説明

ターボ圧縮機

【課題】高効率であると共に、各構成要素の配置を工夫することによりコンパクト化を図ったターボ圧縮機を提案する。
【解決手段】駆動モータ3の出力軸4に接続される第一回転軸と、第一回転軸に平行に配置されると共に第一羽根車を有する第二回転軸と、第一回転軸に平行に配置されると共に第二羽根車を有する第三回転軸と、第一羽根車で圧縮された作動ガスAを冷却する第一冷却部41と、第二羽根車で圧縮された作動ガスAを冷却する第二冷却部45と、これらを収容すると共に作動ガスAを第一羽根車から第二冷却部45へと導くガス流路を有するケーシング8と、を備えるターボ圧縮機において、第一及び第二羽根車を反駆動モータ側に配置し、且つ、第一及び第二冷却部41,45を第一回転軸に対して略直交する方向に沿って配置した。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ターボ圧縮機に関する。
に関する。
【背景技術】
【0002】
産業用のターボ圧縮機として、第一段圧縮機で圧縮した流体をさらに第二段圧縮機で圧縮したのち排出する二段式のターボ圧縮機が知られている。このターボ圧縮機は、第一段圧縮機のインペラ(羽根車)と第二段圧縮機のインペラとを回転軸で連結し、その回転軸を歯車列を介して駆動モータによって回転させるようにしている。
【特許文献1】特開平8−93685号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
産業用のターボ圧縮機は、消費電力の低減や、設置面積の縮小が要請されている。
いわゆる一軸二段式のターボ圧縮機においては、第一段圧縮機のインペラと第二段圧縮機のインペラとが同一の回転軸に連結されているので、各インペラを最適な回転数で駆動することができない。したがって、各インペラの最高効率点での効率的な運転の実現は困難である。
また、高効率のターボ圧縮機として、いわゆる二軸三段式や二軸四段式等のターボ圧縮機も提案されているが、部品点数増加による装置コストの上昇や装置の大型化を伴ってしまう。
【0004】
そこで、第一段圧縮機のインペラと第二段圧縮機のインペラとを異なる回転軸に設けた二軸二段式のターボ圧縮機が提案されている。この二軸二段式のターボ圧縮機は、装置コストの上昇を抑えつつ、効率の向上(消費電力の低減等)を図ることができる。
しかしながら、二軸二段式のターボ圧縮機においては、一軸二段式に比べて回転軸の数が増える等の事情から、設置面積が大きくならざるを得なかった。
【0005】
本発明は、上述した事情に鑑みてなされたもので、高効率であると共に、各構成要素の配置を工夫することによりコンパクト化を図ったターボ圧縮機を提案することを目的とする。
【課題を解決するための手段】
【0006】
本発明に係るターボ圧縮機では、上記課題を解決するために以下の手段を採用した。
第一の発明は、駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、前記第一歯車に噛み合う第二歯車を有する第二回転軸と、前記第二回転軸に取付けられた第一羽根車と、前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、前記第三回転軸に取付けられた第二羽根車と、前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、を備えるターボ圧縮機において、前記第一及び第二羽根車を前記第一歯車に対して反駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略直交する方向に沿って配置したことを特徴とする。
【0007】
第二の発明は、駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、前記第一歯車に噛み合う第二歯車を有する第二回転軸と、前記第二回転軸に取付けられた第一羽根車と、前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、前記第三回転軸に取付けられた第二羽根車と、前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、を備えるターボ圧縮機において、前記第一及び第二羽根車を前記第一歯車に対して駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略直交する方向に沿って配置したことを特徴とする。
【0008】
第三の発明は、駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、前記第一歯車に噛み合う第二歯車を有する第二回転軸と、前記第二回転軸に取付けられた第一羽根車と、前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、前記第三回転軸に取付けられた第二羽根車と、前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、を備えるターボ圧縮機において、前記第一羽根車を前記第一歯車に対して反駆動モータ側に、前記第二羽根車を駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略平行する方向に沿って配置したことを特徴とする。
【0009】
第四の発明は、駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、前記第一歯車に噛み合う第二歯車を有する第二回転軸と、前記第二回転軸に取付けられた第一羽根車と、前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、前記第三回転軸に取付けられた第二羽根車と、前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、を備えるターボ圧縮機において、前記第一羽根車を前記第一歯車に対して駆動モータ側に、前記第二羽根車を反駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略平行する方向に沿って配置したことを特徴とする。
【0010】
また、前記第一及び第二冷却部は、前記第一及び第二羽根車の下方に配置されることを特徴とする。
また、前記第一冷却部及び第二冷却部は、同一端面側にクーラント出入口を有することを特徴とする。
【0011】
また、前記ケーシングは、前記第一及び第二冷却部に対して略平行に配置されると共に前記第一乃至第三歯車を潤滑させるオイルを収容するオイル貯溜室を有することを特徴とする。
また、前記オイル貯溜室は、前記第一又は第二冷却部の低温部側に配置されることを特徴とする。
【0012】
また、前記ケーシングを鋳物で一体成型したことを特徴とする。
また、前記オイル貯蔵室の上に潤滑油装置を配置することを特徴とする。
また、前記駆動モータは、前記ケーシングに対して、前記ケーシングの設置領域内に位置するように取り付けられることを特徴とする。
【発明の効果】
【0013】
本発明によれば以下の効果を得ることができる。
第一〜第四の発明に係るターボ圧縮機によれば、第一段圧縮機の第一羽根車と第二段圧縮機の第二羽根車とを異なる回転軸(第二回転軸,第三回転軸)に設置したので、第一羽根車と第二羽根車をそれぞれ最適な回転数で駆動でき、高い効率で作動ガスの圧縮処理を行うことができる。
【0014】
また、第一〜第四の発明に係るターボ圧縮機によれば、第一羽根車,第二羽根車の配置に応じて、第一冷却部,第二冷却部の配置を上方から見て、第一〜第三回転軸の軸方向に対して略直交する方向に沿って配置したり、略平行する方向に沿って配置したりすることで、最適なガス流路を形成することができる。ガス流路は、流路長さが短い、流路に大きな曲がり部分がない、また、鋳物として形成しやすい等の特徴を有する。
【0015】
また、オイル貯溜室を第一冷却部又は第二冷却部の低温部側に配置したので、オイルが加熱されてしまう虞がなく、良好な潤滑を実現できる。
また、第一冷却部,第二冷却部,オイル貯溜室を並べて配置したので、ターボ圧縮機の設置面積が略四角形状として、コンパクト化することができる。しかも、これらを鋳物で一体成型したので、装置の低コスト化が図ることができる。
【発明を実施するための最良の形態】
【0016】
以下、本発明に係るターボ圧縮機の実施形態について図面を参照して説明する。
〔第一実施形態〕
図1は、第一実施形態に係るターボ圧縮機1の概略構成を模式的に示す上面図(一部断面図)である。
図2は、歯車装置10の構成を示す断面図である。
図3は、第一段圧縮機6を含む断面模式図(図1のP−P断面図)である。図4は、第二段圧縮機7を含む断面模式図(図1のQ−Q断面図)である。
【0017】
ターボ圧縮機1は、駆動モータ3と、駆動モータ3の出力軸4に接続される歯車装置10と、歯車装置10により増速回転される第一羽根車21を有する第一段圧縮機6と、歯車装置10により増速回転される第二羽根車22を有する第二段圧縮機7と、これらの各構成要素を収容するケーシング8等を備えている。
【0018】
ケーシング8には、外部から吸引した空気Aを第一段圧縮機6から第二段圧縮機7へと導き、更に第二段圧縮機7から外部へと導いて吐出すためのガス流路30が形成される。このガス流路30には、第一段圧縮機6で圧縮された空気Aを冷却するインタクーラ41と第二段圧縮機7で圧縮された空気Aを冷却するアフタクーラ45等が設けられている。
また、ケーシング8には、歯車装置10の潤滑させるオイルLを収容するオイル貯溜室50も設けられている。
【0019】
駆動モータ3は、歯車装置10を収容するギアケース9に不図示のフランジ等を介して取り付けられる。その出力軸4が歯車装置10の第一回転軸11に継手を介して接続されている。なお、ギアケース9は、ケーシング8に一体成型される。
なお、駆動モータ3は、ケーシング8に対して、ケーシング8の設置領域内に位置するように取り付けられる。つまり、ターボ圧縮機1を上面視すると、駆動モータ3がケーシング8から側方に突出させないようにしている。これにより、ターボ圧縮機1の設置面積がケーシング8の設置面積と略等しくなり、ターボ圧縮機装置1全体のコンパクト化が図られる。
【0020】
図2に示すように、第一回転軸11は、ギアケース9に回転自在に支持されており、一端に軸受を介して駆動モータ3の出力軸4が連結され、他端側に大径の第一歯車14が取り付けられている。
第一歯車14は、第二回転軸12の一端に設けられた小径の第二歯車15と、第三回転軸13の一端に設けられた小径の第三歯車16と、にそれぞれ噛合されている。
そして、この歯車装置10により、駆動モータ3の出力軸4の回転が増速されて、第二回転軸12及び第三回転軸13にそれぞれ伝達されるようになっている。
【0021】
第二回転軸12及び第三回転軸13は、第一回転軸11に対して平行であり、且つ、第一回転軸11を挟んだ略対称な位置に、それぞれギアケース9に回転自在に軸支される。そして、第二回転軸12及び第三回転軸13の他端には、それぞれ第一羽根車21,第二羽根車22が設けられる。
第一羽根車21,第二羽根車22は、歯車装置10を挟んで駆動モータ3の反対側に配置される。つまり、第二回転軸12,第三回転軸13は、歯車装置10から駆動モータ3とは反対側延びるように支持されており、その一端(反駆動モータ側)に、第一羽根車21,第二羽根車22が配置されている。
【0022】
第一羽根車21は、ギアケース9の側部に形成された円柱状の窪部23に収容される。第二羽根車22は、ギアケース9の第一回転軸11を挟んだ反対側の側部に形成された円柱状の窪部24に収容される。
これら窪部23,24には、渦巻室および吸気通路31,34を有するブロック25,26がそれぞれ挿入され、ブロック25,26と窪部23,24との間にそれぞれディフューザが形成される。
なお、ギアケース9は、水平断面で上下に分割可能となっており、上部蓋を取り外すことで、第一〜第三回転軸11〜13、第一〜第三歯車14〜16の点検等が可能となっている。
【0023】
第一段圧縮機6、第二段圧縮機7及び歯車装置10の下方には、ギアケース9と一体的に鋳造された略直方体状の2つの空間(冷却室42,46)が形成されている。
一方の冷却室42には、第一段圧縮機6から吐出された空気Aを冷却して第二段圧縮機7へ導くインタクーラ41用の熱交換器43が設けられている。他方の冷却室46には、第二段圧縮機7から吐出された空気Aを冷却して排気するアフタクーラ45用の熱交換器47が設けられている。
【0024】
熱交換器43,47は、各冷却室42,46の長手方向に沿って細長く形成され、冷却室42,46内の中央部に配置されて、冷却室42,46内をそれぞれ入口側と出口側とに仕切っている。
冷却室42,46には、入口側の長手方向の一端に導入口が、出口側の長手方向の他端に排出口が、それぞれ設けられている。
インタクーラ41の冷却室42の導入口は第一連絡通路32を介して第一段圧縮機6の渦巻室に接続され、排出口は第二連絡通路33を介して第二段圧縮機7の吸気通路34に接続される。
アフタクーラ45の冷却室46の導入口は第三連絡通路35を介して第二段圧縮機7の渦巻室に接続され、排出口はそれ自体が空気Aを外部に吐き出すための排気口36となっている。
なお、第一連絡通路32は、第一段圧縮機6の渦巻室から、第二回転軸12と略同一方向で斜め下方に向けて、冷却室42まで延設される。第二連絡通路33は、冷却室42から、第三回転軸13と略同一方向で斜め上方に向けて、第二段圧縮機7の吸気通路34まで延設される。第三連絡通路33は、第二段圧縮機6の渦巻室から、略下方に向けて、冷却室46まで延設される。
【0025】
熱交換器43,47は、その長手方向と直交して配置された複数のフィンプレート、これらフィンプレートを挿通して設けられた複数の水管と、フィンプレートの上下に設けられたシールバッフルと、シールバッフルに設けられたシール部材とを備えている(いずれも不図示)。
シールバッフルは、熱交換器43,47の一側面から他側面に空気Aを導くものであり、シール部材は、シールバッフルと冷却室42,46の内面との間をシールし、冷却室42,46内をそれぞれ入口側と出口側とに分けるものである。
また、熱交換器43,47は、上述した水管に冷却水を導入し、排出する冷却水出入口49をそれぞれ備える。冷却水出入口49は、熱交換器43,47の長手方向に一端に設けられる。
【0026】
インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略直交する方向に沿って配置されている。また、駆動モータ3から離間する方向に向けて、アフタクーラ45、インタクーラ41の順に並んで配置されている。
そして、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49は、ターボ圧縮機1のケーシング8の同一側面に露出するように配置される。
【0027】
冷却室42,46の側方には、オイル貯溜室50が略平行に設けられている。オイル貯溜室50は、冷却室46の出口側(低温側)に隣接する。つまり、駆動モータ3から離間する方向に向けて、オイル貯溜室50、冷却室46(アフタクーラ45)、冷却室42(インタクーラ41)の順に並んで配置されている。
オイル貯溜室50には、歯車装置10の第一〜第三回転軸11〜13を支持する軸受や第一〜第三歯車14〜16を潤滑するためのオイルが貯溜されている。
オイル貯溜室50内には、不図示の潤滑油装置(オイルポンプ、オイル管、オイルクーラ等)が設けられており、オイルポンプにより汲み上げられ、オイルクーラにより冷却されたオイルが、オイル管を介して第一〜第三歯車14〜16に給油される。そして、給油されたオイルは、オイル貯溜室50に回収されるようになっている。
なお、オイル貯蔵室50の上部に、上述した潤滑油装置を設置してもよい。
【0028】
2つの冷却室42,46、オイル貯溜室50は、ギアケース9と一体的に鋳造されて、ケーシング8を構成している。
そして、ケーシング8は、上方から見て略四角形状となって、ターボ圧縮機1の投影面積と一致する大きさに成形されている。
【0029】
以上の構成からなるターボ圧縮機1では、第一段圧縮機6の第一羽根車21は、吸気通路31から空気Aを吸い込み、それを径方向外方に昇圧する。昇圧された空気Aは、ディフューザおよび渦巻室を通って減速されて速度が圧力に変換されることでさらに静圧が上昇して、第一連絡通路32を介してインタクーラ41に導かれる。そして、インタクーラ41で冷却された空気Aは、第二連絡通路33を介して第二段圧縮機7の吸気通路34に導かれる。
【0030】
更に、第二段圧縮機7の第二羽根車22は、吸気通路34から空気Aを吸い込み、それを径方向外方に加速する。加速された空気Aは、ディフューザおよび渦巻室を通って減速されて速度が圧力に変換されて、第三連絡通路35を介してアフタクーラ45に導かれる。そして、アフタクーラ45で冷却された空気Aは、ケーシング8に形成された排気口36から外部(不図示の外部接続管)に吐き出される。
このようにして、ターボ圧縮機1では、所望量、所望圧力の空気Aを効率よく得られる。
【0031】
以上、説明したように、第一実施形態のターボ圧縮機1によれば、第一段圧縮機6の第一羽根車21と第二段圧縮機7の第二羽根車22とを異なる回転軸(第二回転軸12,第三回転軸13)に設けたので、第一羽根車21と第二羽根車22をそれぞれ最適な回転数で駆動できるので、高い効率で空気の圧縮処理を行うことができる。
【0032】
また、インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略直交する方向に沿って配置されている。このため、最適なガス流路30が形成できる。つまり、ガス流路30(特に、第一連絡通路32、第二連絡通路33、第三連絡通路35)は、流路長さが短い、流路に大きな曲がり部分がない、また、鋳物として形成しやすい等の特徴を有している。
また、オイル貯溜室50を冷却室46の出口側(低温側)に隣接するように配置したので、オイルLが圧縮機で昇温された空気によって加熱されてしまう虞がない。
【0033】
また、インタクーラ41、アフタクーラ45、オイル貯溜室50を並べて配置したので、ターボ圧縮機1の設置面積が略四角形状となってコンパクトになっている。
また、インタクーラ41とアフタクーラ45は、それぞれのガス入口側(高温側)が隣接するように配置されているので、インタクーラ41により冷却されたガスがアフタクーラ45により加熱されたり、或いはアフタクーラ45により冷却されたガスがインタクーラ41により加熱されたりすることを防ぐことができる。
【0034】
また、ターボ圧縮機1では、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49がケーシング8の同一側面に露出するように配置されているので、配管作業等が効率化できる。
なお、冷却水出入口49を第二圧縮機7側のケーシング8の側面に設けたが、第一圧縮機6側のケーシング8の側面に設けても良い。
また、ターボ圧縮機1の制御盤60を冷却水出入口49と同一の側面側に配置することで、メンテナンススペースを確保しやすくなる。
【0035】
〔第二実施形態〕
図5は、第二実施形態に係るターボ圧縮機101の概略構成を模式的に示す上面図(一部断面図)である。
図6は、第一段圧縮機6を含む断面模式図(図5のP−P断面図)である。図7は、第二段圧縮機7を含む断面模式図(図5のQ−Q断面図)である。
【0036】
ターボ圧縮機101は、第一実施形態に係るターボ圧縮機1と同一構成であるが、主要な構成要素の配置が異なっている。
以下の説明では、ターボ圧縮機1と異なる部分について説明し、同一の部分については同一の符号を付してその説明を省略する。
【0037】
ターボ圧縮機101は、ターボ圧縮機1と同様に、第一〜第三回転軸11〜13を備えている。第二回転軸12及び第三回転軸13は、第一回転軸11に対して平行であり、且つ、第一回転軸11を挟んだ対称な位置に、それぞれギアケース9に回転自在に軸支される。
そして、第二回転軸12及び第三回転軸13の他端には、それぞれ第一羽根車21,第二羽根車22が設けられる。第一羽根車21,第二羽根車22は、歯車装置10に対して駆動モータ3と同一側に配置される。つまり、第二回転軸12,第三回転軸13は、歯車装置10から駆動モータ3に向けて延びるように支持されており、その一端(駆動モータ側)に、第一羽根車21,第二羽根車22が配置されている。
【0038】
また、ターボ圧縮機101は、ターボ圧縮機1と同様に、インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略直交する方向に沿って配置されている。なお、駆動モータ3から離間する方向に向けて、インタクーラ41、アフタクーラ45の順に並んで配置されている。
そして、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49は、ターボ圧縮機1のケーシング8の同一側面に露出するように配置される。
【0039】
オイル貯溜室50は、冷却室42,46の側方に略平行に設けられている。オイル貯溜室50は、冷却室46の出口側(低温側)に隣接する。つまり、駆動モータ3から離間する方向に向けて、冷却室42(インタクーラ41)、冷却室46(アフタクーラ45)、オイル貯溜室50の順に並んで配置されている。
そして、2つの冷却室42,46、オイル貯溜室50は、ギアケース9と一体的に鋳造されて、ケーシング8を構成している。また、ケーシング8は、上方から見て略四角形状となって、ターボ圧縮機1の投影面積と一致する大きさに成形されている。
【0040】
第二実施形態のターボ圧縮機101においても、第一段圧縮機6の第一羽根車21と第二段圧縮機7の第二羽根車22とを異なる回転軸(第二回転軸12,第三回転軸13)に設けたので、第一羽根車21と第二羽根車22をそれぞれ最適な回転数で駆動できるので、高い効率で空気の圧縮処理を行うことができる。
【0041】
また、ターボ圧縮機101においても、インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略直交する方向に沿って配置されているので、最適なガス流路130が形成できる。つまり、ガス流路130(特に、第一連絡通路132、第二連絡通路133、第三連絡通路135)は、流路長さが短い、流路に大きな曲がり部分がない、また、鋳物として形成しやすい等の特徴を有している。
なお、第一連絡通路132は、第一段圧縮機6の渦巻室から、第二回転軸12と略同一方向で斜め下方に向けて、冷却室42まで延設される。第二連絡通路133は、冷却室42から、第三回転軸13と略同一方向で斜め上方に向けて、第二段圧縮機7の吸気通路34まで延設される。第三連絡通路133は、第二段圧縮機6の渦巻室から、略下方に向けて、冷却室46まで延設される。
【0042】
また、オイル貯溜室50を冷却室46の出口側(低温側)に隣接するように配置したので、オイルLが圧縮機で昇温された空気によって加熱されてしまう虞がない。
また、インタクーラ41、アフタクーラ45、オイル貯溜室50を並べて配置したので、ターボ圧縮機1の設置面積が略四角形状となってコンパクトになっている。なお、オイル貯溜室50の上部に、第一段圧縮機6,第二段圧縮機7等が配置されないので、各種潤滑関連装置を設置することが可能となる。
また、インタクーラ41とアフタクーラ45は、それぞれのガス入口側(高温側)が隣接するように配置されているので、インタクーラ41により冷却されたガスがアフタクーラ45により加熱されたり、或いはアフタクーラ45により冷却されたガスがインタクーラ41により加熱されたりすることを防ぐことができる。
【0043】
また、ターボ圧縮機101では、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49がケーシング8の同一側面に露出するように配置されているので、配管作業等が効率化できる。
なお、冷却水出入口を第二圧縮機側のケーシング側面に設けたが、第一圧縮機側のケーシング側面に設けても良い。
また、ターボ圧縮機101の制御盤60を冷却水出入口49と同一の側面側に配置することで、メンテナンススペースを確保しやすくなる。
また、オイル貯蔵室50の上部には関連部品が無いので、潤滑油装置を設置でき、ターボ圧縮機装置1の全体をコンパクトにすることができる。
【0044】
〔第三実施形態〕
図8は、第三実施形態に係るターボ圧縮機201の概略構成を模式的に示す上面図(一部断面図)である。
図9は、第一段圧縮機6を含む断面模式図(図8のP−P断面図)である。図10は、第二段圧縮機7を含む断面模式図(図8のQ−Q断面図)である。
【0045】
ターボ圧縮機201は、第一,第二実施形態に係るターボ圧縮機1,101と同一構成であるが、主要な構成要素の配置が異なっている。
以下の説明では、ターボ圧縮機1,101と異なる部分について説明し、同一の部分については同一の符号を付してその説明を省略する。
【0046】
ターボ圧縮機201は、ターボ圧縮機1,101と同様に、第一〜第三回転軸11〜13を備えている。第二回転軸12及び第三回転軸13は、第一回転軸11に対して平行であり、且つ、第一回転軸11を挟んだ対称な位置に、それぞれギアケース9に回転自在に軸支される。
そして、第二回転軸12及び第三回転軸13の他端には、それぞれ第一羽根車21,第二羽根車22が設けられる。第一羽根車21は、歯車装置10を挟んで駆動モータ3の反対側に配置される。一方、第二羽根車22は、歯車装置10に対して駆動モータ3と同一側に配置される。
つまり、第二回転軸12は、歯車装置10から駆動モータ3とは反対側延びるように支持されており、その一端(反駆動モータ側)に、第一羽根車21が配置されている。また、第三回転軸13は、歯車装置10から駆動モータ3に向けて延びるように支持されており、その一端(駆動モータ側)に、第二羽根車22が配置されている。
【0047】
また、ターボ圧縮機201は、ターボ圧縮機1,101とは異なり、インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略平行する方向に沿って配置されている。なお、第二回転軸12(第一羽根車21)から離間する方向に向けて、インタクーラ41、アフタクーラ45の順に並んで配置されている。
そして、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49は、ターボ圧縮機1のケーシング8の同一側面(駆動モータ3の反対側)に露出するように配置される。
【0048】
オイル貯溜室50は、冷却室42,46の側方に設けられている。オイル貯溜室50は、冷却室42,46のそれぞれの冷却水出入口49とは反対側の側方に隣接する。つまり、駆動モータ3から離間する方向に向けて、オイル貯溜室50、冷却室42及び冷却室46(インタクーラ41及びアフタクーラ45)の順に並んで配置されている。
そして、2つの冷却室42,46、オイル貯溜室50は、ギアケース9と一体的に鋳造されて、ケーシング8を構成している。また、ケーシング8は、上方から見て略四角形状となって、ターボ圧縮機1の投影面積と一致する大きさに成形されている。
【0049】
第三実施形態のターボ圧縮機201においても、第一段圧縮機6の第一羽根車21と第二段圧縮機7の第二羽根車22とを異なる回転軸(第二回転軸12,第三回転軸13)に設けたので、第一羽根車21と第二羽根車22をそれぞれ最適な回転数で駆動できるので、高い効率で空気の圧縮処理を行うことができる。
【0050】
また、ターボ圧縮機201においては、インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略平行する方向に沿って配置されているので、最適なガス流路230が形成できる。つまり、ガス流路230(特に、第一連絡通路232、第二連絡通路233、第三連絡通路235)は、流路長さが短い、流路に大きな曲がり部分がない、また、鋳物として形成しやすい等の特徴を有している。
なお、第一連絡通路232は、第一段圧縮機6の渦巻室から、略下方に向けて、冷却室42まで延設される。第二連絡通路233は、冷却室42から、第三回転軸13と略直交する方向で斜め上方に向けて、第二段圧縮機7の吸気通路34まで延設される。第三連絡通路233は、第二段圧縮機6の渦巻室から、略下方に向けて、冷却室46まで延設される。
【0051】
また、インタクーラ41、アフタクーラ45、オイル貯溜室50を最適に配置したので、ターボ圧縮機1の設置面積が略四角形状となってコンパクトになっている。
また、ターボ圧縮機201では、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49がケーシング8の同一側面に露出するように配置されているので、配管作業等が効率化できる。
また、インタクーラ41とアフタクーラ45は、それぞれのガス入口側(高温側)が隣接するように配置されているので、インタクーラ41により冷却されたガスがアフタクーラ45により加熱されたり、或いはアフタクーラ45により冷却されたガスがインタクーラ41により加熱されたりすることを防ぐことができる。
また、ターボ圧縮機201の制御盤60を、第一回転軸11を挟んだケーシング8の両側面のいずれにも配置することができるので、レイアウトの柔軟性が高くなっている。
【0052】
〔第四実施形態〕
図11は、第四実施形態に係るターボ圧縮機301の概略構成を模式的に示す上面図(一部断面図)である。
図12は、第一段圧縮機6を含む断面模式図(図11のP−P断面図)である。図13は、第二段圧縮機7を含む断面模式図(図11のQ−Q断面図)である。
【0053】
ターボ圧縮機301は、第一〜第三実施形態に係るターボ圧縮機1,101,201と同一構成であるが、主要な構成要素の配置が異なっている。
以下の説明では、ターボ圧縮機1,101,201と異なる部分について説明し、同一の部分については同一の符号を付してその説明を省略する。
【0054】
ターボ圧縮機301は、ターボ圧縮機1,101,201と同様に、第一〜第三回転軸11〜13を備えている。第二回転軸12及び第三回転軸13は、第一回転軸11に対して平行であり、且つ、第一回転軸11を挟んだ対称な位置に、それぞれギアケース9に回転自在に軸支される。
そして、第二回転軸12及び第三回転軸13の他端には、それぞれ第一羽根車21,第二羽根車22が設けられる。第一羽根車21は、歯車装置10に対して駆動モータ3と同一側に配置される。一方、第二羽根車22は、歯車装置10を挟んで駆動モータ3の反対側に配置される。
つまり、第二回転軸12は、歯車装置10から駆動モータ3に向けて延びるように支持されており、その一端(駆動モータ側)に、第一羽根車21が配置されている。また、第三回転軸13は、歯車装置10から駆動モータ3とは反対側延びるように支持されており、その一端(反駆動モータ側)に、第二羽根車22が配置されている。
【0055】
また、ターボ圧縮機301は、ターボ圧縮機201と同様に(ターボ圧縮機1,101とは異なり)、インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略平行する方向に沿って配置されている。なお、第二回転軸12(第一羽根車21)から離間する方向に向けて、インタクーラ41、アフタクーラ45の順に並んで配置されている。
そして、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49は、ターボ圧縮機1のケーシング8の同一側面(駆動モータ3の反対側)に露出するように配置される。
【0056】
オイル貯溜室50は、冷却室42,46の側方に設けられている。オイル貯溜室50は、冷却室42,46のそれぞれの冷却水出入口49とは反対側の側方に隣接する。つまり、駆動モータ3から離間する方向に向けて、オイル貯溜室50、冷却室42及び冷却室46(インタクーラ41及びアフタクーラ45)の順に並んで配置されている。
そして、2つの冷却室42,46、オイル貯溜室50は、ギアケース9と一体的に鋳造されて、ケーシング8を構成している。また、ケーシング8は、上方から見て略四角形状となって、ターボ圧縮機1の投影面積と一致する大きさに成形されている。
【0057】
第四実施形態のターボ圧縮機301においても、第一段圧縮機6の第一羽根車21と第二段圧縮機7の第二羽根車22とを異なる回転軸(第二回転軸12,第三回転軸13)に設けたので、第一羽根車21と第二羽根車22をそれぞれ最適な回転数で駆動できるので、高い効率で空気の圧縮処理を行うことができる。
【0058】
また、ターボ圧縮機301においては、インタクーラ41,アフタクーラ45は、上方から見ると、歯車装置10の第一〜第三回転軸11〜13の軸方向に対して略平行する方向に沿って配置されているので、最適なガス流路330が形成できる。つまり、ガス流路330(特に、第一連絡通路332、第二連絡通路333、第三連絡通路335)は、流路長さが短い、流路に大きな曲がり部分がない、また、鋳物として形成しやすい等の特徴を有している。
なお、第一連絡通路232は、第一段圧縮機6の渦巻室から、略下方に向けて、冷却室42まで延設される。第二連絡通路233は、冷却室42から、第三回転軸13と略直交する方向で斜め上方に向けて、第二段圧縮機7の吸気通路34まで延設される。第三連絡通路233は、第二段圧縮機6の渦巻室から、略下方に向けて、冷却室46まで延設される。
【0059】
また、インタクーラ41、アフタクーラ45、オイル貯溜室50を最適に配置したので、ターボ圧縮機1の設置面積が略四角形状となってコンパクトになっている。
また、ターボ圧縮機301では、インタクーラ41,アフタクーラ45の熱交換器43,47のそれぞれの冷却水出入口49がケーシング8の同一側面に露出するように配置されているので、配管作業等が効率化できる。
また、インタクーラ41とアフタクーラ45は、それぞれのガス入口側(高温側)が隣接するように配置されているので、インタクーラ41により冷却されたガスがアフタクーラ45により加熱されたり、或いはアフタクーラ45により冷却されたガスがインタクーラ41により加熱されたりすることを防ぐことができる。
また、ターボ圧縮機301の制御盤60を、第一回転軸11を挟んだケーシング8の両側面のいずれにも配置することができるので、レイアウトの柔軟性が高くなっている。
【0060】
なお、上述した実施の形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
【図面の簡単な説明】
【0061】
【図1】第一実施形態に係るターボ圧縮機1の概略構成を模式的に示す上面図である。
【図2】歯車装置10の構成を示す断面図である。
【図3】第一段圧縮機6を含む断面模式図(図1のP−P断面図)である。
【図4】第二段圧縮機7を含む断面模式図(図1のQ−Q断面図)である。
【図5】第二実施形態に係るターボ圧縮機101の概略構成を模式的に示す上面図である。
【図6】第一段圧縮機6を含む断面模式図(図5のP−P断面図)である。
【図7】第二段圧縮機7を含む断面模式図(図5のQ−Q断面図)である。
【図8】第三実施形態に係るターボ圧縮機201の概略構成を模式的に示す上面図である。
【図9】第一段圧縮機6を含む断面模式図(図8のP−P断面図)である。
【図10】第二段圧縮機7を含む断面模式図(図8のQ−Q断面図)である。
【図11】第四実施形態に係るターボ圧縮機301の概略構成を模式的に示す上面図である。
【図12】第一段圧縮機6を含む断面模式図(図11のP−P断面図)である。
【図13】第二段圧縮機7を含む断面模式図(図11のQ−Q断面図)である。
【符号の説明】
【0062】
1,101,201,301…ターボ圧縮機
3…駆動モータ
6…第一段圧縮機
7…第二段圧縮機
8…ケーシング
10…歯車装置
11…第一回転軸
12…第二回転軸
13…第三回転軸
14…第一歯車
15…第二歯車
16…第三歯車
21…第一羽根車
22…第二羽根車
30,130,230,330…ガス流路
31…吸気通路
32,132,232,332…第一連絡通路
33,133,233,333…第二連絡通路
34…吸気通路
35,135,235,335…第三連絡通路
36…排気口
41…インタクーラ(第一冷却部)
42…冷却室
43…熱交換器
45…アフタクーラ(第二冷却部)
46…冷却室
47…熱交換器
49…冷却水出入口
50…オイル貯溜室
60…制御盤
A…空気(作動ガス)
L…オイル

【特許請求の範囲】
【請求項1】
駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、
前記第一歯車に噛み合う第二歯車を有する第二回転軸と、
前記第二回転軸に取付けられた第一羽根車と、
前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、
前記第三回転軸に取付けられた第二羽根車と、
前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、
前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、
前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、
を備えるターボ圧縮機において、
前記第一及び第二羽根車を前記第一歯車に対して反駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略直交する方向に沿って配置したことを特徴とするターボ圧縮機。
【請求項2】
駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、
前記第一歯車に噛み合う第二歯車を有する第二回転軸と、
前記第二回転軸に取付けられた第一羽根車と、
前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、
前記第三回転軸に取付けられた第二羽根車と、
前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、
前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、
前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、
を備えるターボ圧縮機において、
前記第一及び第二羽根車を前記第一歯車に対して駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略直交する方向に沿って配置したことを特徴とするターボ圧縮機。
【請求項3】
駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、
前記第一歯車に噛み合う第二歯車を有する第二回転軸と、
前記第二回転軸に取付けられた第一羽根車と、
前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、
前記第三回転軸に取付けられた第二羽根車と、
前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、
前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、
前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、
を備えるターボ圧縮機において、
前記第一羽根車を前記第一歯車に対して反駆動モータ側に、前記第二羽根車を駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略平行する方向に沿って配置したことを特徴とするターボ圧縮機。
【請求項4】
駆動モータの出力軸に接続されると共に第一歯車を有する第一回転軸と、
前記第一歯車に噛み合う第二歯車を有する第二回転軸と、
前記第二回転軸に取付けられた第一羽根車と、
前記第一歯車に噛み合う第三歯車を有すると共に前記第二回転軸に対して略平行に配置される第三回転軸と、
前記第三回転軸に取付けられた第二羽根車と、
前記第一羽根車で圧縮された作動ガスを冷却する第一冷却部と、
前記第二羽根車で圧縮された作動ガスを冷却する第二冷却部と、
前記第一乃至第三回転軸並びに前記第一及び第二冷却部を収容すると共に作動ガスを前記第一羽根車から前記第一冷却部及び前記第二羽根車を介して前記第二冷却部へと導くガス流路を有するケーシングと、
を備えるターボ圧縮機において、
前記第一羽根車を前記第一歯車に対して駆動モータ側に、前記第二羽根車を反駆動モータ側に配置し、且つ、前記第一及び第二冷却部を前記第一回転軸に対して略平行する方向に沿って配置したことを特徴とするターボ圧縮機。
【請求項5】
前記第一及び第二冷却部は、前記第一及び第二羽根車の下方に配置されることを特徴とする請求項1から請求項4のうちいずれか一項に記載のターボ圧縮機。
【請求項6】
前記第一冷却部及び第二冷却部は、同一端面側にクーラント出入口を有することを特徴とする請求項5に記載のターボ圧縮機。
【請求項7】
前記ケーシングは、前記第一及び第二冷却部に対して略平行に配置されると共に前記第一乃至第三歯車を潤滑させるオイルを収容するオイル貯溜室を有することを特徴とする請求項1又は請求項2に記載のターボ圧縮機。
【請求項8】
前記オイル貯溜室は、前記第一又は第二冷却部の低温部側に配置されることを特徴とする請求項7に記載のターボ圧縮機。
【請求項9】
前記ケーシングを鋳物で一体成型したことを特徴とする請求項1から請求項8のうちいずれか一項に記載のターボ圧縮機。
【請求項10】
前記オイル貯蔵室の上に潤滑油装置を配置することを特徴とする請求項2のターボ圧縮機。
【請求項11】
前記駆動モータは、前記ケーシングに対して、前記ケーシングの設置領域内に位置するように取り付けられることを特徴とする請求項1から請求項10のターボ圧縮機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2008−133746(P2008−133746A)
【公開日】平成20年6月12日(2008.6.12)
【国際特許分類】
【出願番号】特願2006−318823(P2006−318823)
【出願日】平成18年11月27日(2006.11.27)
【出願人】(000000099)株式会社IHI (5,014)
【Fターム(参考)】