説明

バイオマスの利用方法

【課題】バイオマスを乾留してバイオマス炭を製造する際に、バイオマス炭の収率を向上可能であるとともに、低品位の鉄鉱石を改質して製鉄プロセスで使用できる、バイオマス炭の利用方法を提供すること。
【解決手段】バイオマスを乾留して製造されるバイオマス炭を製鉄プロセスで使用するバイオマスの利用方法であって、バイオマス1を粉砕してバイオマス粉砕物を得る工程3と、鉄分含有物質2を粉砕して鉄分含有物質粉砕物を得る工程4と、バイオマス粉砕物と鉄分含有物質粉砕物とを混合して混合物を得る工程5と、混合物を乾留してバイオマス炭と炭素析出鉄分含有物質との混合物である混合乾留物を得る工程6とを有し、混合乾留物を製鉄プロセスで使用することを特徴とするバイオマスの利用方法を用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バイオマスを乾留により熱分解して製造するバイオマス炭を、製鉄プロセスで使用するバイオマスの利用方法に関する。
【背景技術】
【0002】
昨今、地球温暖化防止の観点からCO2排出量削減が緊急の課題である。CO2排出量削減の方法として、インプットの炭素量を削減する、アウトプットのCO2を回収する、従来の石炭・石油等をカーボンフリーの炭素源に代替する等の技術開発が行われている。カーボンフリーの炭素源としてはバイオマスが知られている。バイオマスとしては、建築家屋の解体で発生する木材廃棄物、製材所発生の木質系廃棄物、森林等での剪定廃棄物、農業系廃棄物などがある。その処理利用方法としては、埋立て、放置、焼却、燃料等が主なものである。
【0003】
一方、鉄鋼業において、特に製銑工程は石炭を還元材として鉄鉱石を還元するプロセスである。また、製鋼工程では精練に必要な熱を石炭等で供給している。従って、鉄鋼業では炭素源の使用が必須である。一方、バイオマスは炭素、酸素、水素から構成されているが、そのもの自体は高含水率、低廃熱量(例えば、水分15mass%、発熱量16.2MJ/kg−乾燥基準)であり、直接製鉄プロセスで使用することは効率面で有利とはいえない。そのため、バイオマスを乾留し、脱水、脱炭酸等の処理を施し、水分を除去、発熱量を高めて製鉄プロセスで使用する方法がある。乾留により脱水、脱ガス(脱炭酸、脱メタン、タール発生等)が起き、バイオマス中の炭素分が、ガスおよびタール分として発生するため、固体として残留する炭素分(バイオマス炭)は少ない。製鉄プロセスで石炭代替として、このような乾留後に固体として残留する炭素分をバイオマス炭として効率よく利用するためには、高収率でバイオマス炭を製造する必要がある。
【0004】
バイオマスを乾留(あるいは熱分解)する方法としては、従来、バッチ方式(例えば、特許文献1、2参照。)、ロータリーキルン方式(例えば、特許文献3参照。)、流動層方式等の各種の炉を用いる方法が知られている。
【0005】
また加熱熱源としてはバイオマス乾留により得られる発生ガス、タールを燃焼させ、その燃焼熱を熱源とすることが知られている。加熱の方式としては、バイオマスを前記燃焼ガスなどの高温ガスで直接加熱する方式(熱風循環式)や、ロータリーキルン等のように炉外部から間接加熱する方式(外熱式)、炉内部で発生ガスを燃焼させ直接加熱する方式(内熱式)がある。
【0006】
特許文献1に記載のバッチ方式においては、箱状炉の炉体の中に木材を充填し、発生ガスを別途燃焼装置で燃焼させ、箱状炉に供給する。木材全体の温度を700℃以上まで上げて炭化の促進を行う。特許文献2においては、バッチ方式の炉は原料供給口および炭の排出口を有する箱型の炉本体と、該本体内に設置された炭化室からなり、木材は炭化室内に充填される。炉本体の上部空間に空気を吹き込み、木材乾留で発生した可燃ガスを燃焼させ、燃焼ガスを炉本体と炭化室の間に流し、炭化室の煉瓦を介して炭化室内の木材が400〜800℃で乾留される。
【0007】
ロータリーキルン方式である特許文献3においては、ロータリーキルンまたはロータリードライヤーで木材を300〜1000℃、酸素濃度10%以下で加熱し、加熱で発生するガスを前記ロータリーキルンまたは前記ロータリードライヤーと連結した燃焼炉で燃焼させる。尚、燃焼炉のガス吹込口がロータリーキルンまたはロータリードライヤーのガス排出口よりも高い位置に設置され、加熱で発生したガスの燃焼を800〜1000℃で行い、ロータリーキルンまたはロータリードライヤーの両端の胴体部とマントル部の間隙に吸気流入防止用の覆いを設置し、ロータリーキルンまたはロータリードライヤーの加熱物取り出し口が二重ダンパー構造であることが記載されている。
【0008】
また、特許文献4には以下のような技術が開示されている。結晶水(結合水)を含有する鉱石を加熱し、結晶水を水蒸気として脱水させることにより、鉱石を多孔質化させた多孔質鉱石を生成する。次に、木材等の有機物を乾溜した乾溜ガス(有機ガス)又はコールタール等の有機液体に多孔質鉱石を接触させる。乾溜ガス又は有機液体に含まれるタール等の有機化合物が多孔質鉱石の表面に付着する。次に、有機化合物が付着した多孔質鉱石を500℃以上に加熱し、含有する鉄等の元素の酸化物の一部が有機化合物中の炭素によって還元された鉱石を生成する。還元された鉱石又は有機化合物が付着した多孔質鉱石は、製鉄又は製鋼等の製錬において鉄等の元素の酸化物をより容易に還元することが可能になっているとされている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平03−122191号公報
【特許文献2】特開2007−146016号公報
【特許文献3】特開2002−241762号公報
【特許文献4】特開2008−95175号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
上記の特許文献1〜3等に記載の従来技術においては、以下の(a)〜(d)の課題がある。
【0011】
(a)バッチ方式およびロータリーキルン方式とも加熱温度、雰囲気条件等を制御することでのみバイオマスを炭化する方法である。炭化されたバイオマス(バイオマス炭)の収率は、バッチ方式で約25mass%、ロータリーキルン方式で約20mass%であり、それ以上にバイオマス炭の収率を向上させることは難しい。
【0012】
(b)発生するガスおよびタールを燃焼させ、バイオマスの乾留の熱源とすると、ガスやタール分はバイオマス炭として回収できない。発生するタールは積極的にバイオマス炭に変換することが望ましい。
【0013】
(c)特許文献1、2のバッチ方式においては、連続プロセスでないため、炭化に5時間以上を要し、経済的でない。
【0014】
(d)バイオマス乾留生成物中には、軽質ガス以外に木酢および重質炭化水素(タール)成分も発生し、タール成分を完全燃焼するためには空気比、温度等の管理が必要となる。また、燃焼処理を行わず、乾留生成物を別途利用するためにはタール除去等の排ガス処理が必要となる。
【0015】
一方で、鉄鋼業においては、製鉄原料として鉄含有率の高い高品位のヘマタイト鉄鉱石を使用しているが、その資源量は減少傾向となっており、そのため資源量の豊富な低品位鉄鉱石の効率的な利用方法を見出すことが緊急の課題である。低品位鉄鉱石はAl23等の脈石成分が高く、また結晶水が多いために、高炉に使用した場合はコークス、微粉炭等の還元材の使用を増加させたり、高炉内で粉化し、通気性を阻害したりする要因となる。また焼結原料として焼結機で使用した場合には焼結鉱の強度等の品質が低下する。そのため、コークス等の凝結材を増加させる必要がある。したがって、このような低品位の鉄鉱石を事前処理することで、結晶水を除去し、酸化鉄の一部でも還元できれば、高炉で使用する際に還元材比を低減することが可能であると考えられる。
【0016】
しかし、特許文献4に記載の、加熱により結晶水を除去し、鉱石の一部を還元する技術には、以下の(e)〜(h)の課題がある。
【0017】
(e)結合水を有する鉱石から多孔質鉱石を得る際に別途加熱処理が必要である。
【0018】
(f)バイオマスの乾留と鉄鉱石への有機化合物を含む有機液体または有機ガスを接触される方法が別々あるいは一連の工程(シリーズ)で行われているため、別々の装置が必要となり、熱損失等が懸念され、外部からの熱供給が必要となる。
【0019】
(g)さらに、バイオマス乾留と多孔質鉱石への炭素析出を別々の装置で実施する、すなわち、バイオマス乾留生成物(タール、ガス)と多孔質鉱石が近接していないことから炭素析出の効率が悪い。
【0020】
(h)1つの装置で実施するために、竪型炉内に事前にバイオマスと鉄鉱石を混合し、充填し、乾留する方法を用いることも考えられるが、バイオマスと鉄鉱石の密度等の物性が異なることから、装入時に偏析し、バイオマスと鉄鉱石を均一に混合することが困難である。
【0021】
このように従来の技術では、積極的にバイオマス炭の収率を向上させることは困難であるとともに、バイオマスの乾留で発生する有機化合物を含む有機液体または有機ガスを用いて鉄鉱石を効率的に改質することも困難である。
【0022】
したがって本発明の目的は、このような従来技術の課題を解決し、バイオマスを乾留してバイオマス炭を製造する際に、バイオマス炭の収率を向上可能であるとともに、低品位の鉄鉱石を改質して製鉄プロセスで使用できる、バイオマスの利用方法を提供することにある。
【課題を解決するための手段】
【0023】
このような課題を解決するための本発明の特徴は以下の通りである。
(1)バイオマスを乾留して製造されるバイオマス炭を製鉄プロセスで使用するバイオマスの利用方法であって、バイオマスを粉砕してバイオマス粉砕物を得る工程と、鉄分含有物質を粉砕して鉄分含有物質粉砕物を得る工程と、前記バイオマス粉砕物と前記鉄分含有物質粉砕物とを混合して混合物を得る工程と、前記混合物を乾留してバイオマス炭と炭素析出鉄分含有物質との混合物である混合乾留物を得る工程とを有し、前記混合乾留物を製鉄プロセスで使用することを特徴とするバイオマスの利用方法。
(2)さらに、混合乾留物をバイオマス炭と炭素析出鉄分含有物質とに分級する工程を有し、該分級されたバイオマス炭と炭素析出鉄分含有物質とを製鉄プロセスで使用することを特徴とする(1)に記載のバイオマスの利用方法。
(3)分級された炭素析出鉄分含有物質を成型して製鉄プロセスで使用することを特徴とする(2)に記載のバイオマスの利用方法。
(4)バイオマス粉砕物と鉄分含有物質粉砕物との平均粒径比が3以上であることを特徴とする(1)ないし(3)のいずれかに記載のバイオマスの利用方法。
【発明の効果】
【0024】
本発明によれば、バイオマスを乾留して製造されるバイオマス炭の収率を向上させることが可能となる。また、鉄分含有物質は乾留炉内でバイオマス由来の炭素が付着するとともに鉄分の一部が還元され、鉄分含有物質が改質できる。これにより低品位の鉄分含有物質であっても、製鉄プロセスで効率的に使用することができ、石炭の削減等に寄与できる。
【図面の簡単な説明】
【0025】
【図1】本発明の一実施形態の説明図。
【図2】乾留工程で用いるロータリーキルンの一実施形態を示す概略図。
【図3】実施例で用いた鉄鉱石の熱質量測定結果を示すグラフ。
【図4】実施例で用いた鉄鉱石の熱処理温度と比表面積の関係を示すグラフ。
【発明を実施するための形態】
【0026】
本発明では、バイオマスと鉄分含有物質とを同時に熱処理し、乾留されたバイオマス炭を製鉄プロセスの還元材として利用し、熱処理された鉄分含有物質を製鉄プロセスの鉄源として利用する。バイオマスと鉄分含有物質を同時に熱処理し、乾留によりバイオマス炭を製造するとともに、乾留時にバイオマス炭から発生する乾留生成物(ガス、タール)を近傍に位置する鉄分含有物質に高温で接触させて、バイオマス由来の乾留生成物中の炭素を析出させるとともに鉄分の一部が還元されて、鉄分含有物質を効率的に高品質のものへと改質することができる。
【0027】
バイオマスとは、ある一定量集積した動植物資源とこれを起源とする廃棄物の総称(ただし、化石資源を除く)であり、本発明で用いるバイオマスには、農業系、林業系、畜産系、水産系、廃棄物系等の、熱分解して炭化物を生成するあらゆるバイオマスを用いることができる。有効発熱量の高いバイオマスを用いることが好ましく、木質系バイオマスを用いることが好ましい。木質系バイオマスとしては、パルプ黒液、チップダスト等の製紙副産物、樹皮、のこ屑等の製材副産物、枝、葉、梢、端尺材等の林地残材、スギ、ヒノキ、マツ類等の除間伐材、食用菌類の廃ホダ木等の特用林産からのもの、シイ、コナラ、マツ等の薪炭林、ヤナギ、ポプラ、ユーカリ、マツ等の短伐期林業等の林業系バイオマスや、市町村の街路樹、個人宅の庭木等の剪定枝条等の一般廃棄物や、国や県の街路樹、企業の庭木等の剪定枝条、建設・建築廃材等の産業廃棄物等が挙げられる。農業系バイオマスに分類される、廃棄物・副産物を発生源とする籾殻、麦わら、稲わら、サトウキビカス、パームヤシ等や、エネルギー作物を発生源とする米糠、菜種、大豆等の農業系バイオマスの一部も木質系バイオマスとして好適に用いることができる。
【0028】
また、バイオマスの乾留とは、バイオマスの熱分解であり、空気(酸素)の供給を遮断または制限して加熱し、気体(木ガスとも呼ばれる)、液体(タール)、固体(炭)の生成物を得る技術である。バイオマスを熱分解して得られる液体を静置あるいは蒸留によって褐色透明な液(酢液)を分離して除いた黒褐色の高粘性の液状物をタールと呼ぶ場合もあるが、本発明ではタールと酢酸とが混合された状態の液体をタールと呼ぶ。
【0029】
本発明で用いる鉄分含有物質には、赤鉄鉱、褐鉄鉱、磁鉄鉱、菱鉄鉱、硫化鉄鉱、鉄硅酸塩鉱物等の鉄鉱石が好適であり、さらに製鉄所で発生する鉄を多く含むダスト等も本発明に使用できる。好ましいものは、結晶水を有し、結晶水の脱離に伴い細孔および比表面積の増加を発現する、低品位の鉄鉱石であり、加熱後の比表面積が10m2/g以上となる鉄分含有物質である。
【0030】
本発明の一実施形態を図1を用いて説明する。バイオマス1および鉄分含有物質2は混合工程5に入るサイズに破砕工程3、4でそれぞれ破砕(粉砕)され、混合工程5で均一に混合される。バイオマス/鉄鉱石の質量混合比の範囲については必要のつど適宜設定できる。鉄鉱石が多いほど、見かけ上のバイオマス炭の収率は大きくなる。混合されたバイオマス1と鉄分含有物質2の混合物は乾留工程6に供給され、不活性雰囲気で加熱されて同時に熱処理される。その際バイオマス1は乾留処理され、バイオマス炭と乾留ガス・タールが生成される。他方、鉄分含有物質2は加熱に伴い吸着水、結晶水が脱水処理され、細孔が発生し、比表面積が増大する。この鉄分含有物質にバイオマスから発生する乾留ガスやタールが接触し、乾留ガスおよびタールが付着し、その炭素分が析出する。析出した炭素の一部は鉄分含有物質の還元に供与される。乾留工程6により得られたバイオマス炭ならびに炭素析出した鉄分含有物質の混合物である混合乾留物は比重差あるいは粒径差により分級工程8で分級され、バイオマス炭9(炭化物)と炭素析出鉄分含有物質10とに分離される。バイオマス炭9は図示しない粉砕、造粒等の処理により、製鉄プロセスに供給され、還元材として利用される。一方、炭素析出鉄分含有物質10はそのまま、あるいは、必要に応じて、成型工程11で成型され製鉄プロセスに供給され、鉄源として利用される。
【0031】
バイオマス炭と炭素析出鉄分含有物質を分級せずに、混合乾留物のまま粉砕あるいは成型して、製鉄プロセスに利用することもできる。
【0032】
本発明において、乾留工程6における加熱・乾留温度の下限は鉄分含有物質に含まれる結晶水の脱離温度以上(350℃以上)であり、バイオマスから乾留ガス・タールが発生する温度以上(400℃以上)であることが好ましい。バイオマスの乾留ガス・タール中にはバイオマス付着水分あるいは分解により発生する水分が含まれている。この水分は鉄分含有物質上に析出した炭素および/またはバイオマス炭と反応して、COとH2とを生成する。本発明はバイオマス中に含まれる炭素の回収率を向上させることを目的としており、乾留工程6における加熱・乾留温度はその反応が顕著に起こる温度であることが好ましく、その上限は800℃とすることが好ましい。より好ましくは、450〜750℃で乾留を行う。乾留の終点は原料のバイオマスの質量減少が十分小さくなった時点とするとよい。実際には乾留温度毎に滞留時間を適宜定めるとよい。例えば、400℃で30分以上で必要な質量減少は進行しなくなる。なお、乾留工程6においては不活性雰囲気中でバイオマス粉砕物と鉄分含有物質粉砕物との混合物の加熱を行い、バイオマスを乾留するものであるが、鉄分含有物質のみについて言えば、この工程は加熱工程と呼ぶのが適当である。
【0033】
乾留工程6は、装置内で撹拌、混合機能を有する装置を用いることが好ましく、具体的にはロータリーキルン方式のような回転炉を用いることが好ましい。ロータリーキルン炉では回転により、機械的にバイオマスと鉄分含有物質とを混合できる。さらに、バイオマス以外の低温で溶融する不純物が含有された場合、例えば、プラスチックなどがバイオマスに混合されており、ロータリーキルン内で溶融し、塊状化したり、キルン内壁に付着しキルンリングを生成したりする可能性があるが、乾留温度範囲で溶融しない鉄分含有物質を混合すれば、塊状化・付着は防止することができる。一方で、固定層のような竪型移動層式の炉を用いる場合には、バイオマスおよび鉄分含有物質が装入の際に偏析する恐れがある。また、流動層方式式の炉を用いる場合には、装置下部から供給されるガスによりバイオマスと鉄分含有物質との混合物が流動化され、撹拌されるが、バイオマスと鉄分含有物質の密度差が異なることから偏析する恐れがある。
【0034】
バイオマスと鉄分含有物質の破砕工程3、4で破砕後の粒度は、鉄分含有物質上への効率的なタール・ガス付着およびタール・ガス中炭素の析出の点から、バイオマス粉砕物と鉄分含有物質粉砕物との平均粒径比(バイオマス粉砕物/鉄分含有物質粉砕物)で3以上が好ましく、より好ましくは5以上である。粒径比が大きいほどバイオマス表面での鉄分含有物質との接触がよい。また、乾留工程6以降の分級工程8においても粒径比が大きいほど、分級が容易である。粒径の評価方法は適宜定めてよいが、本発明では50%通過の粒径とした。また、この方法が推奨できる。
【0035】
成型工程11は、傾斜した回転皿で行う転動造粒、円筒状のダイスから押し出す押し出し成型、回転ロール表面のモールドに粉体を供給するブリケッティングロールの圧縮成型機等、通常使用されている成型機を用いて行なえば良い。
【0036】
乾留工程6で発生する発生ガス7は乾留ガス・タール中の炭素分が鉄分含有物質に付着析出した後のガスであり、重質タールが除去されたものであり、軽質化されている。発生ガス7は通常の排ガス処理装置(例えば、燃焼炉)で処理してもよいが、乾留工程6の熱源として利用することもできる。
【0037】
乾留工程6の熱源は上記のように発生ガス7の燃焼により得ても良いが、重油、プロパン等燃料ガスを燃焼させ加熱ガスとして用いてもよい。また、燃料ガスを燃焼させる方法以外に、電気加熱により加熱してもよい。電気加熱の場合には乾留工程6を分割して温度制御することが可能である。
【0038】
乾留工程6から回収されるバイオマス炭9および炭素析出鉄分含有物質10は、処理温度が高く、高温で排出されることから、発火等の安全性を考慮して、不活性ガス等で冷却されることが好ましい。冷却ガスの温度は200℃程度であればよく、より好ましくは100℃以下とする。
【0039】
次に、乾留工程で外熱式のロータリーキルン炉を用いる場合の、本発明の一実施形態を図2を用いて説明する。
【0040】
図2において、ロータリーキルン炉20の装置本体21は、外管22と内管23とで構成されている。この内管23は外管22の内部長手方向に外管22と同芯状に配置されている。そして、内管23の内部がバイオマスおよび鉄分含有物質の通路24(処理用空間)を構成し、また外管22と内管23の間の空間が加熱ガスの通路25を構成している。
【0041】
図2の装置を用いてバイオマスと鉄分含有物質との混合物を乾留する際には、事前に破砕され、混合されたバイオマスおよび鉄分含有物質18をロータリーキルン本体21の一端側より材料供給用のスクリューフィーダー29を介して処理空間24に供給する。加熱ガス(熱風)19は熱風導管31を介しては加熱ガス空間25に供給される。27は被処理材の定量供給装置、28、30は駆動モータ、32は加熱ガスの排出口、26は処理された被処理材及び発生ガスの排出口を示す。
【0042】
加熱ガスの通路25に供給された加熱ガスは内管23の全体を加熱し、その管壁を通じてバイオマス及び鉄分含有物質が加熱され、乾留される。加熱ガスの通路25を流れた加熱ガスは装置本体21の他端側の排出口32から排出される。
【0043】
一方、内管23内部の処理空間24に供給されたバイオマスおよび鉄分含有物質は内管23の回転によって混合されながら処理空間24を移送されつつ加熱され、この加熱によって鉄分含有物質の付着水および結晶水、バイオマスの含有水分が脱離し、さらにバイオマスは移動に伴い、乾留され、バイオマス炭となるとともに乾留ガス・タールを発生する。発生した乾留ガス・タールは近接する鉄分含有物質と接触し、炭化水素系のガス・タール分が付着する。さらに付着した炭化水素系のガス・タール分は鉄分含有物質上で脱水素反応をおこし、炭素として鉄分含有物質上に析出する。
【0044】
このようにして乾留工程での加熱・乾留処理が完了したバイオマス炭および炭素析出鉄分含有物質33は装置本体21の排出口26から排出され、同時に重質のタールが除去された発生ガス34も排出される。
【実施例1】
【0045】
乾留工程において、図2に示すロータリーキルンを用い、バイオマスと鉄分含有物質の加熱処理を実施した。
【0046】
ロータリーキルン装置構成は、
内管:内径150mmφ×1500mmL、
外管:内径450mmφ×1200mmL、
装置全体の傾斜:1度、
キルン回転数:2.0rpm、
加熱方式:3分割電気加熱、
であった。ガス収率算出のための内部標準として、窒素をキャリアガスとして通気した(30L/h)。
【0047】
試験に用いたバイオマス(杉の廃木材)の組成を表1に、鉄分含有物質として用いた鉄鉱石(鉄鉱石A、鉄鉱石B)の組成を表2に示す。鉄鉱石Aは水分含有量の多い低品位鉱石、鉄鉱石Bは水分含有量の少ない高品位鉱石である。
【0048】
【表1】

【0049】
【表2】

【0050】
試験に用いた鉄鉱石Aの熱質量測定結果を図3に示す。図3によれば、350℃でほぼ結晶水の脱離が確認されている。また、図4には試験に用いた鉄鉱石の熱処理温度と比表面積の関係を示す。鉄鉱石Aは加熱により比表面積が増加することが分かる。
【0051】
[本発明例1〜4]図1に示すものと同様のフローで、バイオマスと鉄鉱石Aとを乾留して、分級し、バイオマス炭と炭素析出鉄鉱石を製造した。
【0052】
事前に粉砕したバイオマスと鉄鉱石とを混合し、試験に用いた。ロータリーキルン内の滞留時間は約56分である。ロータリーキルンへのバイオマスと鉄鉱石の質量比1混合物の供給速度は2.0kg/hとした。ガス収率はキャリアガスとした窒素量およびガスクロマトグラフによるガス分析結果から算出し、タール収率および水分収率は図示していないロータリーキルン後段のトラップ(氷冷)より回収した質量より算出した。固体収率はガス収率とタールおよび水収率の差分とした。また、鉄分含有物質への炭素析出量については、得られたバイオマス炭と炭素析出鉄鉱石との混合乾留物を比重により分離し(水中)、バイオマス炭、鉄鉱石への炭素析出量を分析した。表3に、試験条件と、分析結果を併せて示す。
【0053】
【表3】

【0054】
[本発明例5]本発明例5として、鉄鉱石Bを用いて、本発明例1と同様に試験を行った。表3に、試験条件と、分析結果を併せて示す。
【0055】
[本発明例6]本発明例6として、鉄鉱石Aを用い、バイオマス/鉄鉱石粒径比1.0の条件で、本発明例1、3と同様に試験を行った。表3に、試験条件と、分析結果を併せて示す。
【0056】
[比較例1]比較例1として鉄鉱石を混合せずに、バイオマスのみで試験を行った。表3に、試験条件と、分析結果を併せて示す。
【0057】
表3によれば、鉄鉱石と混合して乾留することで、バイオマス炭の収率が向上することが分かる。鉄鉱石には炭素が析出し、水分含有量の多い低品位の鉄鉱石Aは鉄鉱石Bよりも比表面積が大きく、細孔容積も大きいため、低品位の鉄鉱石Aを用いた方が、高品位の鉄鉱石Bを用いた場合よりも、炭素の析出量が増加している。バイオマス/鉄鉱石粒径比が大きいほど、バイオマス炭の収率、炭素の析出量が増加する。また、タール分はGC−MS(ガスクロマトグラフを直結した質量分析計)を用いた分析の結果、軽質化していることがわかった。
【符号の説明】
【0058】
1 バイオマス
2 鉄分含有物質
3 破砕工程
4 破砕工程
5 混合工程
6 乾留工程
7 発生ガス
8 分級工程
9 バイオマス炭(炭化物)
10 炭素析出鉄分含有物質
11 成型工程
18 バイオマス、鉄分含有物質
19 加熱ガス
20 ロータリーキルン炉
21 ロータリーキルン本体
22 外管
23 内管
24 処理空間
25 加熱ガス空間
26 排出口
27 定量供給装置
28 駆動モータ
29 スクリューフィーダー
30 駆動モータ
31 熱風導管
32 加熱ガスの排出口
33 バイオマス炭、炭素析出鉄分含有物質
34 発生ガス

【特許請求の範囲】
【請求項1】
バイオマスを乾留して製造されるバイオマス炭を製鉄プロセスで使用するバイオマスの利用方法であって、バイオマスを粉砕してバイオマス粉砕物を得る工程と、鉄分含有物質を粉砕して鉄分含有物質粉砕物を得る工程と、前記バイオマス粉砕物と前記鉄分含有物質粉砕物とを混合して混合物を得る工程と、前記混合物を乾留してバイオマス炭と炭素析出鉄分含有物質との混合物である混合乾留物を得る工程とを有し、前記混合乾留物を製鉄プロセスで使用することを特徴とするバイオマスの利用方法。
【請求項2】
さらに、混合乾留物をバイオマス炭と炭素析出鉄分含有物質とに分級する工程を有し、該分級されたバイオマス炭と炭素析出鉄分含有物質とを製鉄プロセスで使用することを特徴とする請求項1に記載のバイオマスの利用方法。
【請求項3】
分級された炭素析出鉄分含有物質を成型して製鉄プロセスで使用することを特徴とする請求項2に記載のバイオマスの利用方法。
【請求項4】
バイオマス粉砕物と鉄分含有物質粉砕物との平均粒径比が3以上であることを特徴とする請求項1ないし請求項3のいずれかに記載のバイオマスの利用方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−222475(P2010−222475A)
【公開日】平成22年10月7日(2010.10.7)
【国際特許分類】
【出願番号】特願2009−71487(P2009−71487)
【出願日】平成21年3月24日(2009.3.24)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】