説明

カーボン・ナノチューブを浸出したファイバを含む組成物

【課題】カーボン・ナノチューブを浸出したファイバを提供する。
【解決手段】 本発明のカーボン・ナノチューブを浸出したファイバを含む組成物は、
(a)複数のフィラメントを有する母材であるファイバと、(b)前記母材であるファイバに共有結合されたカーボン・ナノチューブと、を有する。本発明の組成物は、(c)レジンをさらに含む。前記母材であるファイバは、ファイバ・トウを含む。前記母材であるファイバは、サイジング材料を含まないファイバである。前記カーボン・ナノチューブを浸出したファイバの電気抵抗率は、前記母材であるファイバのそれより低い。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カーボン・ナノチューブを浸出したファイバに関する。
【背景技術】
【0002】
ファイバは、様々な分野でそして様々なアプリケーションで使用されている。例えば、飛行機、娯楽、工業・輸送業で使用されている。これらのアプリケーションあるいは他のアプリケーションで通常使用されるファイバは、セルロース系ファイバ(例、ビスコースレーヨン、コットン等)、グラス・ファイバ、カーボン・ファイバ、アラミド・ファイバである。
【0003】
多くのファイバを含む製品においては、ファイバは、合成材料(例、ファイバグラス)の形態で使用される。合成材料は複数の構成要素の組み合わせである。この構成要素は、肉眼で見えるスケールで、その形態および組成が異なる。合成材料は、その構成要素単独では示さない特性を示すが、構成要素自体は、独自の物理的な特徴と化学的な特徴をその合成物内に保持する。
【0004】
合成物の2つの主要構成要素は、強化材とレジン・マトリックスである。ファイバベースの合成物においては、ファイバは強化材である。レジン・マトリックスは、ファイバを所望の場所と方向に保持し、合成物内でファイバの間の負荷伝達媒体として機能する。
【0005】
ファイバは、ある種の特性で特徴づけられる。例えば、機械的強度、密度、電気抵抗率、熱伝導率等である。ファイバは、それらの特徴的な特性(特にその強度に関連した特性)を合成物に「貸し出す」。それ故に、ファイバは、所定のアプリケーションに対し合成物の適応性を決定するのに重要な役割を果たす。
【発明の概要】
【発明が解決しようとする課題】
【0006】
合成物内のファイバの特性の利点を実現するためには、ファイバとマトリックスとの間の良好なインターフェース(界面)が必要である。これは、表面コーティング(通常「サイジング(sizing)」と称する)を使用することにより達成できる。サイジングは、ファイバとレジン・マトリックスの間に、重要な物理−化学的リンク(結合)を提供し、合成物の機械的特性と化学的特性に重要な影響を及ぼす。サイジングは、製造中のファイバに適用される。
【0007】
従来のサイジングは、それが適用されるファイバよりも低い界面強度(interfacial strength)しか有さない。その結果、サイジングの強度と界面応力(interfacial stress)に耐える力が、合成物全体の強度を決定してしまう。言い換えると、従来のサイジングを使用すると、その結果得られた合成物は、ファイバ自体の強度以上の強度を得ることができない。
【課題を解決するための手段】
【0008】
本発明の一実施例は、カーボン・ナノチューブを浸出したファイバ(carbon nanotube-infused fiber)である。
【0009】
本明細書に開示したカーボン・ナノチューブを浸出したファイバにおいては、カーボン・ナノチューブは母材であるファイバに「浸出される(infused)」。本明細書において、用語「浸出された/された(infused)」とは、物理的または化学的に結合することを意味する。「浸出(infusion)」とは、物理的結合または化学的結合のプロセスを意味する。カーボン・ナノチューブと母材であるファイバとの間の物理的結合は、少なくとも一部はファン・デル・ワールス力(van der Waals forces:分子間の引力;分子間の距離の6乗に反比例する力)に起因すると考えられている。カーボン・ナノチューブと母材であるファイバとの間の化学的結合は、共有結合(covalent bond: 2個の原子が電子対を共有することにより生成する化学結合)と考えられている。
【0010】
結合の真の性質にもかかわらず、カーボン・ナノチューブと母材であるファイバとの間に形成される結合は、極めて強固で、カーボン・ナノチューブの特性あるいは性質を表すカーボン・ナノチューブを浸出したファイバの効果である。これは、従来のプロセスとは極めて対照的である。従来のプロセスにおいては、カーボン・ナノチューブは、溶剤溶液中に縣濁/延展され、手作業でファイバに付着される。既に形成されたカーボン・ナノチューブ間のファン・デル・ワールス力が強いために、カーボン・ナノチューブを引き離して、ファイバに直接適用することは極めて困難である。その結果、塊となったナノチューブは、ファイバに弱くしか固着せず、そのカーボン・ナノチューブの特性は、余り表れないかあるいは全く表れない。
【0011】
本発明においては、浸出されたカーボン・ナノチューブは、従来の「サイジング(sizing)」に変わるものとして機能する。浸出されたカーボン・ナノチューブは、分子的に遥かに強力で、従来のサイジング材料よりも物理的な特性の観点からも遥かに強力でる。さらに浸出されたカーボン・ナノチューブは、合成材料中のファイバとマトリックス間のインターフェースを改善し、より一般的には、ファイバとファイバ間のインターフェースを改善する。
【0012】
本明細書に開示したカーボン・ナノチューブを浸出したファイバその物は、次の点で合成材料と類似する。即ちその特性は、母材であるファイバの特性と浸出されたカーボン・ナノチューブの特性の組み合わせである。従って、本発明の一実施例は、所望の特性を、この様な特性あるいはプロセスを本来有さないファイバに、加える方法を提供する。その為、ファイバは、特定のアプリケーションの要件を満たすよう仕立てられる。かくして、あらゆる種類のファイバの利用性と価値が改善される。
【0013】
本発明の一実施例によるカーボン・ナノチューブを浸出したファイバの形成プロセスおいて、カーボン・ナノチューブは母材であるファイバその物に合成される。カーボン・ナノチューブが母材であるファイバに合成される点が、本発明にとって極めて重要である。そうでない場合には、カーボン・ナノチューブは、高度に絡み合い、浸出現象が発生しないからである。従来技術の観点からすると、浸出されていないカーボン・ナノチューブは、その特性を、母材であるファイバに付与することができない。
【0014】
母材であるファイバは、あらゆる種類のファイバでもよい。例えば、カーボン・ファイバ、グラファイト・ファイバ、金属(例、スチール、アルミニウム)ファイバ、セラミック・ファイバ、金属−セラミック・ファイバ、グラス・ファイバ、セルロース・ファイバ、アラミド・ファイバである。
【0015】
本発明の一実施例においては、カーボン・ナノチューブは、母材であるファイバに合成されるが、これはカーボン・ナノチューブを形成する触媒(例、鉄、ニッケル、コバルトあるいはその組み合わせ)をファイバに適用するあるいは浸出することにより行われる。
【0016】
本発明の一実施例において、カーボン・ナノチューブを浸出するプロセスは、
(A) 母材であるファイバからサイジングを除去するステップと、
(B) カーボン・ナノチューブを形成する触媒を母材であるファイバに適用(例塗布)するステップと、
(C) ファイバをナノチューブが合成できる温度に加熱するステップと、
(D) カーボン・プラズマを、触媒担持した母材であるファイバ(catalyst-laden parent fiber)に噴霧するステップと
を有する。
【0017】
本発明の一実施例においては、浸出されたカーボン・ナノチューブは、単一壁(single wall)のナノチューブである。本発明の一実施例においては、浸出されたカーボン・ナノチューブは、複数壁(multi-wall)のナノチューブである。本発明の一実施例においては、浸出されたカーボン・ナノチューブは、単一壁のナノチューブと複数壁のナノチューブの組み合わせである。単一壁のナノチューブと複数壁のナノチューブの間の特性には差がある。例えば、ファイバの最終使用時においては、一方あるいは他方のナノチューブの合成を支配する。例えば、単一壁のナノチューブは、導電率が極めて高いが、複数壁のナノチューブはそうではない。
カーボン・ナノチューブを形成する方法と技術は、特許文献1に開示されており、同文献に開示したプロセスを本発明に適用可能である。本発明の一実施例においては、アセチレンガスをイオン化して、冷却カーボン・プラズマのジェットを作り出す。このプラズマを、触媒を含んだ母材であるファイバ(catalyst-bearing parent fiber)の方向に向ける。
【先行技術文献】
【特許文献】
【0018】
【特許文献1】米国特許公開第2004/0245088号明細書
【0019】
前述したように、カーボン・ナノチューブは、その特性(例、例外的に強い機械的特性、低・中間電気抵抗率、高熱伝導率)をカーボン・ナノチューブを浸出したファイバに貸し出す(付与する)。その結果、得られたカーボン・ナノチューブを浸出したファイバがこれらの特性を示す程度は、カーボン・ナノチューブが母材であるファイバをカバーする密度と程度に依存する。
【0020】
本発明の一実施例の変形例においては、カーボン・ナノチューブの浸出を用い、フィラメント巻き上げプロセスを改善する。この変形例においては、カーボン・ナノチューブは、ファイバ(例、グラファイト・トウ、グラス・ロービング)上に形成され、そしてレジン・バスを通過させて、レジンを含浸させたカーボン・ナノチューブを浸出したファイバを形成する。レジンを含浸させた後、ファイバをデリバリ・ヘッドにより回転中のマンドレルの表面上に配置する。その後、ファイバを、公知の正確な形態パターンに従って、マンドレル上に巻き上げる。
【0021】
上記のフィラメント巻き上げプロセスは、パイプ、チューブあるいは雄型のモールドにより生成される他の形状である。しかし、本発明のフィラメント巻き上げプロセスにより形成された形状は、従来のフィラメント巻き上げプロセスにより提供される形状とは異なる。具体的には、本明細書においては、この形状はカーボン・ナノチューブを浸出したファイバを含む合成材料から形成される。このような形状は、カーボン・ナノチューブを浸出したファイバにより提供される強度が向上する利点がある。
【0022】
あらゆる種類のファイバを用いて、カーボン・ナノチューブを浸出したファイバを形成することができる。
【0023】
最近では、より広い範囲のレジンと製造プロセスに適用できるカーボン・ファイバの需要がある。サイジング材料は、これらの適合性に対する重要な決定事項である。例えば、サイジングは、シート・モールド化合物(SMCs: sheet molding compounds;これはある種の自動車ボディーのパネルに使用される)における、砕かれたカーボン・ファイバの均一な分布を提供するのに、重要である。
【0024】
カーボン・ファイバの需要とその広い応用にもかかわらず、カーボン・ファイバは、エポキシ・レジンにのみ適合性があるよう、サイジングされたものしか従来はなかった。カーボン・ナノチューブを浸出したカーボン・ファイバは、本明細書に開示した方法により製造され、これらの問題を解決する。これは、浸出したナノチューブでサイジングしたファイバを提供することにより行われる。このファイバは、あらゆる種類のレジンとプロセスと広い適用性を提供する。
【図面の簡単な説明】
【0025】
【図1】本発明の一実施例のカーボン・ナノチューブを浸出したファイバを生成する方法を表す図。
【図2】カーボン・ナノチューブを浸出したファイバを製造する方法を実行するシステムを表す図。
【図3】本発明の一実施例の変形例のフィラメント巻き上げるシステムを表す図。
【発明を実施するための形態】
【0026】
本明細書および特許請求の範囲で使用される用語を以下に定義する。
1.カーディング(Carding):ファイバを開き平たいフィルム状にするプロセス。
2.カーディド・ファイバ(Carded Fibers):カーディングされ開かれた状態のファイバ。
3.クロス(Cloth):ファイバ・ヤーン(糸)のストランドを織って形成した強化材料。
4.連続フィラメント・ストランド(Continuous Filament Strand):多くのフィラメントからなるファイバの一束。ガン・ロービング(gun roving)について用いる時には、糸状のファイバあるいはヤーンを集めた物で、噴霧プロセスのチョッパー・ガン(Chopper gun)を通して供給される。
5.連続ストランド・ロービング(Continuous Strand Roving):噴霧プロセスでチョッパー・ガンを通して供給されるフィラメントの一束。
6.ファブリック(Fabric):ヤーン、ファイバ、フィラメントを織り合わせることにより生成された平面のテキスタイル構造物。
7.ファイバ(Fiber):天然物あるいは人工物のユニットで、ファブリックと他のテキスタイル構造の基本要素。
8.ファイバ配向(Fiber orientation):不織あるいはマット状の積層した状態のファイバの整合物。ファイバの大部分が同一方向にあり、その方向により高い強度を示す。
9.ファイバ・パターン(Fiber Pattern):ラミネートあるいはモールディングされた物の表面上の可視ファイバ;糸のサイズとガラス製クロスの織り方。
10.フィラメント(Filament):無限あるいは極端に長い一本のファイバで、天然(シルク)あるいは人工物である。通常、直径はミクロンレベルであり、人工ファイバは、フィラメント状に伸ばされて、フィラメントのヤーン、ステープル、トウに変換される。
11.フィラメント巻き上げ(Filament Winding):ガラス製フィラメントにレジンを飽和したストランドを回転するマンドレルの周囲に巻くプロセス。
【0027】
12.フィラメント・ヤーン(Filament Yarn):ねじりの有無にかかわらず、組み立てられた連続するフィラメントからなるヤーン。
13.浸出(Infuse):化学結合を形成すること。
14.メール・モールド(Male Mold):部品の凹状表面をモールド表面で正確に規定する凸状モールド。
15.マトリックス(matrix):合生物あるいは積層物の液状成分
16.マンドレル(Mandrel):紙あるいは繊維あるいはレジンを含浸したファイバが巻かれるコアを意味し、これによりパイプ、チューブ、容器を形成し、押し出す場合にはパイプあるいはチューブのダイの中央フィンガ。
17.引き抜き(Pultrusion):「押し出しextrusion」の逆のプロセスで、ロッド、チューブ、永久断面の構造形状を製造する際にレジンを含有したロービングを引き抜くステップ。ロービングとは、レジンを浸したタンクを通した後、ダイを通して引き抜き、所望の断面を形成すること。
18.レジン(Resin):触媒作用させた時に、固体状態に固化する液状ポリマ。
19.ロービング(Roving):ねじられ細くされカーディングされたファイバの軟らかいストランドで、スピニングの準備段階としての異物の供給。
【0028】
20.サイジング(Sizing):フィラメントとマトリックスの間の良好な接着を促進するために、形成直後のフィラメントに適用される表面処理である。これはフィラメントが合成材料中の強化剤として使用されるレベルに応じて形成される。
21.スプレー・アップ(Spray-up):ファイバ、レジン、触媒を同時に噴霧してチョッパー・ガンを用いてモールドにするステップ。
22.ストランド(Strands):ねじらずに1個のコンパクトなユニットに結合された連続するフィラメント/スライバ(Slivers)の主要な一束。これらのフィラメント(通常、51、102あるいは204)は、形成操作の間一体にされる。
23.テープ(Tape):幅の狭い強化繊維あるいはマット。
24.トウ(Tow):ねじらない状態のフィラメントのルーズなストランド。
25.ねじれ(Twist):製造プロセスの間、2個のヤーンが回転する方向と、その回転数に使用される用語。
26.ウォーブン・ロービング・ファブリック(Woven Roving Fabric):ロービング形態で連続するフィラメントから織った重い繊維、通常1平方ヤード当たり18−30オンスの間の重量である。
27.ヤーン(Yarn):テキスタイル、ファイバ、フィラメントあるいはニッティング、ウィービング、ブレイディングあるいはインタートゥワイニングに適した形態の材料の連続するストランドに使用される一般的な用語。
【0029】
上記したように、用語「ファイバ」、「フィラメント」、「ヤーン」は、異なる意味を持つ。しかし本明細書および特許請求の範囲においては、特に指示しない限り、用語「ファイバ」は、一般的に用語の「フィラメント」、「ヤーン」、「トウ」、「ロービング」、「ファブリック」あるいは「ファイバ」そのものを表す。例えば、「カーボン・ナノチューブを浸出したファイバ」は、「カーボン・ナノチューブを浸出したファイバ」のみならず「カーボン・ナノチューブを浸出したフィラメント」、「カーボン・ナノチューブを浸出したトウ」、「カーボン・ナノチューブを浸出したロービング」等の意味を有する。
【0030】
図1は、本発明の一実施例によりカーボン・ナノチューブを浸出したファイバを製造するプロセス100のフローチャートである。
【0031】
プロセス100は、以下のプロセスを含む。
プロセス102:ナノチューブを形成する触媒を母材であるファイバに適用するステップ
プロセス104:母材であるファイバをカーボン・ナノチューブの合成に十分な温度にまで加熱するステップ。
プロセス106:カーボン・プラズマを、触媒を担持した母材であるファイバ(catalyst-laden parent fiber)に噴霧するステップ。
【0032】
カーボン・ナノチューブを母材であるファイバに浸出するために、カーボン・ナノチューブは母材であるファイバの直接合成される。本発明の一実施例において、これはプロセス102により、ナノチューブを形成する触媒を母材であるファイバ上に配置することにより行われる。カーボン・ナノチューブを形成するための適切な触媒は、これに限定されるわけでないが、遷移金属触媒、例えば、鉄、ニッケル、コバルトあるいはそれらの組み合わせである。
【0033】
図2でさらに説明されるように、触媒のナノ−サイズの粒子を含む液状溶液として準備される。合成されたナノチューブの直径は、金属粒子のサイズに関連する。
【0034】
本発明の一実施例において、カーボン・ナノチューブの合成は、プラズマ強化−化学気相堆積法(plasma-enhanced chemical vapor deposition)のプロセスに基づき、高温で行われる。処理温度は、触媒の関数であるが、通常500℃−1000℃の間である。従って、プロセス104は、母材であるファイバをカーボン・ナノチューブの合成を支持する上記の範囲の温度まで加熱する必要がある。
【0035】
プロセス106において、触媒を担持した母材であるファイバに噴霧する。このプラズマは、カーボンを含有するガス(例、アセチレン、エチレン、エタノール)を、イオン化できる電界通過させることにより、生成させる。
【0036】
ナノチューブは、金属触媒のサイトで成長する。強力なプラズマを生成する電界が存在することは、ナノチューブの生成に影響を及ぼす。即ち、成長は電界の方向に従う。プラズマ・スプレーの形状と電界を適宜調整することにより、垂直方向に整合した(即ちファイバに直交する方向に)カーボン・ナノチューブが合成できる。ある条件下においては、プラズマが存在しない場合でも、密集したナノチューブは、垂直方向の成長を維持し、その結果、カーペットあるいはフォレスト(森)に類似するチューブの高密度アレイが形成される。
【0037】
図2は、本発明の一実施例により、カーボン・ナノチューブを浸出したファイバを生成するシステム200を示す。システム200は、ファイバ送出引っ張りステーション202と、ファイバ延展ステーション208と、サイジング除去ステーション210と、カーボン・ナノチューブ浸出ステーション212と、ファイバ結束ステーション222と、ファイバ巻き上げボビン224とを有する。それらは図2に示したように配置される。
【0038】
ファイバ送出引っ張りステーション202は、送出ボビン204と、引っ張り機206とを有する。この送出ボビン204は、ファイバ201をこのプロセスに曝し、ファイバは、引っ張り機206を介して引っ張られる。
【0039】
ファイバ201は、ファイバ延展ステーション208に送られる。このファイバ・延展ステーション208は、ファイバの個々の要素を分離する。即ち、様々な技術と装置を用いてファイバを開く。これは、例えば、ファイバを上下に平坦に引いたり、均一な直径のバーあるいは上下に可変の直径のバーあるいは半径方向に拡張した溝とニーディング(こねる)・ローラを具備する上のバーあるいは振動バーの上で用いられる。ファイバを延展することにより、下流側の操作(触媒の適用、プラズマの適用)の効率が上がるが、これは、より多くのファイバの表面を露出することができるからである。
【0040】
ファイバ送出引っ張りステーション202とファイバ・延展ステーション208は、ファイバ業界で通常用いられているものである。これらは当業者には明らかである。
【0041】
その後、ファイバ201は、サイジング除去ステーション210に移行する。このサイジング除去ステーション210において、ファイバ201上にあるサイジングが除去される。通常この除去は、ファイバからサイジングを焼却除去することにより行われる。
【0042】
様々な種類の加熱手段を、このために用いることができる。例えば、赤外線ヒータあるいはマッフル炉(muffle furnace: 被熱物が火炎に接触するのを避けるために内部に隔壁を設けた加熱炉)等である。非接触な加熱手段が好ましい。本発明の他の実施例においては、サイジングの除去は化学的に行われる。
【0043】
サイジングを焼却除去するのに必要な温度と時間は、(1)サイジング材料(例、シラン:水素化珪素)と(2)母材であるファイバ201の材質(例、ガラス、セルロース誘導体、カーボン)の関数で変わる。通常、焼却除去温度は、650℃が最小である。この温度においては、サイジングの完全焼却除去までには、15分かかる。温度を最小焼却除去温度以上に上げると、焼却除去時間が減る。熱重量分析を用いて、サイジングの最小焼却除去温度を決定できる。
【0044】
いずれの場合においても、サイジングの除去は、カーボン・ナノチューブの浸出プロセスの中で時間のかかるステップである。このため、ある実施例においては、サイジング除去ステーションは、カーボン・ナノチューブの浸出プロセスには含めずに、サイジングの除去は別個に(例えば、並列に)行う。かくして、サイジングのないファイバの在庫を溜めておき、カーボン・ナノチューブの浸出の製造(これにはファイバの除去ステーションを含まない)に用いるために、巻き取っておく。このような実施例においては、サイジングのないファイバは、ファイバ送出引っ張りステーション202内に巻き取っておく。この製造ラインは、サイジングを除去するプロセスを含む製造ラインよりも、高速で動作できる。
【0045】
サイジングのないファイバ205は、カーボン・ナノチューブ浸出ステーション212に送られる。このカーボン・ナノチューブ浸出ステーション212は、図2に示すプロセスとシステムの「心臓部」である。カーボン・ナノチューブ浸出ステーション212は、触媒適用(付与)ステーション214と、ファイバ前加熱ステーション216と、プラズマ・スプレイ・ステーション218と、ファイバ加熱器220とを有する。
【0046】
図2に示すように、サイジングのないファイバ205は、最初に、触媒適用(付与)ステーション214に進む。ある実施例においては、サイジングのないファイバ205は、触媒適用(付与)ステーション214に進む前に、冷却する。
【0047】
本発明の一実施例において、ナノチューブを形成する触媒は、遷移金属のナノメートルサイズ(例、直径が10nm)の粒子の液体溶液である。ナノチューブを合成するのに使用される遷移金属は、鉄、酸化鉄、コバルト、ニッケルあるいはその組み合わせであ。これらの遷移金属の触媒は、様々な業者から市販されている。例えば、米国、ニューハンプシャー州のナシュアにあるフェローテック社(FerroTech in Nashua, NH)である。この液体は、トルエンのような溶剤である。
【0048】
本発明の一実施例において、触媒溶液を、例えば空気スプレイである触媒付与ステーション214でファイバ205上の噴霧する。他の実施例においては、遷移金属触媒は、母材であるファイバ上に、蒸着技術、電解堆積技術、縣濁液に浸漬する技術あるいは他の公知の方法で堆積させる。本発明のさらなる実施例においては、遷移金属触媒は、プラズマ供給原料ガスに、有機金属、金属塩あるいはガス層の移送を促進する他の組成として添加する。触媒は、周囲環境の室温で添加することができる(真空あるいは不活性ガスは必要ない)。
【0049】
その後、触媒担持ファイバ207を、ファイバ予加熱ステーション216で、加熱する。浸出プロセスのために、ファイバが軟化するまで加熱しなければならない。一般的に、ある特定のファイバに対する軟化温度は、文献を参照することにより容易に得られる。この軟化温度が、特定のファイバに対し予め既知でない場合には、実験で容易に決定できる。通常のファイバは、500℃から100℃の範囲の温度に加熱される。様々な種類の加熱要素を、ファイバの予熱器(preheater)として用いることができる。例えば、赤外線ヒータ、マッフル炉等である。
【0050】
予熱後、触媒担持ファイバ207は、最終的に、スプレイ・ノズル218を有するプラズマ・スプレイ・ステーションに送られる。カーボン・プラズマは、例えば、カーボンを含むガス(例、アセチレン、エチレン、エタノール)を、イオン化電界を通すことにより、生成される。このコールド・カーボン・プラズマを、スプレイ・ノズル218を介して、触媒担持ファイバ207の方向に向ける。このファイバは、プラズマを受けるために、スプレイ・ノズルから約1cmの範囲内に配置される。ある実施例においては、ファイバ加熱器220を、プラズマ・スプレイの触媒担持ファイバ207の上に配置し、そのファイバを高温に維持する。
【0051】
カーボン・ナノチューブの浸出プロセスの後、カーボン・ナノチューブを浸出したファイバ209は、ファイバ結束ステーション222で再度束ねられる。この再度束ねる操作は、ファイバの個々のストランドを再度組み合わせる操作であり、ファイバ・延展ステーション208で行われた分離操作の逆の操作である。
【0052】
束ねられたカーボン・ナノチューブを浸出したファイバ209は、貯蔵用にファイバ巻き上げボビン224に巻かれる。その後、カーボン・ナノチューブを浸出したファイバ209は、あらゆるアプリケーション(例えば、合成材料内の強化材料として)で、使用される。
【0053】
上記の操作のある部分は、不活性雰囲気あるいは真空中で行わなければならない。この場合、環境的な分離が必要である。例えば、サイジングでファイバを焼く場合には、ファイバは、環境的にオフ・ガス(off-gas: 化学反応の際に排出される気体)を含むために分離し、酸化作用を阻止しなければならない。さらに浸出プロセスは、不活性ガス(例、窒素、アルゴン等)の下で行い、カーボンの酸化を阻止しなければならない。このためシステム200の一実施例においては、環境的隔離があらゆる操作で行われる。ただし、ファイバの繰り出しプロセスと引っ張り(製造ラインの最初)プロセスとファイバの巻き上げ(製造ラインの最終)プロセスでは、環境的隔離は不要である。
【0054】
図3は、本発明のさらなる実施例を示す。この実施例においては、カーボン・ナノチューブを浸出したファイバは、フィラメント巻き上げシステム300を介して行われるフィラメント巻き上げプロセスの部分操作として行われる。
【0055】
フィラメント巻き上げシステム300は、ファイバ巻糸軸架302と、カーボン・ナノチューブを浸出するセクション226と、レジン・バス328と、フィラメント巻き上げマンドレル332とを有し、これらは図に示すよう配置される。フィラメント巻き上げシステム300の様々な要素は、カーボン・ナノチューブ浸出セクション226を除いて、従来のフィラメント巻き上げプロセスと同様である。図3に示したプロセスとシステムの「心臓部」は、カーボン・ナノチューブを浸出するセクション226である。このカーボン・ナノチューブを浸出するセクション226は、ファイバ・延展ステーション208と、サイジング除去ステーション210と、カーボン・ナノチューブ浸出ステーション212とを有する。
【0056】
ファイバ巻糸軸架302は、複数の送出ボビン204を有する。この送出ボビン204は、母材であるファイバ201A−201Hからなる。母材であるファイバ201A−201Hのねじられていないグループは、まとめて「トウ303」と称する。ここで用語「トウ」とは、グラファイト・ファイバのグループを意味し、用語「ロービング」は、ガラス・ファイバに用いる。また用語「トウ」は一般的にあらゆる種類のファイバを意味する。
【0057】
本発明の一実施例において、ファイバ巻糸軸架302は、スプールである送出ボビン204を垂直方向に保持する。各引っ張り機206から出たファイバは、小さな適宜に配置された別のローラ/テンショナー206を通る。このローラ/テンショナー206は、ファイバがファイバ巻糸軸架302から出た時に、方向を変えてカーボン・ナノチューブを浸出するセクション226の方向に向ける。
【0058】
本発明の一実施例においては、フィラメント巻き上げシステム300で用いられる巻き上げられたファイバは、カーボン・ナノチューブを浸出したファイバ(即ち、システム200により生成されたファイバ)である。この実施例においては、フィラメント巻き上げシステム300は、カーボン・ナノチューブを浸出するセクション226なしでも機能する。
【0059】
カーボン・ナノチューブ浸出セクション226において、トウ303が開かれ、サイジングが除去され、ナノチューブを構成する触媒が適用(塗布)され、トウが加熱され、カーボン・プラズマがファイバ上に噴霧される。これは図2に説明したのと同様である。
【0060】
カーボン・ナノチューブ浸出セクション226を通過した後、カーボン・ナノチューブを浸出したトウ307は、レジン・バス328に送られる。このレジン・バス328は、レジンを含む。これは、カーボン・ナノチューブを浸出したファイバとレジンを含む合成材料を生成するためである。ある重要な市販されているレジン・マトリックス群は、汎用のポリエステル(例、オルトフタル)と、改良されたポリエステル(例、イソフタル・ポリエステル)と、エポキシと、ビニルエステルである。
【0061】
レジン・バス328は、様々な方法で実現できる。その内の2つの例を以下に説明する。本発明の一実施例においては、レジン・バス328は、ドクター・ブレードのローラ・バスとして実現できる。このバス内に配置された研磨された回転シリンダ(例、シリンダ330)が、回ることによりレジンを引き上げる。ドクター・バー(図3には図示せず)が、シリンダに当たり、フィラメント巻き上げシステム300上に薄いレジンのフィルムを形成し、余剰レジンをバス内に戻す。カーボン・ナノチューブを浸出したトウ307が、シリンダ330のトップに引かれるに連れて、このカーボン・ナノチューブを浸出したトウは、レジン・フィルムに接触し濡れる。本発明の他の実施例においては、レジン・バス328は、浸漬バスで実現できる。この装置においては、カーボン・ナノチューブを浸出したトウ307をレジン・バス内に沈め、その後、余剰レジンを除去するワイパあるいはローラを介して引き上げる。
【0062】
レジン・バス328を出た後、レジンで濡れているカーボン・ナノチューブを浸出したファイバ・トウ309は、様々なリング、アイレット、通常は、マルチ・ピン「コーム(くし)」(図示せず)を通過する。これらは、デリバリ・ヘッド(図示せず)の後方に配置される。コームは、カーボン・ナノチューブを浸出したファイバ・トウ309を分離するが、それらは、後にフィラメント巻き上げマンドレル332上で1本の結合した束の形態で一体化される。
【実施例】
【0063】
カーボン・ナノチューブを浸出したファイバが、本発明の実施例により形成された。電流がカーボン・ファイバ(即ち、母材であるファイバ)に流され、それを約800℃まで加熱して、エポキシのサイジング材料を除去する。その後、ファイバを室温まで冷やし、電極の間にクランプしておく。強磁性流体(ferro-fluid:磁性微粒子を含む液体)触媒をエアゾールの噴霧技術を用いて、ファイバにかける。ファイバが乾燥し、チェンバを閉じ、真空引きされ、アルゴンで充填される。電流がカーボン・ファイバに再び流され、約800℃まで加熱し、カーボン・ナノチューブを合成する。カーボン・プラズマがアセチレン前駆体から、13.56MHzのマイクロ波エネルギを用い、かつ大気圧のプラズマ・ジェットで生成される。プラズマ・ジェット内のキャリア・ガスは、毎分20標準リットル(slm: standard liters per minute)のヘリウムで、アルゴンは1.2slmで提供される。プラズマ・ジェットは、ロボット動作制御システムに固定されて、毎分6−12インチ(毎分15.24−30.48cm)の速度で、ファイバの長さ方向に沿って移動させる。カーボン・ナノチューブを浸出したファイバを、その後、室温まで冷却し、チェンバから取り出す。走査型電子顕微鏡によると、母材であるファイバの表面上にカーボン・ナノチューブの形成が確認された。
【0064】
本明細書において、本発明の一実施例は、必ずしも全て同一の実施例とは限らず、本明細書で述べた特定の構造、特徴、材料等は、少なくともこれらの実施例の一部には含まれるが、必ずしも全ての実施例に含まれているとは限らない。
【0065】
以上の説明は、本発明の一実施例に関するもので、この技術分野の当業者であれば、本発明の種々の変形例を考え得るが、それらはいずれも本発明の技術的範囲に包含される。特許請求の範囲の構成要素の後に記載した括弧内の番号は、図面の部品番号に対応し、発明の容易なる理解の為に付したものであり、発明を限定的に解釈するために用いてはならない。また、同一番号でも明細書と特許請求の範囲の部品名は必ずしも同一ではない。これは上記した理由による。
【符号の説明】
【0066】
100:プロセス
102:ナノチューブを形成する触媒を母材であるファイバに適用する
104:母材であるファイバをカーボン・ナノチューブの合成に十分な温度に加熱する
106:カーボン・プラズマを、触媒を担持した母材であるファイバに噴霧する
200 システム
201 ファイバ
202 ファイバ送出引っ張りステーション
204 送出ボビン
205 サイジングのないファイバ
206 引っ張り機
207 触媒担持ファイバ
208 ファイバ・延展ステーション
209 カーボン・ナノチューブを浸出したファイバ
210 サイジング除去ステーション
212 カーボン・ナノチューブ浸出ステーション
214 触媒付与ステーション
216 ファイバ前加熱ステーション
218 プラズマ・スプレイ・ステーション
220 ファイバ加熱器
222 ファイバ結束ステーション
224 ファイバ巻き上げボビン
226 カーボン・ナノチューブ浸出セクション
300 フィラメント巻き上げステーション
302 ファイバ巻糸軸架
303 トウ
307 カーボン・ナノチューブを浸出したトウ
307 カーボン・ナノチューブを浸出したファイバ・トウ
328 レジン・バス
330 シリンダ
332 フィラメント巻き上げマンドレル

【特許請求の範囲】
【請求項1】
カーボン・ナノチューブを浸出したファイバを含む組成物において、
(a)複数のフィラメントを有する母材であるファイバと、
(b)前記母材であるファイバに共有結合されたカーボン・ナノチューブと、
を有する
ことを特徴とするカーボン・ナノチューブを浸出したファイバを含む組成物。
【請求項2】
(c)レジンをさらに含む
ことを特徴とする請求項1記載の組成物。
【請求項3】
前記母材であるファイバは、ファイバ・トウを含む
ことを特徴とする請求項1記載の組成物。
【請求項4】
請求項1記載の組成物のカーボン・ナノチューブを浸出したファイバは、
(a)カーボン・ナノチューブを形成する触媒を前記複数のフィラメントを有する母材であるファイバの表面上に配置し、前記触媒を担持したファイバを形成するステップと、
(b)前記触媒を担持したファイバを500℃−1000℃の温度に予め加熱するステップと
(c)前記触媒を担持したファイバを500℃−1000℃の温度に維持して移動させながら、前記触媒を担持したファイバでカーボン・ナノチューブを合成するステップと
からなるプロセスで形成される
ことを特徴とする請求項1記載の組成物。
【請求項5】
前記母材であるファイバは、サイジング材料を含まないファイバである
ことを特徴とする請求項1記載の組成物。
【請求項6】
前記カーボン・ナノチューブを浸出したファイバの電気抵抗率は、前記母材であるファイバのそれより低い
ことを特徴とする請求項1記載の組成物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−193105(P2012−193105A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【出願番号】特願2012−105624(P2012−105624)
【出願日】平成24年5月7日(2012.5.7)
【分割の表示】特願2009−544866(P2009−544866)の分割
【原出願日】平成19年12月7日(2007.12.7)
【出願人】(510315249)アプライド ナノストラクチャード ソルーション エルエルシー (1)
【Fターム(参考)】