説明

シリコンインゴットの連続鋳造方法

【課題】電磁鋳造法による連続鋳造の際に、チャンバー内で自然対流する雰囲気ガスに起因して、溶融シリコンが金属不純物で汚染されることを防止できるシリコンインゴットの連続鋳造方法を提供する。
【解決手段】チャンバー1内に配置した無底冷却ルツボ7にシリコン原料11を装入し、誘導コイル8からの電磁誘導加熱によりシリコン原料11を融解させ、この溶融シリコン12を冷却ルツボ7から引き下げながら凝固させてシリコンインゴット3を連続鋳造する方法において、チャンバー1の側壁に冷却ルツボ7の上方と下方で開口する配管15が連結され、冷却ルツボ7の上端とチャンバー1の側壁との間に仕切り板16が設けられており、配管15を通じて冷却ルツボ7の上方の雰囲気ガスを冷却ルツボ7の下方に導入しつつ、冷却ルツボ7の下方から上方に流入する雰囲気ガスの流れを仕切り板16によって遮断しながら鋳造を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池用基板の素材であるシリコンインゴットの連続鋳造方法に関する。
【背景技術】
【0002】
近年、CO2排出による地球温暖化問題やエネルギー資源の枯渇問題が深刻化しており、それらの問題の対応策の一つとして、無尽蔵に降りそそぐ太陽光エネルギーを活用する太陽光発電が注目されている。太陽光発電は、太陽電池を使用して太陽光エネルギーを直接電力に変換する発電方式であり、太陽電池の基板には、多結晶のシリコンウェーハを用いるのが主流である。
【0003】
太陽電池用の多結晶シリコンウェーハは、一方向性凝固のシリコンインゴットを素材とし、このインゴットをスライスして製造される。このため、太陽電池の普及を図るには、シリコンウェーハの品質を確保するとともに、コストを低減する必要があり、その前段階で、高品質のシリコンインゴットを安価に製造することが要求される。この要求に対応できる方法として、例えば、特許文献1に開示されるように、電磁誘導を利用した連続鋳造方法(以下、「電磁鋳造法」ともいう)が実用化されている。
【0004】
図1は、電磁鋳造法で用いられる従来の代表的な電磁鋳造装置の構成を模式的に示す図である。同図に示すように、電磁鋳造装置はチャンバー1を備える。チャンバー1は、内部を外気から隔離し鋳造に適した不活性ガス雰囲気に維持する二重壁構造の水冷容器である。チャンバー1の上壁には、開閉可能なシャッター2を介し、図示しない原料供給装置が連結されている。チャンバー1は、上部の側壁に不活性ガス導入口5が設けられ、下部の側壁に排気口6が設けられている。
【0005】
チャンバー1内には、無底冷却ルツボ7、誘導コイル8およびアフターヒーター9が配置されている。冷却ルツボ7は、融解容器としてのみならず、鋳型としても機能し、熱伝導性および導電性に優れた金属(例えば、銅)製の角筒体で、チャンバー1内に吊り下げられている。この冷却ルツボ7は、上部を残して周方向で複数の短冊状の素片に分割され、内部を流通する冷却水によって強制冷却される。
【0006】
誘導コイル8は、冷却ルツボ7を囲繞するように、冷却ルツボ7と同芯に周設され、図示しない電源装置に接続されている。アフターヒーター9は、冷却ルツボ7の下方に冷却ルツボ7と同芯に複数連設され、冷却ルツボ7から引き下げられるシリコンインゴット3を加熱して、その軸方向に適切な温度勾配を与える。
【0007】
また、チャンバー1内には、原料供給装置に連結されたシャッター2の下方に原料導入管10が取り付けられている。シャッター2の開閉に伴って、粒状や塊状のシリコン原料11が原料供給装置から原料導入管10内に供給され、冷却ルツボ7内に装入される。
【0008】
チャンバー1の底壁には、アフターヒーター9の真下に、インゴット3を抜き出すための引出し口4が設けられ、この引出し口4はガスでシールされている。インゴット3は、引出し口4を貫通して下降する支持台14によって支えられながら引き下げられる。
【0009】
冷却ルツボ7の真上には、プラズマトーチ13が昇降可能に設けられている。プラズマトーチ13は、図示しないプラズマ電源装置の一方の極に接続され、他方の極は、インゴット3側に接続されている。このプラズマトーチ13は、下降させた状態で冷却ルツボ7内に挿入される。
【0010】
このような電磁鋳造装置を用いた電磁鋳造法では、冷却ルツボ7にシリコン原料11を装入し、誘導コイル8に交流電流を印加するとともに、下降させたプラズマトーチ13に通電を行う。このとき、冷却ルツボ7を構成する短冊状の各素片が互いに電気的に分割されていることから、誘導コイル8による電磁誘導に伴って各素片内で渦電流が発生し、冷却ルツボ7の内壁側の渦電流が冷却ルツボ7内に磁界を発生させる。これにより、冷却ルツボ7内のシリコン原料11は電磁誘導加熱されて融解し、溶融シリコン12が形成される。また、プラズマトーチ13とシリコン原料11、さらには溶融シリコン12との間にプラズマアークが発生し、そのジュール熱によっても、シリコン原料11が加熱されて融解し、電磁誘導加熱の負担を軽減して効率良く溶融シリコン12が形成される。
【0011】
溶融シリコン12は、冷却ルツボ7の内壁の渦電流に伴って生じる磁界と、溶融シリコン12の表面に発生する電流との相互作用により、溶融シリコン12の表面の内側法線方向に力(ピンチ力)を受けるため、冷却ルツボ7と非接触の状態に保持される。冷却ルツボ7内でシリコン原料11を融解させながら、溶融シリコン12を支える支持台14を徐々に下降させると、誘導コイル8の下端から遠ざかるにつれて誘導磁界が小さくなることから、発熱量およびピンチ力が減少し、さらに冷却ルツボ7からの冷却により、溶融シリコン12は外周部から凝固が進行する。そして、支持台14の下降に伴ってシリコン原料11を連続的に装入し、融解および凝固を継続することにより、溶融シリコン12が一方向に凝固し、インゴット3を連続して鋳造することができる。
【0012】
連続鋳造中は、チャンバー1内を不活性ガス雰囲気に維持するため、チャンバー1の上部側壁の不活性ガス導入口5から不活性ガスが逐次供給され、チャンバー1内に充満する。チャンバー1内の不活性ガスは、チャンバー1の下部側壁の排気口6から逐次排出される。このとき、プラズマトーチ13からのプラズマアークにより溶融シリコン12からSiO(シリコン酸化物)が激しく蒸発しており、このSiOガスは不活性ガスとともに排気口6から排出される。
【0013】
このような電磁鋳造法によれば、溶融シリコン12と冷却ルツボ7との接触が軽減されるため、その接触に伴う冷却ルツボ7からの不純物汚染が防止され、高品質のインゴット3を得ることができる。しかも、連続鋳造であることから、安価にインゴット3を製造することが可能になる。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】国際公開WO02/053496号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0015】
上述した電磁鋳造法では、チャンバー1内の雰囲気温度は、インゴット3が存在する中心部で高く、チャンバー1の側壁に近づくほど低くなり、同じ中心部でも溶融シリコン12が存在する上方ほど高くなる。この温度差に起因し、チャンバー1内には、図1中の実線矢印で示すように、雰囲気ガスの自然対流が発生する。具体的には、インゴット3の外周とアフターヒーター9の内周との間を上昇し、最上段のアフターヒーター9の上端と冷却ルツボ7の下端との隙間を抜けて冷却ルツボ7の外側をさらに上昇した後、チャンバー1の側壁近傍を下降する雰囲気ガスの対流が発生する。このように対流して冷却ルツボ7の外側を上昇する雰囲気ガスの一部は、図1中の点線矢印で示すように、冷却ルツボ7の真上にも流入する。
【0016】
すると、対流する雰囲気ガス中に金属不純物が含まれていた場合、その不純物が雰囲気ガスの流れに伴って冷却ルツボ7の真上まで運ばれ、冷却ルツボ7内に落下して溶融シリコン12中に混入することがある。この場合、溶融シリコン12が金属不純物で汚染されることから、この溶融シリコン12から鋳造されたインゴット3は品質が低下する。金属不純物は、例えば、アフターヒーター9の構成部材にFeやCrを含有する耐熱合金を採用する場合に、雰囲気ガスがアフターヒーター9に沿って上昇する過程で雰囲気ガス中に取り込まれ易い。
【0017】
本発明は、上記の問題に鑑みてなされたものであり、電磁鋳造法によりシリコンインゴットを連続鋳造する際に、チャンバー内で自然対流する雰囲気ガスに起因して、溶融シリコンが金属不純物で汚染されることを防止できるシリコンインゴットの連続鋳造方法を提供することを目的とする。
【課題を解決するための手段】
【0018】
本発明者らは、上記目的を達成するため、連続鋳造時にチャンバー内で自然対流する雰囲気ガスの流れに着目して鋭意検討を重ね、種々の試験を行った。その結果、一旦冷却ルツボの下方に達した雰囲気ガスが再び冷却ルツボの上方に達しないように、雰囲気ガスの流れを制御することにより、対流する雰囲気ガスに起因した溶融シリコンの不純物汚染を防止できることを知見し、本発明を完成させた。
【0019】
本発明の要旨は、以下に示すシリコンインゴットの連続鋳造方法にある。すなわち、チャンバー内に配置した導電性を有する無底冷却ルツボにシリコン原料を装入し、無底冷却ルツボを囲繞する誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを無底冷却ルツボから引き下げながら凝固させてシリコンインゴットを連続鋳造する方法において、チャンバーの側壁に無底冷却ルツボの上方と下方で開口する配管が連結されており、この配管を通じて無底冷却ルツボの上方の雰囲気ガスを無底冷却ルツボの下方に導入しつつ、無底冷却ルツボの下方から上方に流入する雰囲気ガスの流れを遮断しながら鋳造を行うことを特徴とするシリコンインゴットの連続鋳造方法である。
【0020】
この連続鋳造方法では、前記無底冷却ルツボの上端と前記チャンバーの側壁との間に仕切り板を設ける構成とすることが好ましい。
【発明の効果】
【0021】
本発明のシリコンインゴットの連続鋳造方法によれば、冷却ルツボの下方で雰囲気ガスが対流し、この雰囲気ガスに金属不純物が含まれる場合であっても、その雰囲気ガスが冷却ルツボの上方に流入するのを遮断されるため、金属不純物が冷却ルツボの真上に運ばれて溶融シリコン中に混入することはなく、対流する雰囲気ガスに起因した溶融シリコンの不純物汚染を防止することができる。
【図面の簡単な説明】
【0022】
【図1】電磁鋳造法で用いられる従来の代表的な電磁鋳造装置の構成を模式的に示す図である。
【図2】本発明のシリコンインゴットの連続鋳造方法を適用できる電磁鋳造装置の構成を模式的に示す図である。
【図3】比較のために用いた電磁鋳造装置の構成を模式的に示す図である。
【図4】本発明例および比較例でのシリコンインゴットにおけるFe濃度の測定結果を示す図である。
【発明を実施するための形態】
【0023】
以下に、本発明のシリコンインゴットの連続鋳造方法について、その実施形態を詳述する。
【0024】
図2は、本発明のシリコンインゴットの連続鋳造方法を適用できる電磁鋳造装置の構成を模式的に示す図である。同図に示す本発明における電磁鋳造装置は、前記図1に示す電磁鋳造装置の構成を基本とし、それと同じ構成には同一の符号を付し、重複する説明は適宜省略する。
【0025】
図2に示すように、本発明における電磁鋳造装置は、チャンバー1の側壁の上部と下部に連結された配管15を有する。この配管15の上下の各端は、冷却ルツボ7の上方に相当する位置と、冷却ルツボ7の下方に相当する位置にそれぞれ開口している。
【0026】
チャンバー1内には、冷却ルツボ7の上端とチャンバー1の側壁との間に、冷却ルツボ7の上端からチャンバー1の側壁に向けて水平に突出する仕切り板16が取り付けられている。この仕切り板16は、冷却ルツボ7の上端位置を境にして、チャンバー1内の空間を上下に仕切る。
【0027】
このような構成の電磁鋳造装置を用いた連続鋳造では、チャンバー1の内部空間が仕切り板16により上下に仕切られ、仕切られたそれぞれの空間に配管15の各端が開口しているため、図2中の実線矢印で示すように、冷却ルツボ7の上方に存在する雰囲気ガスは、ここに開口する配管15の上端から配管15内に流出し、配管15内を下降した後、冷却ルツボ7の下方に相当するチャンバー1の下部内に導入される。
【0028】
チャンバー1の下部内に導入された雰囲気ガスは、最終的には排気口6からチャンバー1の外部に排出されるが、大半はチャンバー1内で自然対流する。すなわち、配管15を通じてチャンバー1の下部内に導入された雰囲気ガスは、図2中の実線矢印で示すように、上下に隣接するアフターヒーター9同士の隙間を抜けてアフターヒーター9の内側に進入し、そのままインゴット3の外周とアフターヒーター9の内周との間を上昇した後、最上段のアフターヒーター9の上端と冷却ルツボ7の下端との隙間を抜けて冷却ルツボ7の外側に到達する。そして、冷却ルツボ7の外側に到達した雰囲気ガスは、仕切り板16によってそれ以上の上昇を阻止され、チャンバー1の側壁近傍を下降する。このような雰囲気ガスの自然対流が発生する。
【0029】
したがって、本発明の連続鋳造方法によれば、対流する雰囲気ガスに金属不純物が含まれる場合であっても、その雰囲気ガスが冷却ルツボ7の下方から上方に流入するのを遮断されるため、金属不純物が冷却ルツボ7の真上に運ばれて溶融シリコン12中に混入する状況は起こらない。その結果、対流する雰囲気ガスに起因した溶融シリコン12の不純物汚染を防止することができ、品質に優れたインゴット3を製造することができる。
【実施例】
【0030】
本発明の連続鋳造方法による効果を確認するため、前記図2に示す電磁鋳造装置を用いてシリコンインゴットを連続鋳造し、製造したインゴットにおいて、固化率が0%、10%、30%、50%、70%および90%のときに対応する位置からそれぞれサンプルウェーハを採取し、各サンプルウェーハ中のFe濃度を測定する試験を行った。ここでいう固化率とは、装入したシリコン原料の総重量に対する固化したインゴットの重量の比率を表わし、インゴットの下端(連続鋳造の最初の位置)からの長さに対応する。また、比較のために、下記の図3に示す電磁鋳造装置を用いてシリコンインゴットを連続鋳造し、このインゴットからも同様にサンプルウェーハを採取してFe濃度を測定した。
【0031】
図3は、比較のために用いた電磁鋳造装置の構成を模式的に示す図である。同図に示す比較例で用いた電磁鋳造装置は、前記図2に示す本発明例で用いた電磁鋳造装置と比較し、チャンバー1の側壁の上部と下部に連結された配管15を有する点で共通するが、チャンバー1の内部空間を上下に仕切る仕切り板16を有しない点で相違する。
【0032】
図4は、本発明例および比較例でのシリコンインゴットにおけるFe濃度の測定結果を示す図である。同図に示すように、連続鋳造の最初の位置に対応する固化率が0%のときは、本発明例と比較例とでインゴットのFe濃度が同等であるが、連続鋳造が進行し固化率が高くなるのに伴って、比較例でのFe濃度が本発明例に比べ著しく増加する結果となった。
【0033】
この結果から、前記図3に示す電磁鋳造装置を用いた比較例では、前記図1に示す従来の電磁鋳造装置の場合と同様に、チャンバー1内で金属不純物を含んで対流する雰囲気ガスが冷却ルツボ7の真上に流入し(前記図3中の点線矢印参照)、溶融シリコンが金属不純物で汚染され、一方、前記図2に示す電磁鋳造装置を用いた本発明例では、金属不純物を含んで対流する雰囲気ガスが冷却ルツボ7の真上に流入することはなく、溶融シリコンの不純物汚染を防止できることが明らかになった。
【0034】
なお、図4に示す結果では、本発明例および比較例のいずれの場合も、固化率が高くなるのに伴ってFe濃度が上昇しているが、これは、不純物元素の偏析現象に起因し、連続鋳造の進行に伴って不純物が溶融シリコン中に濃化することによる。また、本発明例でもインゴット中にFeを含有する結果となっているが、これは、装入されるシリコン原料中に不可避的にFeが含まれていることによる。
【0035】
その他本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、前記図2に示す仕切り板16をチャンバー1の側壁から冷却ルツボ7の上端に向けて突出するように設けても構わない。また、冷却ルツボ7の下方から上方に流入する雰囲気ガスの流れを遮断できる限り、仕切り板16に代え、例えば、チャンバー1の内壁から冷却ルツボ7の外周の水平面内全域にわたり不活性ガスを噴射し、噴射したガスによってエアーカーテンのような仕切りを形成する構成とすることもできる。
【産業上の利用可能性】
【0036】
本発明のシリコンインゴットの連続鋳造方法によれば、冷却ルツボの下方で対流する雰囲気ガスに金属不純物が含まれる場合であっても、その金属不純物が冷却ルツボ内の溶融シリコン中に混入することはなく、対流する雰囲気ガスに起因して溶融シリコンが金属不純物で汚染されるのを防止することができる。したがって、本発明の連続鋳造方法は、品質に優れた太陽電池用のシリコンインゴットを製造することができる点で極めて有用である。
【符号の説明】
【0037】
1:チャンバー、 2:シャッター、 3:シリコンインゴット、
4:引出し口、 5:不活性ガス導入口、 6:排気口、
7:無底冷却ルツボ、 8:誘導コイル、 9:アフターヒーター、
10:原料導入管、 11:シリコン原料、 12:溶融シリコン、
13:プラズマトーチ、 14:支持台、 15:配管、 16:仕切り板

【特許請求の範囲】
【請求項1】
チャンバー内に配置した導電性を有する無底冷却ルツボにシリコン原料を装入し、無底冷却ルツボを囲繞する誘導コイルからの電磁誘導加熱によりシリコン原料を融解させ、この溶融シリコンを無底冷却ルツボから引き下げながら凝固させてシリコンインゴットを連続鋳造する方法において、
チャンバーの側壁に無底冷却ルツボの上方と下方で開口する配管が連結されており、この配管を通じて無底冷却ルツボの上方の雰囲気ガスを無底冷却ルツボの下方に導入しつつ、無底冷却ルツボの下方から上方に流入する雰囲気ガスの流れを遮断しながら鋳造を行うことを特徴とするシリコンインゴットの連続鋳造方法。
【請求項2】
前記無底冷却ルツボの上端と前記チャンバーの側壁との間に仕切り板を設けることを特徴とする請求項1に記載のシリコンインゴットの連続鋳造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−173775(P2011−173775A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【出願番号】特願2010−40789(P2010−40789)
【出願日】平成22年2月25日(2010.2.25)
【出願人】(302006854)株式会社SUMCO (1,197)
【Fターム(参考)】