説明

グルコース脱水素酵素とシトクロームとの融合蛋白質

ピロロキノリンキノングルコース脱水素酵素(PQQGDH)とシトクロームとの融合蛋白質が開示される。PQQGDHとしては、例えば、Acinetobacter calcoaceticus由来の水溶性PQQGDHを用いることができる。シトクロームとしては、例えば、Comamonas testosteroniのキノヘモ蛋白質エタノールデヒドロゲナーゼの電子伝達ドメインを用いることができ
る。本発明の融合蛋白質においては、酸化還元中心のPQQからシトクロームに分子内電子移動が生ずるため、電子メディエータを必要としない直接電子伝達型のグルコースセンサーの製造が可能である。

【発明の詳細な説明】
【技術分野】
本発明はグルコース脱水素酵素とシトクロームとの融合蛋白質、およびこれを用いるグルコースのアッセイに関する。
【背景技術】
血中グルコース濃度は、糖尿病の重要なマーカーとして臨床診断上極めて重要な指標である。また、微生物を用いる発酵生産におけるグルコース濃度の定量がプロセスモニタリングにおいて重要な項目となっている。ピロロキノリンキノンを補酵素とするグルコース脱水素酵素(PQQGDH)はグルコースに対して高い酸化活性を有していること、およびPQQGDHは補酵素結合型の酵素であるため電子受容体として酸素を必要としないことから、グルコースセンサーの認識素子をはじめとして、アッセイ分野への応用が期待されている。
PQQGDHをその表面に固定化した酵素電極を用いてグルコースをアッセイするためには、PQQGDHの酸化還元中心であるPQQから電極に電子を伝達させるために、測定系に電子メディエータを加える必要がある。このため、電子メディエータの安定性や溶解性により電極の特性が制限されたり、夾雑物と電子メディエータとの反応により測定のバックグラウンドが高くなるという欠点がある。さらに電子メディエータはインビボでの使用に適していないため、体内埋込型のグルコースセンサーにおけるPQQGDHの適用が制限されていた。この問題を解決するために、PQQGDHを電子伝達蛋白質とともに電極上に固定化する方法が提案されている(WO02/073181)。しかし、この方法においては大過剰モルの電子伝達蛋白質を用いる必要があるため、コストが高いという難点があった。したがって、当該技術分野においては、電子メディエータを必要としない“直接電子伝達型”のグルコースセンサー用の素子が求められている。
本発明に関連する先行技術文献情報としては以下のものがある:J.Okuda,J.Wakai,N.Yuhashi,K.Sode,Biosensors & Bioelectronics 18(2003)699−704;J.Okuda,J.Wakai,K.Sode,Anal.Lett.35(2002)1465−1478
【発明の開示】
本発明は、電子メディエータを必要としない直接電子伝達型のグルコースセンサーの製造を可能とする改変型PQQGDHを提供することを目的とする。
本発明は、ピロロキノリンキノングルコース脱水素酵素(PQQGDH)とシトクロームとの融合蛋白質を提供する。好ましくは、PQQGDHは、Acinetobacter calcoaceticus由来の水溶性PQQGDHである。
本発明の融合蛋白質においては、シトクロームは、好ましくはPQQGDHのC末端側に融合されている。また好ましくは、シトクロームはシトクロームCまたはシトクロームB562である。特に好ましくは、シトクロームは、1分子中にPQQとヘムの両方を有する蛋白質であるキノヘモ蛋白質に由来するものである。また好ましくは、シトクロームは、キノヘモ蛋白質アルコール脱水素酵素に由来するものである。特に好ましくは、シトクロームは、Comamonas testosteroniのキノヘモ蛋白質エタノールデヒドロゲナーゼの電子伝達ドメインに由来するものである。
また好ましくは、本発明の融合蛋白質は、以下の(a)または(b):
(a)配列番号2に記載されるアミノ酸配列からなる蛋白質;
(b)アミノ酸配列(a)において1もしくはそれ以上のアミノ酸配列が欠失、置換もしくは付加されたアミノ酸配列からなり、かつグルコース脱水素酵素活性および電子伝達機能を有する蛋白質
のいずれかである。
別の観点においては、本発明は、本発明の融合蛋白質をコードする遺伝子、この遺伝子を含むベクターならびに形質転換体を提供する。好ましくは、融合蛋白質をコードする遺伝子は形質転換体の主染色体に組み込まれている。
さらに別の観点においては、本発明は、本発明の融合蛋白質が装着されている酵素電極、ならびにこのような酵素電極を用いることを特徴とするグルコースセンサーを提供する。
本発明はまた、試料中のグルコース濃度を測定する方法であって、
試料を上述の酵素電極と接触させ、そして
グルコースの酸化に伴って発生する電子を測定する、
ことを含む方法を提供する。
本発明の融合蛋白質を用いることにより、電子メディエータを必要としない直接電子伝達型のグルコースセンサーを製造することが可能となる。
【図面の簡単な説明】
図1は、融合蛋白質の構造の例を示す。
図2は、図1に示す融合蛋白質をコードする遺伝子の配列を示す。
図3は、電子受容体存在下における本発明のグルコースセンサーによるグルコース濃度の測定の結果を示す。
図4は、電子受容体非存在下における本発明のグルコースセンサーの応答電流を示す。
図5は、電子受容体非存在下における本発明のグルコースセンサーによるグルコース濃度の測定の結果を示す。
図6は、フロー型グルコースセンサーのフローセル部分の構造の一例を示す。
図7は、本発明の融合蛋白質を利用したフローセル型グルコースセンサーの応答電流を示す。
図8は、本発明の融合蛋白質を利用したフローセル型グルコースセンサーの連続運転の結果を示す。
発明の詳細な説明
融合蛋白質の構造
本発明の融合蛋白質は、PQQGDHとシトクロームとが連結された構造を有しており、必要に応じてこれらの間にリンカー部分が存在していてもよい。
PQQGDHとは、ピロロキノリンキノンを補酵素とするグルコース脱水素酵素であり、グルコースを酸化してグルコノラクトンを生成する反応を触媒する。PQQGDHには、膜結合性酵素と水溶性酵素があることが知られている。膜結合性PQQGDHは、分子量約87kDaのシングルペプチド蛋白質であり、種々のグラム陰性菌において広く見いだされている。一方、水溶性PQQGDHはAcinetobacter calcoaceticusのいくつかの株においてその存在が確認されており(Biosci.Biotech.Biochem.(1995),59(8),1548−1555)、その構造遺伝子がクローニングされアミノ酸配列が明らかにされている(Mol.Gen.Genet.(1989),217:430−436)。本発明においては、これらのいずれのPQQGDHも用いることができる。
さらに、PQQGDHにおいては、アミノ酸残基の一部が欠失または置換されていてもよく、また他のアミノ酸残基が付加されていてもよい。特定の領域のアミノ酸残基を他のアミノ酸残基で置換することにより、グルコースを酸化する酵素活性を維持したまま、酵素の熱安定性や基質に対する親和性を改良しうることが明らかにされている(例えば、特開2000−350588、特開2001−197888、特開2000−312588を参照)。本発明の融合蛋白質においては、これらの改変されたPQQGDHを用いてもよい。
シトクロームとは、電子伝達体としての機能を有するヘム蛋白質をいう。とりわけ、蛋白質分子にヘム鉄が一つあるいは複数、共有結合あるいは非共有結合的に結合している蛋白質分子である。種々の生物から、シトクロームb、シトクロームc等の多くの種類のシトクロームが単離同定されており、これらのいずれも本発明において用いることができる。例としては、E.coli B株(Eur.J.Biochem.202(2),309−313(1991))、E.coli K株(Tower,M.K.,Biochem.Biophys.Acta.1143,109−111(1993))Acinetobacter calcoaceticus、Klebsiella pneumoniae、S.typhi、S.typhinulium、K.pneumomiae、Y.pestis、P.multocida、S.pheumoniae等の細菌に由来するシトクロームb562が挙げられる。また、これらのシトクロームから作製されるキメラ蛋白質を用いてもよい。
さらに、電子移動サブユニットまたはヘム含有ドメインを有する酸化還元酵素が知られており、これらの酵素のヘム蛋白質サブユニットまたはヘム蛋白質ドメインも、本発明におけるシトクロームに含まれる。特に、PQQを補酵素とする蛋白質のうち、蛋白質分子中にPQQ以外にヘム鉄を結合しているシトクロームを有するキノヘモ蛋白質のシトクロームドメインも含まれる。さらにキノヘム蛋白質のうち、アルコール脱水素酵素活性を有するキノヘモアルコール脱水素酵素のシトクロームドメインも含まれる。またそのような酸化還元酵素の例としては、エタノールデヒドロゲナーゼおよびオリゴサッカライドデヒドロゲナーゼなどが挙げられる。
特に好ましくは、Comamonastes testosteroniのキノヘムエタノールデヒドロゲナーゼ(QHEDH)のシトクロームcドメインを用いることができる。最近QHEDHの3D構造が明らかにされた(J.Biol.Chem.,277,2002,3727−3732)。QHEDHは2つの異なるドメインから構成される。第1ドメインはPQQ含有触媒ドメインであり、PQQGDHと類似する8枚羽根のβプロペラ構造から構成される。C末端領域に位置する第2ドメインはシトクロームcドメインである。これらのドメインは、ペプチドリンカー領域により分離されている。QHEDHにおいては、酸化還元中心であるPQQから電子受容体であるシトクロームcを介して、呼吸鎖に電子が伝達される。
また、本発明において用いられるシトクロームは、天然のシトクロームの構造の一部が改変されている改変型シトクロームであってもよい。このような改変型シトクロームは、例えば、天然に生ずるシトクロームの1またはそれ以上のアミノ酸残基を他の天然のまたは天然に存在しないアミノ酸残基で置換することにより、あるいは1またはそれ以上のアミノ酸を欠失させるかまたは付加することにより製造することができる。
リンカー部分とは、融合蛋白質中でPQQGDHとシトクロームとを連結する部分である。リンカー部分は、PQQGDHとシトクロームとを、GDH活性が発揮されかつPQQからシトクロームへの電子の効率的な伝達が可能となるように配置させる機能を有する。リンカー部分の配列としては、天然または合成の任意のアミノ酸配列を用いることができる。例えば、PQQGDHまたはシトクロームに由来する適当な配列であってもよく、融合蛋白質をコードする遺伝子を構築するために用いたベクターに由来する配列であってもよい。
融合蛋白質の製造方法
本発明の融合蛋白質は、PQQGDHをコードする遺伝子配列とシトクロームをコードする遺伝子配列とを、必要に応じてリンカー部分を介して、インフレームとなるよう連結させて、これを組換え的に発現させることにより製造することができる。図1は、本発明の融合蛋白質の一例を、図2はこの融合蛋白質をコードする遺伝子の配列を示す。図中、5’側から3’側に、PQQGDHをコードする配列、リンカー部分、およびにシトクロームをコードする配列が連結されている。Acinetobacter calcoaceticus由来の天然の水溶性PQQGDHをコードする遺伝子の配列は、Mol.Gen.Genet.(1989),217:430−436に開示されており、Comamonastes testosteroniのキノヘムエタノールデヒドロゲナーゼ(QHEDH)をコードする遺伝子の配列は、J.Biol.Chem.,277,2002,3727−3732に開示されている。これらの配列を基に、遺伝子操作により融合蛋白質をコードする遺伝子を構築することができる。遺伝子操作のための種々の方法は、当該技術分野においてよく知られている。
このようにして得た融合蛋白質をコードする遺伝子を、遺伝子発現用のベクター(例えばプラスミド)に挿入し、これを適当な宿主(例えば大腸菌)に形質転換する。外来性蛋白質を発現させるための多くのベクター・宿主系が当該技術分野において知られており、宿主としては例えば、細菌、酵母、培養細胞などの種々のものを用いることができる。
融合蛋白質を発現する形質転換体を培養し、培養液から遠心分離などで菌体を回収した後、菌体をフレンチプレスなどで破砕する。これを超遠心分離し、融合蛋白質を含む水溶性画分を得ることができる。あるいは、適当な宿主ベクター系を用いることにより、発現した融合蛋白質を培養液中に分泌させることもできる。得られた水溶性画分を、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、HPLCなどにより精製することにより、本発明の融合蛋白質を調製する。
酵素電極
本発明はまた、本発明にしたがう融合蛋白質が固定化された酵素電極を特徴とする。酵素電極とは、金電極、白金電極、カーボン電極等の電極表面上に酵素が固定化されている電極である。酵素電極は、酵素の反応特異性を利用して、種々の生理活性物質を特異的に検出するバイオセンサーとして広く用いられている。本発明の融合蛋白質は、酵素電極において被検物質(例えばグルコース)の存在を認識し、その酸化還元反応を触媒し、その結果生じる電子を電極に伝達するよう作用する。
酵素電極を作製するためには、電極上に本発明の融合蛋白質を固定化する。固定化方法としては、架橋試薬を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどのポリマー中に固定する方法などがあり、これらを組み合わせて用いてもよい。典型的には、グルタルアルデヒドを用いて本発明の融合蛋白質をカーボン電極上に固定化した後、アミン基を有する試薬で処理してグルタルアルデヒドをブロッキングする。
グルコースセンサー
別の観点においては、本発明は、作用極として上述の本発明の酵素電極を用いることを特徴とするセンサーを提供する。本明細書において用いる場合、センサーとは、目的とする被検物質の濃度を電気化学的に測定する測定系をいい、通常は、作用極(酵素電極)、対極(白金等)、および参照極(Ag/AgCl等)の3電極を含む。あるいは、慣用の簡易血糖値システムにおいて用いられているような、作用極と対極とから構成される2電極系でもよい。センサーはさらに、緩衝液および被検試料を入れる恒温セル、作用極に電圧を印加する電源、電流計、記録計等を含む。センサーは、バッチ型であってもフロー型であってもよい。特にフロー型のセンサーとしては、血糖値を連続で計測できるセンサーであってもよい。すなわち、連続的に供給される血液試料、あるいは同透析試料、あるいは血液中あるいは細胞間質液中に本発明の酵素を固定した二電極系あるいは三電極系を挿入して計測するセンサーであってもよい。このような酵素センサーの構造は、当該技術分野においてよく知られており、例えばBiosensors−Fundamental and Applications−Anthony P.F.Turner,Isao Karube and Geroge S.Wilson,Oxford University Press 1987に記載されている。
本発明の1つの好ましいフロー型センサーのフローセル部分の概略を図6に示す。フローセル1には所定の流速でサンプルを流すための流路が設けられており、適当な緩衝液で希釈した被検物質はサンプル入口20からセルに入り、サンプル出口22から出てサンプルドレインに導かれる。フローセル1には作用極10、対極12、および参照極14が装着されており、作用極10として本発明の酵素電極を用いる。作用極10にはポテンシオスタット(図示せず)により一定の電圧が印加されている。図6では2本の作用極を用いているが、作用極は1本でもよい。
グルコースのアッセイ
本発明のグルコースセンサーを用いるグルコースの濃度の測定は、以下のようにして行うことができる。センサーの恒温セルに緩衝液を入れ、一定温度に維持する。作用電極として本発明の融合蛋白質を固定化した酵素電極を用い、対極としては例えば白金電極を、参照電極としては例えばAg/AgCl電極を用いる。作用極に一定の電圧を印加して、電流が定常になった後、恒温セルにグルコースを含む試料を加えて電流の増加を測定する。標準濃度のグルコース溶液により作製したキャリブレーションカーブに従い、試料中のグルコース濃度を計算することができる。
本明細書において明示的に引用される全ての特許および参考文献の内容は全て本明細書の一部としてここに引用する。また,本出願が有する優先権主張の基礎となる出願である日本特許出願2003−340092号の明細書および図面に記載の内容は全て本明細書の一部としてここに引用する。
【実施例】
以下に実施例により本発明をより詳細に説明するが,これらの実施例は本発明の範囲を制限するものではない。
発現ベクターの構築
PQQGDHの構造遺伝子(停止コドンを含まない)およびQHEDHの電子伝達ドメインは、5’末端に制限酵素認識部位を有するプライマーを用いて、それぞれA.calcoaceticus LMD79.41、およびC.testosteroni ATCC15667のゲノムからPCR法により増幅した。用いたプライマーは以下のとおりである:
gdhB;センス

アンチセンス

qhedhcytcドメイン;センス

アンチセンス

これらのPCR産物を発現ベクターpTrc99A(Amersham Biosciences,Sweden)のマルチクローニングサイトに挿入して、発現ベクターpGBETを調製した。このようにして、PQQGDHのC末端側にリンカー領域を介してQHEDHのシトクロームcドメインが連結された融合遺伝子を構築した(図2)。PQQGDHをコードする配列は大文字で、シトクロームをコードする配列は小文字で示されており、制限酵素認識部位には二重下線が、リンカー領域には下線が施されている。PQQGDHとシトクロームcドメインとの間のリンカー領域は、QHEDHの天然の構造に由来する24アミノ酸残基から構成される。
ヘム含有シトクロームcをE.coli中で発現させるためには,ccm遺伝子の発現が必須であるため、Kmプロモータの制御下にシトクロームcの成熟に必要なccm遺伝子を有するプラスミドpEC86(Professor Linda Toeny−Meyer,ETH Switzerlandより贈与)を用いて、ccmが構成的に発現されるようにした。
pGBETをpEC86とともにE.coliDH5αを形質転換した。融合蛋白質発現ベクターとccm発現ベクターの両方を有する形質転換体はピンク色を呈し、成熟シトクロームcが細胞内で産生されていることが示唆された。
融合蛋白質の発現および精製
形質転換体をMMI培地で半好気条件下で30℃で10時間培養し、菌体を回収して、10mMリン酸カリウム緩衝液(pH7.0)に再懸濁した。これをフレンチプレスで破壊し(110MPa)、超遠心分離(160,500×g,1.5h,4℃)し、上清を10mMリン酸カリウム緩衝液(pH7.0)で透析した。得られた上清を10mMリン酸カリウム緩衝液(pH7.0)で平衡化したResourceSカチオン交換カラム(Amersham Biosciences)に負荷し、5−150mM NaCl/10mMリン酸カリウム緩衝液(pH7.0)の勾配を用いて酵素を溶出した。
精製酵素はSDS−PAGEで約65kDaに1本のバンドを示し、これは融合蛋白質について予測された分子量と一致した。さらにこのバンドは、ヘム染色により染色された。
精製融合蛋白質のUV/Visスペクトルは、波長411nmの酸化型シトクロームcのピークを示した。還元剤であるヒドロ亜硫酸ナトリウムを加えると、融合蛋白質が還元されて、還元型シトクロームcに典型的な416nm,522nmおよび551nmのピークを示した。このことから、融合蛋白質はヘムを有しており、シトクロームcとして機能することが確認された。
次に、PQQとシトクロームcドメインとの間の分子内電子伝達を調べるために、酸化型の融合蛋白質にグルコースを加えた。電子受容体非存在下でグルコース20mMを添加すると、時間とともにシトクロームcのスペクトルが酸化型から還元型に変化した。この結果は、融合蛋白質がGDH活性を有しており、かつ、グルコースの酸化に伴って酸化還元中心であるPQQからシトクロームcに分子内電子移動が生じたことを示す。
酵素活性の測定
酵素活性の測定は10mM MOPS−NaOH緩衝液(pH7.0)中において0.06mMDCIPおよび0.6mMPMSを用いて行った。1分間に1μmolのグルコースを酸化する酵素の活性を1ユニットと定義した。表1に精製酵素の動力学的パラメータを示す。

本発明の融合蛋白質は約3000U/mg蛋白質のGDH活性を有しており、これは野生型PQQGDHの活性の約70%に相当する。また、融合蛋白質のグルコースに対するKm値および基質特異性は、野生型(Biocatal.Biotransform.20,(2002),405−412)のものとほとんど同じであった。
電子受容体存在下におけるグルコース濃度の計測
本発明の融合蛋白質250U(約100μg)あるいは野性型のPQQGDH350Uを、グラッシーカーボン電極上にグルタルアルデヒド蒸気にさらすことで固定した。1mMCaClを含む20mMMOPS緩衝液(pH7.0)に電極を浸し、電子受容体として10mMのフェリシアン化カリウムを用いて、印加電圧+400mV(vsAg/AgCl)にてグルコースに対する応答を測定した。結果を図3に示す。図中、「QH−GDH」は本実施例で作製した融合蛋白質を、「GB WT」は野生型PPQGDHを示す。
この条件においては、野性型PQQGDHを固定した電極ではきわめて小さな応答しかみられず、特に、グルコース濃度0.2mM以上では電子受容体との反応が律速段階となり、応答が飽和した。これに対して、本発明の融合蛋白質を固定した電極では、きわめて大きな応答が得られた。すなわち、野性型酵素固定化電極で飽和したグルコース濃度以上においても、応答のグルコース濃度依存性が見られ、血液中のグルコース濃度である5〜10mM以上においても良好な応答を示した。このことから、本発明の融合蛋白質は、電子受容体と組み合わせることにより、野性型酵素が電子受容体と組み合わせた応答よりも高い応答が達成できることが示された。
電子受容体非存在下におけるグルコース濃度の計測
次に、電子受容体の非存在下において、融合蛋白質が電極に電子を伝達する能力を、野生型酵素と電子伝達蛋白質との混合物と比較して調べた。500ユニットのQH−GDHを含有する20mMMOPS緩衝液(pH7.0)をカーボンペースト(0.5gグラファイト粉末、0.3ml液体パラフィン,BAS Inc.,West Lafayette,USA)とともに混合し、凍結乾燥した。対照としては、野生型PQQGDHと等モルのcytb562またはcytb562と同質量のBSA(牛血清アルブミン)を用いた。次に、凍結乾燥した混合物をカーボンペースト電極の末端に充填した(直径3mm,BAS Inc.)。電極は、使用するまで20mMMOPS緩衝液(pH7.0)中で4℃で保存した。測定は、1mMCaClを含む20mMMOPS緩衝液(pH7.0)中で25℃で行った。+300mVvs.Ag/AgClの電圧を印加して、グルコースの添加に伴う電流値の増加を測定した。
本発明の融合蛋白質を固定化した酵素電極は、グルコースの添加に対する迅速な応答を示し、グルコースを添加してから10秒以内にセンサーシグナルは定常電流に達した(図4)。図中、矢印はグルコースの添加を示す。一方、対照である野生型PQQGDHとcytb562またはBSAを固定化した電極では、電流の増加は観察されなかった。
グルコースアッセイ
種々の濃度のグルコース溶液を用いて、本発明のセンサーのキャリブレーションカーブを求めた(図5)。図中、「QH−GDH」は本実施例で作製した融合蛋白質を、「GBwt」は対照である野生型PQQGDHを表す。観察された電流増加は、最小の検出可能な濃度である0.01mMから5mMまでの濃度範囲で、グルコース濃度に比例していた。さらに、電流応答は酵素量に依存していた。センサーの感度は9.65μAM−cm−であった。
グルコースの連続計測
本発明の融合蛋白質を装着した酵素電極を用いてグルコースの連続計測を行った。この実験は、近年注目されている連続計測型血糖計測システムへの本融合酵素の応用を目的として行ったものである。本システムの構成は、連続計測型血糖計測システムの構成に順ずる。
計測は図6に示すフローセルを用いて行った。フローセル1にはサンプルを流す流路が設けられており、適当な緩衝液で希釈した被検物質はサンプル入口20からセルに入り、サンプル出口22から出てサンプルドレインに導かれる。フローセル1には2本の作用極40、対極12、および参照極14が装着されており、ポテンシオスタット(図示せず)により作用極に一定の電圧が印加されている。750Uの融合蛋白質をカーボンペーストと混合し、グルタルアルデヒドにより架橋した後、作用極の表面に固定した。フローセルには1mMCaClを含む100mMリン酸カリウム緩衝溶液(pH7.0)を連続的に供給した。印加電圧は+300mVvs.Ag/AgCl、流速は0.5ml/分とした。緩衝溶液に450mg/mlを含むグルコース溶液を一定の混合比で供給することにより、酵素電極が装着されたフローセルへ供給する試料中のグルコース濃度を連続的に変化させ、応答電流を測定した。結果を図7に示す。図示されるように、本発明の融合蛋白質を用いたセンサーにより、センサー内の直接電子移動に基づいて、すなわち電子受容体の添加なしに、グルコース濃度を連続的に計測できることが示された。
次に、この連続グルコース計測システムの長期連続運転について検討した。1mMのグルコースを含む試料を流速0.1ml/分でフローセルに連続的に供給したところ、安定した応答がみられ、72時間後においても初期応答値の70%以上の応答がみられた(図8)。このことから、本発明の融合蛋白質を用いた連続グルコース計測システムは3日間以上、連続的に稼動できることが示された。このような特性は、本融合酵素が、近年注目されている連続計測型血糖計測システムに応用した場合に十分な有効性を有することを示すものである。
産業上の利用性
本発明の融合蛋白質、およびこれを利用した酵素電極ならびにバイオセンサーは、血糖値を測定する直接電子伝達型のグルコースセンサーとして有用である。
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】


【特許請求の範囲】
【請求項1】
ピロロキノリンキノングルコース脱水素酵素(PQQGDH)とシトクロームとの融合蛋白質。
【請求項2】
前記PQQGDHがAcinetobacter calcoaceticus由来の水溶性PQQGDHである、請求項1記載の融合蛋白質。
【請求項3】
前記シトクロームが、PQQGDHのC末端側に融合されている、請求項1または2に記載の融合蛋白質。
【請求項4】
前記シトクロームが、シトクロームCまたはシトクロームB562である、請求項1−3のいずれかに記載の融合蛋白質。
【請求項5】
前記シトクロームが、1分子中にPQQとヘムの両方を有する蛋白質であるキノヘモ蛋白質に由来する、請求項1−4のいずれかに記載の融合蛋白質。
【請求項6】
前記シトクロームが、キノヘモ蛋白質アルコール脱水素酵素に由来する、請求項1−5のいずれかに記載の融合蛋白質。
【請求項7】
前記シトクロームが、Comamonas testosteroniのキノヘモ蛋白質エタノールデヒドロゲナーゼに由来する、請求項1−6のいずれかに記載の融合蛋白質。
【請求項8】
以下の(a)または(b):
(a)配列番号2に記載されるアミノ酸配列からなる蛋白質;
(b)アミノ酸配列(a)において1もしくはそれ以上のアミノ酸配列が欠失、置換もしくは付加されたアミノ酸配列からなり、かつグルコース脱水素酵素活性および電子伝達機能を有する蛋白質
のいずれかである、請求項1−7のいずれかに記載の融合蛋白質。
【請求項9】
請求項1−8のいずれかに記載の融合蛋白質をコードする遺伝子。
【請求項10】
請求項9に記載の遺伝子を含むベクター。
【請求項11】
請求項9に記載の遺伝子を含む形質転換体。
【請求項12】
請求項9に記載の遺伝子が主染色体に組み込まれている形質転換体。
【請求項13】
請求項1−8のいずれかに記載の融合蛋白質が装着されている酵素電極。
【請求項14】
試料中のグルコース濃度を測定する方法であって、
試料を請求項13に記載の酵素電極と接触させ、そして
グルコースの酸化に伴って発生する電子を測定する、
ことを含む方法。
【請求項15】
作用極として請求項13記載の酵素電極を用いることを特徴とするグルコースセンサー。

【国際公開番号】WO2005/030807
【国際公開日】平成17年4月7日(2005.4.7)
【発行日】平成19年11月15日(2007.11.15)
【国際特許分類】
【出願番号】特願2005−514308(P2005−514308)
【国際出願番号】PCT/JP2004/014575
【国際出願日】平成16年9月28日(2004.9.28)
【出願人】(596153357)
【Fターム(参考)】