;DeGussa社)をその反応器に添加した。次いで、内部反応温度を〜70℃に上げた。
【0035】
内部温度を75℃未満に維持しながら、〜25分間に渡って、TABPAを液滴状でその反応器に添加した。その添加の間、定常反応発熱量を観測した。その添加が完了した後、〜70℃で10分間その反応物を攪拌した。FT‐IR解析が、1645cm−1と1606cm−1で集中されるC=C伸長バンド(stretching bands)の消失によって判断されるように、アリル2重結合の実質的に完全な消費を示した。
【0036】
その反応物を40℃より低い温度に放冷させて、その温度で過剰のTMDSを真空中で除去した。このTMDSは純粋(GC、H NMR及び29Si分析で測定)であって、レサイクルされ得る。淡黄色油が実質上定量的な収率で生成物として得られた。その物質を、H、29Si及び13C NMR、GC、MS、GPC並びにFT‐IRによって解析した。その生成物は、テトラシラン1の構造と一致するスペクトル特性を呈した。GPC分析では、1.2の低い多分散性を有する単一ピークを生じた(出発物質テトラアリルビスフェノールの多分散性インデックスが1.1であることに注目)。EI‐MS分析では、924において期待される主な分子イオン(molecular ion)(テトラシラン1の分子イオン計算値=924)、そして999においてより小さい、より高い分子量の分子イオン(出発物質テトラメチルジシロキサン中に存在する少量のヘキサメチルトリシロキサンに起因)を生じた。その樹脂は、3.84meqSiH/g樹脂、理論値の98%(理論的なSiH値は3.9meqSiH/g樹脂であり、8.4meqオレフィン/g樹脂の出発物質TABPAの滴定(titrated)オレフィン含有量から算出)に滴定した。
【0037】
【化7】

【0038】
実施例2.四官能性脂環式エポキシジェネレーション1、ラジアルシロキサン/炭化水素ハイブリッドコポリマー2の合成
電磁攪拌機、内部温度プローブ、還流コンデンサー及び添加用漏斗を備えた250mlの3首付きフラスコ中で、シロキサン1(実施例1、8.65g、9.35mmol)をトルエン(26ml)に溶媒和(solvate)した。その反応器を穏やかな乾燥窒素パージ(purge)下に置いた。ビニルシクロへキセンオキシド(「VCHO」4.9ml、37.4mmol)をその添加用漏斗に投入した。およそ0.25mlのこのエポキシをその反応ポット中に滴下し、そしてそのポットの内容物を50℃に昇温した。
【0039】
クロロトリス(トリフェニルホスフィン)ロジウム(「Wilkinsonの触媒」4mg、シロキサン質量基準で50ppm)をそのポットに添加した。次いで、その反応の内部温度を65℃に上げ、そしてVCHOの液滴での添加を開始した。その添加の間に発熱量を観測したが、それは20分後に完了した。その添加プロセスの間、その反応の内部温度を68℃に維持した。VCHO添加速度、及びその反応容器への熱の適用/除去によって、この温度が容易に制御された。
【0040】
その添加が完了した後、その反応物を65℃で5分間攪拌した。FT‐IR分析は、IRスペクトルにおけるSiHバンド(2119cm−1)の不存在によって判断されるように、その反応が完了したことを示した。その反応を室温に放冷させて、その温度で活性炭(〜0.25g)をその溶液と共に30分間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た。その物質を、H、29Si及び13C NMR、並びにFT‐IRによって解析した。その生成物のスペクトル特性は、ラジアルハイブリッドエポキシ化合物2に関して期待されるものと一致した。GPC分析では、非常に低い多分散性(1.2)を有する単一ピークを生じた。EI‐MS分析では、1422において期待される主な分子イオン(ハイブリッドラジアルエポキシ2の分子イオンの計算値=1422)、そして1498においてより小さい、より高い分子量の分子イオン(出発物質テトラメチルジシロキサン中に存在する少量のヘキサメチルトリシロキサンに再度起因)を生じた。平均のエポキシ当量(EEW)が〜402であるように見出された(3.9meqSiH/g樹脂の化合物1についてのSiH値から算出される理論値の107%)。
【0041】
【化8】

【0042】
実施例2a.四官能性脂環式エポキシジェネレーション1、ラジアルシロキサン/炭化水素ハイブリッドコポリマー2の合成(代わりの合成)
500mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗、内部温度プローブ及び電磁攪拌機を備え、そして少量の窒素流れ下に設置した。そのフラスコにトルエン(20ml)中に溶媒和したシロキサン1(実施例1、40.0g、43mmol)を投入した。そのポット温度を〜65℃に昇温した。ビニルシクロへキセンオキシド(「VCHO」、21.7g、175mmol)を添加用漏斗に投入した。およそ3.0mlのこのエポキシをその反応ポット中に滴下した。
【0043】
白金‐テトラビニルシクロシロキサン錯体(Pt‐Dv「Karstedtの触媒」、3.5重量%活性Pt、シロキサン1の質量基準で40ppmPt、0.046gのPt錯体、Gelest社)をその容器に添加した。
【0044】
内部温度を75℃未満に維持しながら、VCHOを1時間に渡ってその反応器に液滴状で添加した。その添加の間、定常反応発熱量を観測した。そのVCHO添加速度、及びその反応容器への熱の適用/除去によって、この温度が容易に制御された。
【0045】
その添加が完了した後、その反応物を70℃で5分間攪拌した。FT‐IR分析は、IRスペクトルにおけるSiHバンド(2119cm−1)の不存在によって判断されるように、その反応が完了したことを示した。その反応を室温に放冷させて、その温度で活性炭(〜2.0g)をその溶液と共に1時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た。その物質を、H、29Si及び13C NMR、並びにFT‐IRによって解析した。その生成物のスペクトル特性は、ハイブリッドエポキシ化合物2に関して期待されるものと一致した。その生成物のエポキシ当量(EEW)が390g樹脂/molエポキシであった。
【0046】
実施例3.テトラアリルビスフェノールA/ビス(ジメチルシリル)エチレンアダクトの合成
250mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗、内部温度プローブ及び電磁攪拌機を備え、そして少量の窒素流れ下に設置した。そのフラスコにビス(ジメチルシリル)エタン(34.6g、514mmol;「TMDE」;Gelest社)を投入し、内部温度を65℃に加温した。テトラアリルビスフェノールA(20.0g、51.5mmol;「TABPA」;Bimax社)を添加用漏斗に投入した。およそ1mlのこの溶液をその主反応容器の攪拌されたTMDEに添加した。
【0047】
クロロトリス(トリフェニルホスフィン)ロジウム(「Wilkinsonの触媒」4mg、シロキサン質量基準で〜40ppm)をそのポットに添加した。
【0048】
TABPAの液滴での添加を開始した。その添加の間に定常発熱量を観測したが、それは1時間後に完了した。その添加プロセスの間、その反応の内部温度を80℃より低く維持した。TABPAの添加速度、及びその反応容器への熱の適用/除去によって、この温度が容易に制御された。その添加が完了した後、その反応を〜80℃で30分間維持した。FT‐IR分析は、1645cm−1と1606cm−1で集中されるC=C伸長バンドの消失によって判断されるように、アリル2重結合の実質的に完全な消費を示した。
【0049】
その反応を40℃より低い温度まで放冷させて、その温度で過剰のTMDEを真空中で除去した。このTMDEは純粋(H NMR及び29Si分析により測定)で、リサイクル可能である。実質上定量的な収率で、黄色の油を得た。その物質を、H、29Si及び13C NMR、並びにFT‐IRによって解析した。その生成物は、テトラシラン3の構造と一致したスペクトル特性を呈した。その物質は、理論値の105%である、4.31meqSiH/g樹脂のSiH含有率を呈した。
【0050】
【化9】

【0051】
実施例4.四官能性脂環式エポキシジェネレーション1、ラジアルシラン/炭化水素コポリマー4の合成
500mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗、内部温度プローブ及び電磁攪拌機を備え、そして少量の窒素流れ下に設置した。そのフラスコに、トルエン(20ml)中に溶媒和したシロキサン3(16.25g、16.7mmol)を投入した。そのポット温度を〜65℃に昇温した。ビニルシクロへキセンオキシド(「VCHO」8.39g、67.6mmol)を添加用漏斗に投入した。およそ1mlのこのエポキシをその反応ポット中に滴下した。
【0052】
Pt‐テトラビニルシクロテトラシロキサン錯体(3.5%活性Pt、シロキサン3の質量基準で50ppmPt、0.232gのPt錯体、Gelest社)をその容器に添加した。
【0053】
内部温度を70℃未満に維持しながら、そのVCHOを〜1時間に渡ってその反応器に滴下して添加した。その添加の間、定常反応発熱量を観測した。VCHOの添加速度、及びその反応容器への熱の適用/除去によって、この温度が容易に制御された。
【0054】
その添加が完了した後、その反応を75℃で1時間攪拌した。FT‐IR分析は、IRスペクトルにおけるSiHバンド(2119cm−1)がほぼ無いことによって判断されるように、その反応がほとんど完了したことを示した。その反応に、追加の0.5VCHOと追加のPt触媒(0.007g触媒溶液)を添加した。その反応を更に75℃で30分間攪拌し、SiHのIRバンドが無いことによって反応完結を判断した。その反応を室温に放冷させて、その温度で活性炭(〜3.0g)をその溶液と共に1時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た。その物質を、H、29Si及び13C NMR、並びにFT‐IRによって解析した。その生成物のスペクトル特性は、ハイブリッドエポキシ化合物4に関して期待されるものと一致した。その分子は、430g樹脂/molエポキシのEEWを呈した。
【0055】
【化10】

【0056】
実施例5.四官能性グリシジルエポキシジェネレーション1、ラジアルシロキサン/炭化水素コポリマーの合成
電磁攪拌機、内部温度プローブ、還流コンデンサー及び添加用漏斗を備えた100mlの3首付きフラスコ中で、シロキサン1(実施例1、3.00g、3.24mmol)をトルエン(5ml)中に溶媒和した。その反応器を穏やかな乾燥窒素パージ下に設置した。アリルグリシジルエーテル(「AGE」、1.48g、13.0mmol)をトルエン(5ml)に溶解して、その添加用漏斗に投入した。およそ0.25mlのこのエポキシをその反応ポット中に滴下し、そのポットの内容物を60℃に昇温した。
【0057】
白金‐Dv錯体の溶液(3.5重量%活性Pt、シロキサン1の質量基準で50ppmPt、0.042gのPt錯体、Gelest社)をその容器に添加した。
【0058】
内部温度を80℃未満に維持しながら、そのAGEを〜10分間に渡ってその反応器に滴下して添加した。その添加の初期の間に少しの反応発熱量を観測した。その添加が完了した後、その反応を80℃で5時間攪拌した。FT‐IR分析は、IRスペクトルにおけるSiHバンド(2119cm−1)の不存在によって判断されるように、その反応が完了したことを示した。その反応を室温に放冷させて、その温度で活性炭(〜0.5g)をその溶液と共に1時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た(4.48g、85%)。その生成物のスペクトル特性は、ハイブリッドエポキシ化合物5に関して期待されるものと一致した。その生成物のEEWは、422g樹脂/molエポキシであることが見出された。
【0059】
【化11】

【0060】
実施例6.ジアリルエーテルビスフェノールA/TMDSアダクト6の合成
500mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗、内部温度プローブ及び電磁攪拌機を備えた。そのフラスコに、テトラメチルジシロキサン(573ml、3.25mol;「TMDS」;Hanse Chemie社)を投入した。そのポット温度を〜65℃に昇温した。ジアリルエーテルビスフェノールA(50g、0.162mol;「DABPA」;Bimax社)を添加用漏斗に投入した。およそ5mlのDABPAをその反応ポット中の攪拌されているTMDSに添加した。次いで、ジクロロビス(シクロオクタジエン)PtII(40ppmPt、触媒錯体2mg/mlの2‐ブタノン溶液1.9ml;DeGussa社)をその反応器に添加した。
【0061】
〜25分間に渡ってTABPAをその反応器に液滴状で添加した。そのゆっくりとした添加の初期に、少しの発熱量が生じた。その添加が完了した後、その反応物を〜70℃で10分間攪拌した。FT‐IR分析は、1648cm−1で集中されるC=C伸長バンドの消失によって判断されるように、アリル2重結合の実質的に完全な消費を示した。追加のジクロロビス(シクロオクタジエン)PtII(20ppmPt、1.0mlの触媒溶液)を添加した。そのブースター(booster)触媒の添加後に、少しの発熱量が生じた。その反応物を70℃で1時間維持した。FT‐IR分析が不完全な反応を示し、そして追加のジクロロビス(シクロオクタジエン)PtII(30ppmPt、1.4mlの触媒溶液)をその溶液に添加した。10分後に、反応が完全であることをFT‐IR分析が示した。
【0062】
その反応を40℃より低温に放冷させて、その温度で過剰のTMDSを真空下で除去した。このTMDSは純粋(H NMR及び29Si分析により測定)で、リサイクル可能である。実質上定量的な収率で、黄色の生成油を得た。その物質を、H、29Si及び13C NMR、並びにFT‐IRによって解析した。その生成物は、「ハイブリッドシロキサン」6の構造と一致したスペクトル特性を呈した。GPC分析では、1.2の低い多分散性を有する単一ピークを生じた。EI‐MS分析では、576.7において期待される主な分子イオン(ビス(シラン)6の分子イオンの計算値=576.7)、そして650においてより小さい、より高い分子量の分子イオン(出発物質テトラメチルジシロキサン中に存在する少量のヘキサメチルトリシロキサンに起因)を生じた。
【0063】
【化12】

【0064】
実施例7.二官能性脂環式エポキシジェネレーション1、線状シロキサン/炭化水素コポリマー7の合成
電磁攪拌機、内部温度プローブ、還流コンデンサー及び添加用漏斗を備えた250mlの3首付きフラスコ中で、ハイブリッドシロキサン6(28.7g、50mmol)をトルエン(10ml)中に溶媒和した。ビニルシクロへキセンオキシド(「VCHO」、13.34g、103mmol)を添加用漏斗に投入した。そのポットの内容物を75℃に昇温し、およそ0.50mlのこのエポキシをその反応ポット中に滴下した。次いで直ちに、ジクロロ‐ビス(シクロオクタジエン)Pt(ハイブリッドシロキサン6の質量基準で約20ppmPt、2mg/mlの触媒錯体の2‐ブタノン溶液0.5ml)をその反応器に添加した。VCHOの液滴状添加を開始した。その添加の間、発熱量を観測したところ、20分の後にそれは完了した。その添加プロセスの間、その反応の内部温度を80℃よりも低く維持した。VCHOの添加速度、及びその反応容器への熱の適用/除去によって、この温度が容易に制御された。
【0065】
その添加が完了した後に、その反応物を80℃で5分間攪拌した。FT‐IR分析は、IRスペクトルにおけるSiHバンド(2119cm−1)の不存在によって判断されるように、その反応が完了したことを示した。その反応を室温に放冷させて、その温度で活性炭(〜1.0g)をその溶液と共に2時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た。その物質を、H、29Si及び13C NMR、GPC、EI‐MS並びにFT‐IRによって解析した。その生成物のスペクトル特性は、ハイブリッドエポキシ化合物7に関して期待されるものと一致した。GPC分析では、1.7の多分散性を有する単一ピークを生じた。MS分析では、825において期待される主な分子イオン(ハイブリッドエポキシ7の算出分子イオン=825)を生じた。その平均エポキシ当量(EEW)は、典型的に約498g樹脂/molエポキシであった。
【0066】
【化13】

【0067】
実施例8.二官能性グリシジルエポキシジェネレーション1、シロキサン/炭化水素ハイブリッドコポリマー8の合成
電磁攪拌機、内部温度プローブ、還流コンデンサー及び添加用漏斗を備えた250mlの3首付きフラスコ中で、シロキサン6(31.0g、53mmol)をトルエン(10ml)中に溶媒和した。アリルグリシジルエーテル(「AGE」、15.77g、134mmol)をその添加用漏斗に投入した。そのポットの内容物を75℃に昇温し、そしておよそ0.50mlのこのエポキシをその反応ポット中に滴下した。次いで直ちに、Pt‐テトラビニルシクロテトラシロキサン錯体(3.5%活性Pt、化合物6の質量基準で14ppmPt、0.124gのPt錯体、Gelest社)をその反応器に添加した。AGEの液滴状添加を開始した。その添加の間、発熱量を観測したところ、30分の後にそれは完了した。その添加プロセスの間、その反応の内部温度を80℃よりも低く維持した。AGEの添加速度、及びその反応容器への熱の適用/除去によって、この温度が容易に制御された。
【0068】
その添加が完了した後に、その反応物を75℃で5分間攪拌した。FT‐IR分析は、IRスペクトルにおけるSiHバンド(2119cm−1)の存在によって判断されるように、その反応が不完全であることを示した。追加の7ppm触媒(0.062gのPt錯体)を添加して、発熱量を観測し、そしてSiHのIR吸収バンドの強度を減少させた。更に2回の触媒の追加(それぞれ約3ppm、0.030gPt錯体)を10分間の間隔で行った。この後にFT‐IR分析は、SiHバンドの不存在によって判断されるように、その反応が完全であることを示した。その反応を室温に放冷させて、その温度で活性炭(〜1.0g)をその溶液と共に2時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た。その物質を、H、29Si及び13C NMR、GPC、MS並びにFT‐IRによって解析した。その生成物のスペクトル特性は、ハイブリッドエポキシ化合物8に関して期待されるものと一致した。GPC分析では、1.2の低い多分散性の単一ピークを生じた。EI‐MS分析では、804において期待される主な分子イオン(ハイブリッドエポキシ8の算出分子イオン=806)を生じた。通常のエポキシ当量(EEW)が約590gであることを見出した。
【0069】
【化14】

【0070】
実施例9.α−メチルスチレン‐末端のラジアルハイブリッドコポリマーの合成
250mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗、内部温度プローブ及び電磁攪拌機を備え、そして少量の窒素流れ下に設置した。そのフラスコに1,3‐ジイソプロペニルベンゼン(300ml、2.04mol;Cytec社)を投入し、そして内部温度を65℃に加温した。シロキサン1(15.00g、16.20mmol)を1,3‐ジイソプロペニルベンゼン(200ml、1.36mol)中に溶媒和し、そしてゆっくりとした添加用漏斗に投入した。内部温度65℃において、Pt‐テトラビニルシクロテトラシロキサン錯体(3.5%活性Pt、化合物1の質量基準で85ppmPt、0.042gのPt錯体、Gelest社)をその反応器に添加し、次いで直ちに〜4mlのシロキサン1溶液を添加した。なんらの発熱量も観測されなかった。反応の内部温度を70〜75℃に向上させ、そして15分間に渡ってそのシロキサン1の溶液を反応器に添加した。その反応を70〜75℃で4時間維持した。FT‐IR分析は、IRスペクトルにおけるSiHバンド(2119cm−1)の不存在によって判断されるように、その反応が完了したことを示した。その反応を室温に放冷させて、その温度で活性炭(〜0.5g)をその溶液と共に1時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、化合物9の黄色の油を得た(23.5g、95%)。そのラジアルハイブリッドコポリマーを、H、13C及び29Si NMR、並びにFT‐IR分光分析法によって解析した。
【0071】
【化15】

【0072】
実施例10.第2のジェネレーションSiH‐末端のラジアルハイブリッドコポリマーの合成
250mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗、内部温度プローブ及び電磁攪拌機を備え、そして少量の窒素流れ下に設置した。そのフラスコに1,1,3,3‐テトラメチルジシロキサン(100ml、565mmol;「TMDS」;Hanse Chemie社)を投入し、そして内部温度を65℃に加温した。オレフィン‐末端のハイブリッドコポリマー9(11.0g、7mmol)をTMDS(50ml、282mmol)中に溶媒和し、そしてゆっくりとした添加用漏斗に投入した。そのポットが65℃の内部温度に達したときに、Pt‐Dv錯体(3.5重量%活性Pt、化合物9の質量基準で50ppmPt、0.018gのPt錯体、Gelest社)をその容器に添加し、次いで直ちに〜4mlのコポリマー9‐TMDS溶液を添加した。その9の溶液を15分間に渡ってその反応に添加した。その添加が完了した後に、その反応温度を2時間で70〜75℃に高めた。次いでその反応物を室温に放冷させて、その温度で活性炭(〜0.5g)をその溶液と共に2時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た(12.7g、95%)。その生成物のH、13C及び29Si NMR、並びにFT‐IRのスペクトル特性は、SiH‐末端のラジアル有機/無機ハイブリッドコポリマー10に関して期待されるものと一致した。そのコポリマーの滴定されたSiH値は、2.35meqSiH/g樹脂であった。
【0073】
【化16】

【0074】
実施例11.四官能性脂環式エポキシジェネレーション2、ラジアルシロキサン/炭化水素ハイブリッドコポリマー11の合成
500mlの4首付き丸底フラスコに還流コンデンサー、添加用漏斗、内部温度プローブ及び電磁攪拌機を備え、そして少量の窒素流れ下に設置した。そのフラスコにラジアルコポリマー10(12.0g、5.72mmol)を投入し、トルエン(20ml)中に溶媒和した。そのポット温度を〜65℃に昇温した。ビニルシクロへキセンオキシド(「VCHO」、2.84g、22.87mmol)を添加用漏斗に投入した。およそ1mlのこのエポキシをその反応ポット中に滴下した。
【0075】
Pt‐Dv錯体(3.5重量%活性Pt、化合物10の質量基準で35ppmPt、0.014gのPt錯体、Gelest社)をその容器に添加した。
【0076】
内部温度を70℃未満に維持しながら、VCHOを〜1時間に渡ってその反応器に液滴状で添加した。その添加の間、定常反応発熱量を観測した。そのVCHO添加速度、及びその反応容器への熱の適用/除去によって、この温度が容易に制御された。
【0077】
その添加が完了した後、その反応物を70℃で2時間攪拌した。FT‐IR分析は、そのスペクトルにおけるSiHバンド(2119cm−1)の不存在によって判断されるように、その反応が完了したことを示した。その反応を室温に放冷させて、その温度で活性炭(〜1.0g)をその溶液と共に2時間攪拌した。その溶液を濾過し、溶剤を真空下でその濾液から除去して、黄色の油を得た(13.6g、92%)。その生成物のHNMR、13CNMR及び29SiNMR、並びにFT‐IRのスペクトル特性は、そのラジアルハイブリッドエポキシ化合物11に関して期待されるものと一致した。その樹脂のEEWが573g樹脂/molエポキシであることを見出した。
【0078】
【化17】

【0079】
実施例12.無機コアーを用いるG1‐オレフィン‐末端のハイブリッドラジアルコポリマーの合成
乾燥空気パージ下の、添加用漏斗、還流コンデンサー、電磁攪拌機及び内部温度プローブを備えた丸底フラスコ内で、ジシクロペンタジエン(「DCPD」、40当量(eq.))をトルエンに溶媒和させた。その添加用漏斗に、テトラキス(ジメチルシシリル)シロキサン(「TDS」、1当量)を投入した。その反応ポット溶液を50℃に加温し、その温度でジクロロプラチナムビス(ジシクロペンタジエン)(ClPtCOD、TDS基準で20ppm)をその溶液に添加した。その内部反応温度を70℃に昇温し、そして内部温度を80℃未満に維持しながら、TDSをその反応に液滴状で添加した。その添加が完了した後に、その溶液をその温度で10分間攪拌したところ、その時点でFT‐IR分析がSiH官能性の完全な消費を示した。過剰のDCPDとトルエンを真空中で除去して、淡黄色油を得た。
【0080】
【化18】

【0081】
実施例13.無機コアーを用いるG1‐SiH‐末端のハイブリッドラジアルコポリマーの合成
乾燥空気の低速パージ下で、機械的攪拌機、還流コンデンサー、添加用漏斗及び内部温度プローブを備えた500mlの4首フラスコに、1,1,3,3‐テトラメチルジシロキサン(「TMDS」、40当量)を投入した。その添加用漏斗に、化合物12(1当量)を投入した。その反応を油浴中に据えて、内部温度を50℃まで加温した。ClPt(COD)(化合物12の質量基準で20ppm)をその反応ポットに添加し、そしてその内部反応温度を75℃に昇温した。内部温度を75〜85℃に維持しながら、化合物12を30分のコースに渡ってその反応に液滴状で添加した。その添加が完了した後に、その反応物を80℃で20分間攪拌した。過剰のTMDSを真空中で除去してリサイクルさせ、淡黄色油として化合物13を得た。
【0082】
【化19】

【0083】
実施例14.無機コアーを用いるG1‐脂環式エポキシ‐末端のハイブリッドラジアルコポリマーの合成
乾燥空気のパージ下で、機械的攪拌機、添加用漏斗及び内部温度プローブを備えた500mlの4首丸底フラスコに、化合物13(1当量)を投入した。その添加用漏斗に、ビニルシクロへキセンオキシド(「VCHO」、4当量)を投入した。そのポット温度を50℃に昇温して、その温度でCl(PPhRh(化合物13の質量基準で20ppm)をその反応溶液に添加した。その内部反応温度を70℃に昇温し、そして添加の間、内部温度を80℃未満に維持しながら、VCHOを20分のコースに渡って液滴状で添加した。その添加が完了した後に、その反応物を75℃で10分間攪拌したところ、その時点でその反応混合物のFT‐IRスペクトルが、出発物質13のSiH基に相当する2120cm−1のバンドの完全な消失を示した。溶剤を真空中で除去して、淡黄色油として生成物14を得た。
【0084】
【化20】

【0085】
実施例15.ハイブリッドエポキシ類と通常の炭化水素エポキシ樹脂類のDVS吸湿性比較
充分に硬化した材料類の疎水性を比較するために、DVS(dynamic vapor sorption)を用いて、85℃で85%の相対湿度の条件に曝された硬化サンプル類について飽和吸湿性レベルを測定した。試験される種々のエポキシ樹脂を、1重量%のカチオン性光学的/熱的ヨードニウム塩開始剤Rhodorsil 2074(Rhodia社)と配合し、1mm厚さのモールドにキャストし、そして175℃で1時間硬化させた。次いで、硬化したサンプルをDVS装置の試験チャンバー内に設置して、吸湿性(質量増加)が止まるまで試験した。重要な結果が表1に纏められている。
【0086】
このデータから理解されるように、ハイブリッドエポキシが、代表的な炭化水素エポキシよりもかなり少ない飽和湿度の吸収を示しており、そのような通常の炭素系エポキシ樹脂(EPON 828及びERL 4221)に比較して高い疎水性を例証している。加えて、ラジアルで四官能性のハイブリッドエポキシ(2及び4)は、類似の線状の二官能性類似物(analogs)(7及び8)よりもやや疎水性であることが理解され得る。
【0087】
【表1】

【0088】
実施例16.通常のエポキシ樹脂類に対する本発明のハイブリッドエポキシ類の熱安定性
典型的な市販の炭化水素エポキシ材料に対して、例示的な本発明のハイブリッド樹脂を、熱安定性に関して試験した。未硬化の液状材料として、及び硬化した固体としての両方で、サンプルを解析した。種々の樹脂を0.5重量%のカチオン性熱的/光学的開始剤Rhodorsil 2074(Rhodia社)と配合して、175℃で1時間硬化させることによって、硬化済みの全サンプルを得た。次いで、硬化済みのサンプルと未硬化のサンプルを、次のような加熱プロフィル:即ち20℃/分の加熱速度で30℃〜300℃、続いて300℃で30分間の浸透(soak)に従って、TGAによって解析した。表2は、各材料がその質量を1%及び2%減少させた温度、加えて全熱的プロフィルの完結における各サンプルによる全質量減少を一覧表示している。
【0089】
【表2】

【0090】
表2に示されるデータによって容易に推論され得るように、ラジアルハイブリッドエポキシ樹脂(未硬化及び硬化済みの両方)が、代表的な市販の炭化水素類似物に対してかなり改良された熱安定性を呈している。これは、それらのハイブリッド材料のシロキサン又はシラン部分/ブロックの無機的な性質によるものである。
【0091】
実施例17.本発明のハイブリッドエポキシ類の市販炭化水素及びシロキサン樹脂類中での相溶性
代表的なラジアルハイブリッドエポキシ2を、選択された適切な炭化水素及びシロキサン樹脂との相溶性について試験した。初期の混合物の明澄性、加えて一旦形成された混合物の安定性によって、相溶性を定性的に判断した。それらの結果が表3に示されている。全てのブレンドは重量%によって示されている。
【0092】
【表3】

【0093】
そのデータから理解され得るように、ラジアルハイブリッドエポキシ2は、ERL‐4221及びCHVEのような種々の炭化水素樹脂と巨視的なスケールでの混和性を示している。それは、Sycar(登録商標)シロキサン樹脂のような特定のシロキサン樹脂ともより高い相溶性を示す。Epon 828との〜10重量%までの混合物は、ある程度かすんだ状態を呈するが、室温で(又は結果として生じる硬化の後に)バルク相分離は観察されない。その表の最後の欄は、商業的に入手可能な典型的なエポキシシロキサンであるEMS‐232(通常のメチルヒドロジメチルシロキサンコポリマーのビニルシクロへキセンオキシドとのヒドロシリル化から得られる生成物、Gelest社)が、室温で2〜3日のコースに渡って、Epon 828のような多くの炭化水素エポキシからのバルク相分離を呈することを示している。
【0094】
実施例18.UV硬化配合物及び熱硬化配合物(Epon 828+本発明のコポリマー)の可撓性化
本発明の多くのハイブリッドエポキシは、炭化水素系材料との改良された相溶性により、通常のエポキシ系熱硬化性樹脂を可撓性化するために有効に使用され得る。従って、いくつかの比率で、Epon 828とラジアルハイブリッドエポキシ2でブレンドを作製した。これらのブレンドを1重量%のカチオン性重合開始剤(ヨードニウム塩、Rhodorsil 2074)と混合して、ドローダウン バー(drawdown bar)を用いておよそ10ミル(mil)の湿潤厚さのフィルムにキャストし、そして175℃で1時間熱硬化させた。その結果得たれた硬化フィルムを、動的機械分析(dynamic mechanical analysis)(Ares RSA、振動数1Hz、−100℃〜250℃)によって解析して、種々の温度でのモジュラス及びTgを決定した。以下の表4に関連データが纏めて示されている。
【0095】
そのデータから理解され得るように、種々のフィルムのそれらのTgより低い温度での弾性率(E’)は、ハイブリッドエポキシ2(TBPASiCHO‐G1‐シロキサン)の相対量が増加するに従って、予想されたように減少した。同様にハイブリッドエポキシ2の相対量が増加するに従って、明らかに、硬化したマトリックスのTgが減少した。それらのブレンドについて巨視的なスケールで材料の均質性を示す全ての場合に一つの別個のTgが観察されるという事実も注目される。相分離が生じた(例えばそのハイブリッドエポキシ成分が炭化水素相溶性に乏しいことによる)場合には、その二つのホモポリマーネットワークを代表する二つのTgが観察されたものと考えられる。
【0096】
従って、化合物2のような本発明の多くのハイブリッドエポキシが、通常の炭化水素エポキシマトリックスを可撓性化するのに用いられ得る。これは、その材料の無機性シロキサンセグメントによってその化合物に付与される固有の可撓性と同様に、本発明のハイブリッドコポリマーの改良された有機相溶性によるものである。
【0097】
【表4】

【0098】
実施例19.ラジアルハイブリッドエポキシ2のカチオン性UV硬化
実施例2の脂環式エポキシシロキサン(TBPASiCHO‐G1‐シロキサン2、3.0g)を、1重量%のヨードニウム硼酸塩カチオン性光開始剤Rhodorsil 2074(0.03g、Rhodia社)とイソプロピルチオキサントン(0.0075g(光開始剤Rhodorsilについて等モル)First Chemical社)と配合した。この配合物のサンプル(2.1mg)を光色差計(differential photocalorimetry)(「フォト(photo)DSC」)によって解析した。それらの結果が図1に示される。
【0099】
その配合物は、通常のカチオン的硬化エポキシよりも大幅に早く硬化し、0.13分後に生じるピーク発熱量を有する。フォトDSCに用いられた低い強度の条件下であっても、光重合のエンタルピー(−147J/g)に基づいて、その系の転化率が約56%であった。
【0100】
実施例20.フォトタイプのラグリシジルエポキシ(Epon 282)のUV硬化の促進
次のものから成る三つの配合物を作製した。
配合1:Epon 828(Shell社)+1重量%Rhodorsil 2074(Rhodia社)
配合2:ラジアルハイブリッドエポキシ2+1重量%Rhodorsil 2074
配合3:ハイブリッドエポキシ2:Epon 828の10:90のブレンド+1重量%Rhodorsil 2074
【0101】
光色差計(「フォトDSC」)を用いて、その三つの配合物を解析した。当業者に知られているように、グリシジルエポキシ(配合1)は、乏しいUV硬化速度(ピーク発熱量までの時間〜0.8分)を示すブロードな硬化発熱量、及び比較的低いUV硬化転化率(〜34%)を呈した。実施例19におけるデータと同様に、ラジアルハイブリッドエポキシ2(配合2)は、非常に良好なUV硬化速度(シャープな発熱量ピーク、ピーク発熱量までの時間〜0.13分)、及びUV硬化プロセス中の良好な転化率(〜>60%)を呈した。これら二つのエポキシの10:90(重量/重量)のブレンド(配合3)は、シャープな発熱(ピーク発熱量までの時間〜0.13分)、及び照射での許容可能な化学転化率(〜45%)の両方を呈した。これらの結果は、図2に示されている。このように、実施例2における少量の本発明のラジアルハイブリッドエポキシがEpon 828のような通常の炭化水素エポキシとブレンドされることが出来て、それらのUV硬化速度と転化率を大きく改良する。この現象の有効な側面は、本発明のハイブリッドエポキシが、従来技術で知られていたエポキシシロキサンに比較して、炭化水素エポキシ樹脂との改良された相溶性を示すと言う事実である。
【0102】
実施例21.ハイブリッドエポキシ2/ビニルエーテルブレンドのカチオン性UV硬化
ここで議論されるハイブリッドエポキシは、それらの一般的に改良された炭化水素相溶性により、他の反応性材料(他のエポキシ類のみならず)と混合され得る。従って、ラジアルハイブリッドエポキシ2を、以下のようにCHVE(ISP社)、及びカチオン性光開始剤UV9380C(GE Silicones社)と配合した。
ラジアルハイブリッドエポキシ2:88.5重量部
CHVE:10重量部
UV9380C:1.5重量部
【0103】
この配合物を、フォトDSCによって解析して、UV硬化の際に高い反応性を有することを見出した。そのフォトDSCのデータが図3に示されている。ピーク発熱量までの時間が0.13分であることを見出し、そして重合のエンタルピーを198J/gと決定した。それは、フォトDSC(〜22mW/cm2のブロードバンド輻射照度)において存在する低い光強度でさえおよそ70%の転化率に相当する。この配合物の硬化したフィルムは、明澄であって、巨視的な相分離を示さず、そのラジアルハイブリッドエポキシとCHVEビニルエーテルの良好な相溶性を示した。
【0104】
実施例22.ラジアルハイブリッドエポキシ5を含むアミン硬化組成物
本発明のハイブリッドエポキシは、当業者に知られた種々の硬化剤を用いて熱的に硬化され得る。例えば、ラジアルハイブリッドグリシジル系のエポキシ5を5重量%ジエチレントリアミン(DETA)と混合し、DSC試験において熱硬化した。その配合物は、10℃/分の速度で加熱したときに、139℃でピークを示す大きな硬化発熱量を呈した。重合のエンタルピーは268J/gであった。これらの結果は、図4に示されている。
【0105】
実施例23.ラジアルハイブリッドエポキシ2の熱的カチオン性硬化
実施例2において記載されるハイブリッド脂環式エポキシを、1重量%Rhodorsil 2074(Rhodia社)と混合して、明澄な配合物を形成した。この混合物をDSCにおいて熱硬化させた(ヨードニウム塩は、光開始剤と同様に、カチオン性熱開始剤として典型的に使用され得る)。図5から理解され得るように、その配合物は、広範な(extensive)カチオン性硬化プロセス(重合のエンタルピーは214J/g)にかけられて、134℃で生じるピーク発熱量を呈した。
【0106】
実施例24.オレフィン‐末端のラジアルハイブリッドコポリマー9の液状マレイミド樹脂とのUV硬化性組成物
本発明に開示されるオレフィン‐末端のハイブリッドラジアルコポリマーは、当業者に自明の種々の方法において反応性樹脂として使用され得る。従って、通常のラジカル又はカチオン性の熱開始剤又は光開始剤が、これらの不飽和ハイブリッドコポリマーの重合又は共重合に影響を及ぼすために使用され得る。例えば、種々の「電子に富んだ」(electron-rich)(ドナー)オレフィン(例えばビニルエーテル、ビニルアミド又はスチレン誘導体)が、マレイミド、フマル酸エステル又はマレイン酸エステルのような「電子の少ない」(electron-poor)(アクセプター)オレフィン性材料との有効な光開始された共重合にかけられる。
【0107】
このようにして、実施例9のオレフィン‐末端のラジアルハイブリッドコポリマー9を、米国特許第6,256,530号明細書の実施例Bに記載されるような液状のビスマレイミドの等モル部分(ドナーとアクセプターの二重結合の等しいモル数)及び2重量%の光開始剤Irgacure 651(Ciba Specialty Chemicals社)とブレンドした。この配合物を光色差計(「フォトDSC」)によって解析した。図6において明瞭に理解され得るように、その配合物が、フォトDSC装置に使用される中圧水銀ランプの出力光で照射したときに、迅速な(ピーク発熱量までの時間が0.11分)且つ広範な(光重合のエンタルピーは142J/g)光硬化反応にかけられた。
【0108】
実施例25.オレフィン‐末端のラジアルハイブリッドコポリマー9の液状マレイミド樹脂との熱硬化性組成物
上記の実施例24において議論された「ドナー/アクセプター配合物」は、その光開始剤成分を熱硬化剤で置き換えることによって、難なく熱硬化され得る。従って、光開始剤Irgacure 651を2重量%の過酸化物熱開始剤USP90 MD(Witco社)で置き換え、実施例24におけるものと同様の配合物を作製した。この混合物をDSC装置中で硬化させた。図7から明確に理解され得るように、その配合物が迅速で且つ広範な熱重合反応にかけられた。
【0109】
実施例26.オレフィン‐末端のラジアルハイブリッドコポリマー9の熱的カチオン性硬化
ラジアルハイブリッドコポリマー9を、2重量%のヨードニウム硼酸塩Rhodorsil 2074と配合した。この配合物を、DSC中で熱硬化ざせて、図8に示されるデータを得た(ヨードニウム塩はカチオン性重合の有効な熱(光と同様)開始剤である)。明らかにその配合物が広範に重合され、その重合エンタルピーが386J/gであった。観察されたバイモーダル発熱の原因は、現状では知られていない。
【0110】
実施例27.付加硬化の熱硬化性樹脂(Addition Cure Thermoset)のための架橋剤としてのテトラシラン3の使用
ここで開示されるSiH‐官能性中間体が、ヒドロシリル化硬化の熱硬化系(hydrosilation cure thermoset system)の成分として使用され得る。例えば、テトラシラン1が、ビニルシロキサン樹脂のための架橋剤として利用され得る。以下に詳述される配合物を、DSC(10℃/分の温度上昇速度)によって解析して、それが迅速に且つ広範に硬化することを見出した。解析の結果が図9に示されている。
【0111】
配合:
ビニル‐末端のポリ(ジメチルシロキサン)(DMS‐V05、Gelest社):4.0g(約5.19mmolのビニル官能基)
テトラシラン1:2.4g(約5.19mmolのSiH官能基)
Pt‐Dv触媒溶液:0.01g(50ppmPt,SIP6832.0、Gelest社)
【0112】
配合されると、上記の混合物は、室温で〜15分のコースに渡ってゲル化する。当業者が、触媒、触媒のレベル、抑制剤、及び基本のビニルシロキサンとヒドロシロキサンの樹脂の賢明な選択によって、そのような付加硬化(addition cure)シリコーン系を適正に配合して、広範な種々の硬化プロフィル及び材料特性を取得し得ることが理解される。
【0113】
実施例28.ラジアルハイブリッドエポキシ2を含むUV硬化性コーティング/シーラント
基本のUV硬化性混合物を以下のように配合した。
配合28−1:
ラジアルハイブリッドエポキシ2:8.0g
CHVE(ISP社):2.0g
Rhodorsil 2074(Rhodia社):0.1g
イソプロピルチオキサントン(ITX社):0.05g
【0114】
ドローダウン バーを使用して、5ミル厚さのフィルムを形成した(PTFEコートしたアルミニウム上に)。UV硬化装置Dymax Stationary(UVA線量〜550mJ/cm、100W水銀アークランプ)を使用して、そのフィルムを硬化させて、そのPTFE‐コート基材から取外して固形フィルムを得た。装置Permatran 3/33(Mocon社)を使用して、50℃、相対湿度100%でこのフィルムの湿度遮断特性を測定した。そのフィルムが21.9g・ミル/100インチ・24時の透湿度を呈することを見出した。従って、配合物28−1の樹脂系は、引き続き熱硬化工程を要さない、迅速にUV硬化可能なバリヤーコーティング又はシーラントを開発するための実施可能な出発点である。
【0115】
実施例29.ラジアルハイブリッドエポキシ2を使用する高度に充填されたUV硬化性コーティング/シーラント
以下に記載する樹脂系を次のようなタルク充填剤とブレンドした。
配合29−1:
ラジアルハイブリッドエポキシ2:8.0g
CHVE(ISP社):2.0g
ヨードニウム塩光開始剤9380C(GE Silicones社):0.2g
タルクFDC(Luzenac Americas社):6.7g
【0116】
この樹脂/充填剤系を手で混合し、引き続いて三本ロール練り機に2回通して、充填剤粒子を樹脂成分で確実に湿潤させた。その配合物を簡単に真空脱ガス(圧力〜25トール)した。ドローダウン バーを使用して、5ミル厚さのフィルムを形成した(PTFEコートしたアルミニウム上に)。UV硬化ユニットDymax Stationary(UVA線量〜550mJ/cm、100W水銀アークランプ)を使用して、そのフィルムを硬化させて、そのPTFE‐コート基材から取外して、固形フィルムを得た。装置Permatran 3/33(Mocon社)を使用して、50℃、相対湿度100%でこのフィルムの湿度遮断特性を測定した。そのフィルムが12.1g・ミル/100インチ・24時の透湿度を呈することを見出した。この基本の配合物の水蒸気透過性は、有機発光ダイオード(OLED)デバイスのための商業的に入手可能な周囲シーラントの広告上の透過性と同じオーダーにある。この樹脂系の高い反応性により、5ミルの高度に充填されたフィルムの有効UV硬化がかなり効果的であることも注目される。
【0117】
実施例30.接着剤組成物におけるハイブリッドエポキシ‐末端のコポリマーの使用
UV硬化した接着剤適用及び熱硬化した接着剤適用の両方における本発明のハイブリッドエポキシ樹脂の有用性を示すために、以下に示される樹脂系を調製した。
配合30−1:
ラジアルハイブリッドエポキシ2:9.0g
CHVE(ISP社):1.0g
ヨードニウム塩光開始剤9380C(GE Silicones社):0.2g
Cabosil TS−720(Cabot社):0.1g
配合30−2:
Epon 828:10.0g
ヨードニウム塩開始剤9380C(GE Silicones社):0.2g
Cabosil TS−720(Cabot社):0.1g
【0118】
両方の配合物を使用して、4mm×4mmの石英ダイと硼珪酸塩ガラス基材の間に〜1ミル厚みの接着剤層を形成した。各々の配合物について、全てのサンプルを石英ガラスダイ(〜550mJ/cmUVA線量、定置硬化装置Dymax、100WHgアークランプ)によりUV硬化させた。この最初のUV硬化の後に、4つの配合物に関する半分のサンプルを70℃10分間で熱アニールし、他の半分のサンプルを175℃で1時間熱硬化させた。そのサンプル類の接着特性を、Royceせん断試験装置を用いて評価した。室温で行ったせん断試験の結果が、表5に示されている。報告されているデータは、4回以上の試験の平均である。
【0119】
【表5】

【0120】
通常のエポキシ系樹脂Epon 828(実質上、ビスフェノールAのジグリシジルエーテル)に基づく対照の接着剤系として、配合物30−2を解析しても良い。表5に見られるデータから、ラジアルハイブリッドエポキシ樹脂2が、Epon 828の対照に比較して、UV硬化及び70℃での簡単なアニールの後に高い強度を呈している。これは、前の実施例においても記載されたハイブリッドエポキシ2によって発揮される迅速なUV硬化速度と転化率によるものである。この迅速で比較的広範なUV硬化が、このハイブリッド樹脂又は類似のハイブリッド樹脂に基づく接着剤を早く開発するための良好な接着強さと凝集強さを可能にする。175℃で1時間の充分な熱硬化後に収集されたせん断強さのデータによって示されるように、Epon 828系の配合物30−2が、最終的にハイブリッドエポキシ系の配合物30−1よりも高いせん断強さを呈する。逆に、配合物30−1も、より長い熱硬化サイクルの後に非常に高いせん断強さを生じること、及びこのレベルのせん断強さが広範囲な種々の接着剤用途にかなり許容可能であることが明らかである。
【図面の簡単な説明】
【0121】
【図1】UV硬化ラジアルハイブリッドエポキシ2のフォトDSCである。
【図2】EPON 828の促進UV硬化のフォトDSCである。
【図3】ハイブリッドエポキシ/ビニルエーテルブレンドのフォトDSCである。
【図4】アミン硬化されたラジアルハイブリッドエポキシ5のDSCである。
【図5】カチオン性硬化されたラジアルハイブリッドエポキシ2のDSCである。
【図6】UV硬化された液体状マレイミド樹脂とラジアルハイブリッドコポリマー9のフォトDSCである。
【図7】熱硬化された液体状マレイミド樹脂とラジアルハイブリッドコポリマー9のDSCである。
【図8】ハイブリッドコポリマー9の熱的カチオン性硬化のフォトDSCである。
【図9】ラジアルシラン3を用いる付加硬化シリコーンのDSCである。

【特許請求の範囲】
【請求項1】
以下の構造を有するエポキシ‐末端の有機/無機ハイブリッドコポリマーであって、
【化1】

そこでは、nが1〜100であり、qが1〜20であり、コアーが有機単位であり、ブロックAがシラン単位、シロキサン単位又はそれらの混合物のような無機単位であり、ブロックBが有機単位であり、そしてRがアルキル又はHであって、一つ以上のR基が環構造の一部であっても良く、そしてqが1又は2である場合に、前記ブロックBがその主鎖中にエーテル官能性を含まないものである、コポリマー。
【請求項2】
qが3〜20である、請求項1に記載のコポリマー。
【請求項3】
qが3〜6である、請求項2に記載のコポリマー。
【請求項4】
nが1〜5である、請求項1に記載のコポリマー。
【請求項5】
前記コアーが、複数の不飽和置換基を備える炭化水素部分から成る群から得られるものである、請求項1に記載のコポリマー。
【請求項6】
前記コアーが、テトラアリルビスフェノールA;2,5‐ジアリルフェノールアリルエーテル;トリメチロールプロパントリアリルエーテル;ペンタエリトリトールテトラアリルエーテル;トリアリルイソシアヌレート;トリアリルシアヌレート;及びそれらの混合物から成る群から得られるものである、請求項5に記載のコポリマー。
【請求項7】
qが2であり、前記コアーがジアリルビスフェノールA;1,4‐ジビニルベンゼン;又は1,3‐ジビニルベンゼンである、請求項1に記載のコポリマー。
【請求項8】
前記ブロックBが、線状又は分岐状のアルキル単位、ヘテロ原子を含む線状又は分岐状のアルキル単位、シクロアルキル単位、ヘテロ原子を含むシクロアルキル単位、芳香族単位、置換された芳香族単位、ヘテロ芳香族単位、又はそれらの混合物から成るものである、請求項1に記載のコポリマー。
【請求項9】
前記ブロックBが、1,3‐ビス(アルファメチル)スチレン;ジシクロペンタジエン;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン;5‐ビニル‐2‐ノルボルネン;2,5‐ノルボルナジエン;ビニルシクロへキセン;1,3‐ブタジエン;1,5‐ヘキサジエン;エチレン又はそれらの混合物から成る群から得られるものである、請求項8に記載のコポリマー。
【請求項10】
前記ブロックAが、1,1,3,3‐テトラメチルジシロキサン;1,1,3,3,5,5‐ヘキサメチルトリシロキサン;1,1,3,3,5,5,7,7‐オクタメチルテトラシロキサン;ビス(ジメチルシリル)エタン(1,1,4,4‐テトラメチルジシルエチレン);1,4‐ビス(ジメチルシリル)ベンゼン;1,3‐ビス(ジメチルシリル)ベンゼン;1,2‐ビス(ジメチルシリル)ベンゼン及びそれらの混合物から成る群から得られるものである、請求項1に記載のコポリマー。
【請求項11】
前記ブロックBが、ジアリルエーテル;ビスフェノールAジアリルエーテル;1,3‐ビス(アルファメチル)スチレン;ジシクロペンタジエン;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン;5‐ビニル‐2‐ノルボルネン;2,5‐ノルボルナジエン;ビニルシクロへキセン;1,3‐ブタジエン;1,5‐ヘキサジエン;エチレン又はそれらの混合物から成る群から得られるものである、請求項2に記載のコポリマー。
【請求項12】
前記エポキシ末端基が、不飽和エポキシ化合物のヒドロシリル化から得られるものである、請求項1に記載のコポリマー。
【請求項13】
前記エポキシ末端基が、ビニルシクロへキセンオキシド、アリルグリシジルエーテル、3,4‐エポキシブテン、リモネンモノ‐オキシド又はそれらの混合物から成る群から得られるものである、請求項12に記載のコポリマー。
【請求項14】
請求項1に記載のコポリマーを含む物質の組成物。
【請求項15】
光硬化性、電子ビーム硬化性又は熱硬化性である、請求項14に記載の組成物。
【請求項16】
接着剤、シーラント、コーティング、或いは有機発光ダイオードのためのシーラント又は封入剤を含む、請求項14に記載の組成物。
【請求項17】
以下の構造を有するラジアルSiH‐末端の有機/無機ハイブリッドコポリマーであって、
【化2】

そこでは、nが0〜100であり、qが3〜20であり、コアーが有機単位であるように特定され、ブロックAがシラン単位、シロキサン単位又はそれらの混合物のような無機単位であって、その最後の単位がSiH末端を構成するものであり、そしてブロックBが有機単位である、コポリマー。
【請求項18】
qが3〜6である、請求項17に記載のコポリマー。
【請求項19】
nが0〜5である、請求項17に記載のコポリマー。
【請求項20】
前記コアーが、複数の不飽和置換基を備える芳香族炭化水素部分から成る群から得られるものである、請求項17に記載のコポリマー。
【請求項21】
前記コアーが、テトラアリルビスフェノールA;2,5‐ジアリルフェノールアリルエーテル;トリメチロールプロパントリアリルエーテル;ペンタエリトリトールテトラアリルエーテル;トリアリルイソシアヌレート;トリアリルシアヌレート;及びそれらの混合物から成る群から得られるものである、請求項17に記載のコポリマー。
【請求項22】
前記ブロックBが、線状又は分岐状のアルキル単位、ヘテロ原子を含む線状又は分岐状のアルキル単位、シクロアルキル単位、ヘテロ原子を含むシクロアルキル単位、芳香族単位、置換された芳香族単位、ヘテロ芳香族単位、又はそれらの混合物から成るものである、請求項17に記載のコポリマー。
【請求項23】
前記ブロックBが、1,3‐ビス(アルファメチル)スチレン;ジシクロペンタジエン;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン;5‐ビニル‐2‐ノルボルネン;2,5‐ノルボルナジエン;ビニルシクロへキセン;1,3‐ブタジエン;1,5‐ヘキサジエン;ジアリルエーテル;ビスフェノールAジアリルエーテル;エチレン及びそれらの混合物から成る群から得られるものである、請求項22に記載のコポリマー。
【請求項24】
前記ブロックAが、1,1,3,3‐テトラメチルジシロキサン;1,1,3,3,5,5‐ヘキサメチルトリシロキサン;1,1,3,3,5,5,7,7‐オクタメチルテトラシロキサン;ビス(ジメチルシリル)エタン(1,1,4,4‐テトラメチルジシルエチレン);1,4‐ビス(ジメチルシリル)ベンゼン;1,3‐ビス(ジメチルシリル)ベンゼン;1,2‐ビス(ジメチルシリル)ベンゼン及びそれらの混合物から成る群から得られるものである、請求項17に記載のコポリマー。
【請求項25】
請求項17に記載のコポリマーを含む物質の組成物。
【請求項26】
光硬化性、電子ビーム硬化性又は熱硬化性である、請求項25に記載の組成物。
【請求項27】
接着剤、シーラント、コーティング、或いは有機発光ダイオードのためのシーラント又は封入剤を含む、請求項25に記載の組成物。
【請求項28】
以下の構造を有するオレフィン‐末端のハイブリッドコポリマーであって、
【化3】

そこでは、nが1〜100であり、qが3〜20であり、コアーが有機単位であり、ブロックBが有機単位であり、ブロックAがシラン単位、シロキサン単位又はそれらの混合物のような無機単位であり、そしてRがアルキル又はHとして特定され、一つ以上のR基が環構造の一部であっても良いものである、コポリマー。
【請求項29】
qが3〜6である、請求項28に記載のコポリマー。
【請求項30】
nが1〜5である、請求項28に記載のコポリマー。
【請求項31】
前記コアーが、複数の不飽和置換基を備える芳香族炭化水素部分から成る群から得られるものである、請求項28に記載のコポリマー。
【請求項32】
前記コアーが、テトラアリルビスフェノールA;2,5‐ジアリルフェノールアリルエーテル;トリメチロールプロパントリアリルエーテル;ペンタエリトリトールテトラアリルエーテル;トリアリルイソシアヌレート;トリアリルシアヌレート;及びそれらの混合物から成る群から得られるものである、請求項31に記載のコポリマー。
【請求項33】
前記ブロックBが、線状又は分岐状のアルキル単位、ヘテロ原子を含む線状又は分岐状のアルキル単位、シクロアルキル単位、ヘテロ原子を含むシクロアルキル単位、芳香族単位、置換された芳香族単位、ヘテロ芳香族単位、又はそれらの混合物から成るものである、請求項28に記載のコポリマー。
【請求項34】
前記ブロックBが、1,3‐ビス(アルファメチル)スチレン;ジシクロペンタジエン;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン;5‐ビニル‐2‐ノルボルネン;2,5‐ノルボルナジエン;ビニルシクロへキセン;1,3‐ブタジエン;1,5‐ヘキサジエン;ジアリルエーテル;ビスフェノールAジアリルエーテル;エチレン及びそれらの混合物から成る群から得られるものである、請求項33に記載のコポリマー。
【請求項35】
前記ブロックAが、1,1,3,3‐テトラメチルジシロキサン;1,1,3,3,5,5‐ヘキサメチルトリシロキサン;1,1,3,3,5,5,7,7‐オクタメチルテトラシロキサン;ビス(ジメチルシリル)エタン(1,1,4,4‐テトラメチルジシルエチレン);1,4‐ビス(ジメチルシリル)ベンゼン;1,3‐ビス(ジメチルシリル)ベンゼン;1,2‐ビス(ジメチルシリル)ベンゼン及びそれらの混合物から成る群から得られるものである、請求項30に記載のコポリマー。
【請求項36】
請求項28に記載のコポリマーを含む物質の組成物。
【請求項37】
光硬化性、電子ビーム硬化性又は熱硬化性である、請求項36に記載の組成物。
【請求項38】
接着剤、シーラント、コーティング、或いは有機発光ダイオードのためのシーラント又は封入剤を含む、請求項36に記載の組成物。
【請求項39】
以下の構造を有するエポキシ‐末端のハイブリッドコポリマーであって、
【化4】

そこでは、nが1〜100であり、qが1〜20であり、コアーが無機単位であり、ブロックCが有機単位であり、ブロックDがシラン単位、シロキサン単位又はそれらの混合物のような無機単位であり、Rがアルキル又はHとして特定され、一つ以上のR基が環構造の一部であっても良く、そしてqが1又は2である場合に、ブロックCがその主鎖中にエーテル官能性を含まないものである、コポリマー。
【請求項40】
qが3〜20である、請求項39に記載のコポリマー。
【請求項41】
qが3〜6である、請求項40に記載のコポリマー。
【請求項42】
nが1〜5である、請求項39に記載のコポリマー。
【請求項43】
前記コアーが、1,3,5,7‐テトラメチルシクロテトラシロキサン(D');テトラキス(ジメチルシロキシ)シラン;オクタキス(ジメチルシロキシ)オクタプリスモシルセクイオキサン;及びそれらの混合物から成る群から得られるものである、請求項39に記載のコポリマー。
【請求項44】
前記ブロックCが、1,3‐ビス(アルファメチル)スチレン;ジシクロペンタジエン;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン;5‐ビニル‐2‐ノルボルネン;2,5‐ノルボルナジエン;ビニルシクロへキセン;1,3‐ブタジエン;1,5‐ヘキサジエン;ジアリルエーテル;ビスフェノールAジアリルエーテル;エチレン及びそれらの混合物から成る群から得られるものである、請求項41に記載のコポリマー。
【請求項45】
前記ブロックDが、1,1,3,3‐テトラメチルジシロキサン;1,1,3,3,5,5‐ヘキサメチルトリシロキサン;1,1,3,3,5,5,7,7‐オクタメチルテトラシロキサン;ビス(ジメチルシリル)エタン(1,1,4,4‐テトラメチルジシルエチレン);1,4‐ビス(ジメチルシリル)ベンゼン;1,3‐ビス(ジメチルシリル)ベンゼン;1,2‐ビス(ジメチルシリル)ベンゼン及びそれらの混合物から成る群から得られるものである、請求項39に記載のコポリマー。
【請求項46】
請求項39に記載のコポリマーを含む物質の組成物。
【請求項47】
光硬化性、電子ビーム硬化性又は熱硬化性である、請求項46に記載の組成物。
【請求項48】
接着剤、シーラント、コーティング、或いは有機発光ダイオードのためのシーラント又は封入剤を含む、請求項46に記載の組成物。
【請求項49】
以下のものを含む群から選択される構造を有するハイブリッドコポリマーであって、
【化5】

【化6】

そこでは、オレフィン末端コポリマーに関してnが0〜100であり、SiH末端コポリマーに関してnが1〜100であり、qが3〜20であり、コアーが無機単位であり、ブロックCが有機単位であり、ブロックDがシラン単位、シロキサン単位又はそれらの混合物のような無機単位であり、そしてRがアルキル又はHとして特定され、一つ以上のR基が環構造の一部であっても良いものである、コポリマー。
【請求項50】
qが3〜6である、請求項49に記載のコポリマー。
【請求項51】
SiH末端コポリマーに関してnが1〜5であり、オレフィン末端コポリマーに関してnが0〜5である、請求項49に記載のコポリマー。
【請求項52】
前記コアーが、1,3,5,7‐テトラメチルシクロテトラシロキサン;テトラキス(ジメチルシロキシ)シラン(D');オクタキス(ジメチルシロキシ)オクタプリスモシルセクイオキサン;及びそれらの混合物から成る群から得られるものである、請求項49に記載のコポリマー。
【請求項53】
前記ブロックCが、1,3‐ビス(アルファメチル)スチレン;ジシクロペンタジエン;1,4‐ジビニルベンゼン;1,3‐ジビニルベンゼン;5‐ビニル‐2‐ノルボルネン;2,5‐ノルボルナジエン;ビニルシクロへキセン;1,3‐ブタジエン;1,5‐ヘキサジエン;ジアリルエーテル;ビスフェノールAジアリルエーテル;エチレン及びそれらの混合物から成る群から得られるものである、請求項49に記載のコポリマー。
【請求項54】
前記ブロックDが、1,1,3,3‐テトラメチルジシロキサン;1,1,3,3,5,5‐ヘキサメチルトリシロキサン;1,1,3,3,5,5,7,7‐オクタメチルテトラシロキサン;ビス(ジメチルシリル)エタン(1,1,4,4‐テトラメチルジシルエチレン);1,4‐ビス(ジメチルシリル)ベンゼン;1,3‐ビス(ジメチルシリル)ベンゼン;1,2‐ビス(ジメチルシリル)ベンゼン及びそれらの混合物から成る群から選択されるものである、請求項51に記載のコポリマー。
【請求項55】
請求項49に記載のコポリマーを含む物質の組成物。
【請求項56】
光硬化性、電子ビーム硬化性又は熱硬化性である、請求項55に記載の組成物。
【請求項57】
接着剤、シーラント、コーティング、或いは有機発光ダイオードのためのシーラント又は封入剤を含む、請求項55に記載の組成物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公表番号】特表2006−511664(P2006−511664A)
【公表日】平成18年4月6日(2006.4.6)
【国際特許分類】
【出願番号】特願2004−565245(P2004−565245)
【出願日】平成15年12月8日(2003.12.8)
【国際出願番号】PCT/US2003/038875
【国際公開番号】WO2004/060976
【国際公開日】平成16年7月22日(2004.7.22)
【出願人】(502154670)ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレーション (18)
【Fターム(参考)】