説明

バルブタイミング調整装置

【課題】進角室と遅角室との間の作動流体の漏れを抑制しつつ、ハウジングに対するベーンロータの位相を高精度に制御可能なバルブタイミング調整装置を提供する。
【解決手段】特定形状部20は、ベーン161のボス部160側の端部から、カムシャフトの回転に応じてベーンロータ16に対し遅角方向または進角方向に周期的に作用する変動トルクの平均の方向とは反対の方向、すなわち進角方向へボス部160の外壁に沿って延びるよう形成されている。特定溝部60は、特定形状部20の形状に対応するよう、シュー131の周壁130とは反対側の端部のベーン161側から進角方向へ切り欠かれるよう形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の吸気弁および排気弁の少なくとも一方の開閉タイミングを運転条件に応じて変更するためのバルブタイミング調整装置に関する。
【背景技術】
【0002】
従来、内燃機関の駆動軸と同期回転するハウジングを介して従動軸を駆動し、ハウジングと従動軸との相対回転による位相差により吸気弁および排気弁の少なくとも一方の開閉タイミングの調整を行うベーン式のバルブタイミング調整装置が知られている。例えば特許文献1に開示されたバルブタイミング調整装置では、ハウジング内に形成される収容室を、ベーンロータのボス部から径外方向に突出するベーンによって仕切ることで、ベーンの両側に遅角室および進角室を形成している。そして、遅角室および進角室に作動流体を供給することにより、ベーンロータをハウジングに対し遅角方向または進角方向へ相対回転させている。このバルブタイミング調整装置では、ベーンの遅角室側の壁面の面積と進角室側の壁面の面積とは、ほぼ同じである。そのため、ベーンロータがハウジングに対し中立位置にあるとき、すなわちベーンが収容室の中間位置にあるとき、ベーンの両側の遅角室と進角室とは、ほぼ同じ形状および容積となる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2003−328707号公報
【特許文献2】特開2000−179314号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、バルブタイミング調整装置が回転するとき、従動軸の回転に応じて遅角方向または進角方向に周期的に変動する変動トルクがベーンロータに対し作用する。この変動トルクの平均の方向は、遅角方向または進角方向のいずれかの方向となる。特許文献1には、ベーンロータに対し作用する変動トルクの平均の方向が遅角方向であることが例示されている。このバルブタイミング調整装置では、ベーンロータを最進角位置または最遅角位置以外の目標の位相で保持するとき、進角室の作動流体の圧力を遅角室の作動流体の圧力より大きくすることにより、ベーンロータに作用する変動トルクの平均の力を打ち消すことでベーンロータが相対回転しないようにしている。このとき、進角室と遅角室との間に差圧が生じるため、進角室の作動流体が遅角室に漏れるおそれがある。進角室と遅角室との間で作動流体の漏れがあると、ベーンロータを目標の位相で保持するのが困難になる。その結果、燃費の悪化や排ガス性能の悪化を招くおそれがある。
【0005】
特許文献2に記載のバルブタイミング調整装置では、ベーンロータをハウジングに対し進角方向へ付勢するスプリングを設け、内燃機関の停止時にスプリングの付勢力によりベーンロータを最進角位置に移動させることで、内燃機関の始動性を確保しようとしている。このバルブタイミング調整装置では、変動トルクの平均の力は特許文献1のバルブタイミング調整装置と同様、ベーンロータに対し遅角方向に作用するが、当該変動トルクの平均の力はスプリングの付勢力により打ち消される。しかしながら、変動トルクの平均の力よりもスプリングの付勢力のほうが大きく設定されているため、ベーンロータを目標の位相で保持するとき、遅角室の作動流体の圧力を進角室の作動流体の圧力より大きくする必要がある。このとき、進角室と遅角室との間に差圧が生じるため、特許文献1のバルブタイミング調整装置と同様の問題が生じるおそれがある。
【0006】
本発明は、上述の問題に鑑みてなされたものであり、その目的は、進角室と遅角室との間の作動流体の漏れを抑制しつつ、ハウジングに対するベーンロータの位相を高精度に制御可能なバルブタイミング調整装置を提供することにある。
【課題を解決するための手段】
【0007】
請求項1に記載の発明は、内燃機関の駆動力を駆動軸から従動軸に伝達する駆動力伝達系に設けられ、従動軸により開閉駆動される吸気弁および排気弁の少なくとも一方の開閉タイミングを調整するバルブタイミング調整装置であって、ハウジングとベーンロータと特定形状部と特定溝部とを備えている。ハウジングは、筒部、当該筒部の両端を塞ぐ板部、および、筒部の内壁から径内方向へ延び板部と筒部との間において収容室を形成するシューを有している。ハウジングは、筒部の軸を回転中心として駆動軸および従動軸の一方とともに回転する。ベーンロータは、ハウジングに収容され、シューの筒部とは反対側の端部と摺接可能な外壁を有する円筒状のボス部、および、当該ボス部の外壁から径外方向に突出することで収容室を遅角室および進角室に仕切りボス部とは反対側の端部が筒部の内壁と摺接可能なベーンを有している。ベーンロータは、ボス部の軸を回転中心として駆動軸および従動軸の他方とともに回転し、遅角室および進角室に供給される作動流体の圧力によりハウジングに対し遅角方向または進角方向に相対回転するよう駆動される。特定形状部は、ベーンのボス部側の端部から進角方向または遅角方向へボス部の外壁に沿って延びるよう形成されている。特定溝部は、特定形状部の形状に対応するよう、シューの筒部とは反対側の端部のベーン側から進角方向または遅角方向へ切り欠かれるよう形成されている。
そして、本発明では、特定形状部は、ベーンから、従動軸の回転に応じてベーンロータに対し遅角方向または進角方向に周期的に作用する変動トルクの平均の方向とは反対の方向へ延びるよう形成されている。そのため、ベーンの遅角室側の壁面または進角室側の壁面のうち特定形状部が形成された壁面は、特定形状部が形成されていない壁面と比べ、遅角室または進角室に露出する面積が特定形状部の分小さい。
【0008】
よって、遅角室および進角室に供給される作動流体の圧力のうちベーンに対し遅角方向または進角方向、すなわちベーンロータの周方向の圧力が有効に作用する面積(以下、「有効作用面積」という。)は、ベーンの、特定形状部が形成された壁面側よりも特定形状部が形成されていない壁面側のほうが大きい。なお、有効作用面積は、ベーンが接する遅角室または進角室の、ボス部の軸を含む仮想平面による断面の面積と一致する。そのため、進角室の作動流体の圧力と遅角室の作動流体の圧力とが同じ場合、ベーンが作動流体から受ける力は、特定形状部が形成された壁面側からよりも、特定形状部が形成されていない壁面側からのほうが大きくなる。これにより、ベーンロータに対し作用する変動トルクの平均の力を所定量打ち消すことができる。したがって、進角室の作動流体と遅角室の作動流体との差圧を大きくすることなく、ベーンロータを目標の位相で保持するのが容易になる。よって、進角室と遅角室との間の作動流体の漏れを抑制しつつ、ハウジングに対するベーンロータの位相を高精度に制御することができる。
【0009】
請求項2に記載の発明では、特定形状部は、ボス部とは反対側に、ボス部の軸を中心とする仮想円筒面の一部と一致する特定曲面を有している。ここで、ハウジングの筒部の内径をR、ボス部の外径をr1、仮想円筒面の外径をr2、ボス部の軸方向の長さをt、遅角室および進角室の作動流体の平均の圧力をP、変動トルクの平均値をΔTとすると、ベーンロータ、特定形状部およびハウジングは、{(R−r1)−(R−r2)}×t×P=ΔTの関係を満たすよう形成されている。この関係は、「ベーンの進角室側の有効作用面積と遅角室側の有効作用面積との差分に相当する面積」に作用する作動流体の平均の力が、変動トルクの平均値と等しいことを表している。よって、この関係を満たす構成の本発明では、進角室の作動流体の圧力と遅角室の作動流体の圧力とを同じにすることのみで、ベーンロータに対し作用する変動トルクの平均の力を打ち消すことができる。したがって、進角室の作動流体と遅角室の作動流体との差圧をなくすことができるとともに、ベーンロータを目標の位相で保持するのがさらに容易になる。よって、進角室と遅角室との間の作動流体の漏れをさらに抑制しつつ、ハウジングに対するベーンロータの位相をさらに高精度に制御することができる。
【0010】
請求項3に記載の発明では、ハウジングの板部は、特定形状部、特定溝部、ボス部、および、板部により囲まれる空間とハウジングの外部とを連通する連通孔を有している。本発明では、ベーンロータがハウジングに対し相対回転するとき、前記空間の容積は増減する。そのため、仮に前記空間が密閉空間であった場合、前記空間の圧力が増減することで、ベーンロータのハウジングに対する円滑な相対回転が妨げられるおそれがある。そこで、本発明では、前記空間とハウジングの外部とを連通する連通孔を形成することにより、ベーンロータがハウジングに対し相対回転するとき、連通孔を経由して前記空間の圧力をハウジングの外部へ逃がすことができる。したがって、ベーンロータがハウジングに対し相対回転するときの前記空間の圧力の変動を抑制でき、ベーンロータを円滑に相対回転させることができる。
【図面の簡単な説明】
【0011】
【図1】本発明の一実施形態によるバルブタイミング調整装置を示す図であって、ベーンロータが最進角位置にある状態を示す図。
【図2】図1のII−II線断面図。
【図3】(A)は本発明の一実施形態によるバルブタイミング調整装置およびその近傍を示す模式図、(B)はバルブタイミング調整装置のベーンロータに作用する変動トルクの時間の経過に伴う変化を示す図。
【図4】本発明の一実施形態によるバルブタイミング調整装置を示す図であって、ベーンロータが中間位置にある状態を示す図。
【図5】本発明の一実施形態によるバルブタイミング調整装置を示す図であって、ベーンロータが最遅角位置にある状態を示す図。
【発明を実施するための形態】
【0012】
以下、本発明の実施形態を図に基づいて説明する。
(一実施形態)
本発明の一実施形態によるバルブタイミング調整装置を図1〜5に示す。
【0013】
図3(A)に示すように、本実施形態のバルブタイミング調整装置10が設置される駆動力伝達系では、内燃機関(以下、「エンジン」という。)6の駆動軸としてのクランクシャフト8に固定されるチェーンスプロケット81と、従動軸としてのカムシャフト7と同軸に設けられるギア138と、カムシャフト9に固定されるチェーンスプロケット92とにチェーン5が巻き掛けられ、クランクシャフト8からカムシャフト7、9に駆動力が伝達される。前述のギア138および後述のベーンロータ16は、それぞれ、バルブタイミング調整装置10の一部を構成している。カムシャフト7は排気弁71を開閉駆動し、カムシャフト9は吸気弁91を開閉駆動する。本実施形態のバルブタイミング調整装置10は、作動流体として作動油を用いる油圧制御式であり、ギア138をチェーン5に、ベーンロータ16をカムシャフト7に接続し、排気弁71の開閉タイミングを調整する。
【0014】
図1および2に示すように、バルブタイミング調整装置10は、ハウジング11、ベーンロータ16、特定形状部20、および、特定溝部60などを備えている。
ハウジング11は、図2に示すように、それぞれ別部材であるリアプレート12、シューハウジング13およびフロントプレート14から構成されている。リアプレート12、シューハウジング13およびフロントプレート14は、例えば鉄等の金属により焼結または鋳造等によって形成されている。ボルト18は、フロントプレート14のボルト穴、シューハウジング13のボルト穴を通り、ボルト穴が形成されたリアプレート12にねじ締め固定されている。これにより、リアプレート12、シューハウジング13およびフロントプレート14は同軸上に固定されている。ここで、リアプレート12およびフロントプレート14のそれぞれは、特許請求の範囲における「板部」に対応している。
【0015】
前述のギア138は、シューハウジング13の周壁130の外壁に形成されている。リアプレート12の中央には、リアプレート12を板厚方向に貫く穴128が形成されている。また、フロントプレート14の中央には、フロントプレート14を板厚方向に貫く穴148が形成されている。
ハウジング11は、ベーンロータ16を相対回転自在に収容している。ベーンロータ16は、カムシャフト7に固定され、カムシャフト7とともに回転する。ハウジング11、ベーンロータ16およびカムシャフト7は図2に示す矢印X方向からみて時計回り方向に回転する。以下この回転方向を進角方向とする。
【0016】
シューハウジング13は、図1に示すように、略円筒状の周壁130から径内方向に突出した4個のシュー131、132、133、134を周方向にほぼ等間隔で有している。周方向に隣接するシュー同士の間隙には扇状の収容室50が形成されている。ここで、周壁130は、特許請求の範囲における「筒部」に対応している。
ベーンロータ16は、例えば鉄等の金属により焼結または鋳造等によって形成されている。ベーンロータ16は、ハウジング11に収容される略円筒状のボス部160と、ボス部160から径外方向に突出する4個のベーン161、162、163、164とを有している。
【0017】
バルブタイミング調整装置10は、リアプレート12の穴128、ベーンロータ16のボス部160、および、フロントプレート14の穴148にカムシャフト7を通すことによりエンジン6に取り付けられる。
ベーンロータ16の各ベーンにおける外径は、シューハウジング13の周壁130における内径よりもやや小さく設定されている。また、ベーンロータ16のボス部160における外径は、シューハウジング13の各シューにおける内径よりもやや小さく設定されている。これにより、ベーンロータ16とシューハウジング13との間にはクリアランスが形成されている。
【0018】
各ベーンは各収容室50に相対回転自在に収容されており、各収容室50を、遅角室としての遅角油圧室と進角室としての進角油圧室とに二分している。図1に示す遅角方向、進角方向を表す矢印は、ハウジング11に対するベーンロータ16の遅角方向、進角方向を表している。カムシャフト7およびベーンロータ16は、ハウジング11に対し同軸に相対回転自在である。
【0019】
シュー131とベーン161との間に遅角油圧室51が形成され、シュー132とベーン162との間に遅角油圧室52が形成され、シュー133とベーン163との間に遅角油圧室53が形成され、シュー134とベーン164との間に遅角油圧室54が形成されている。また、シュー134とベーン161との間に進角油圧室55が形成され、シュー131とベーン162との間に進角油圧室56が形成され、シュー132とベーン163の間に進角油圧室57が形成され、シュー133とベーン164の間に進角油圧室58が形成されている。
【0020】
図2に示すように、カムシャフト7およびベーンロータ16のボス部160には、遅角油路100および進角油路110が形成されている。各遅角油圧室には遅角油路100から作動油が供給され、各進角油圧室には進角油路110から作動油が供給される。
両油路100、110には切換弁3が設けられる。当該切換弁3には、電子制御ユニット(以下、「ECU」という)4が接続される。ECU4は、CPU、ROMおよびRAM等を有する小型のコンピュータであり、入力される各種情報に基づき、車両に搭載された装置および機器類を制御する。ECU4は、切換弁3の駆動を制御することで両油路100、110への作動油の供給、ならびに両油路100、110からの作動油の排出を切り換えることにより、ハウジング11に対してベーンロータ16を相対回動し、クランクシャフト8に対するカムシャフト7の位相差を調整する。
【0021】
図1に示すように、各ベーンは、ボス部160とは反対側の端部にシール部材28を有している。シール部材28は、例えば樹脂、または、鉄等の金属により焼結または鋳造等によって形成されており、各ベーンのボス部160とは反対側の端部に形成された溝部に嵌合している。シール部材28は、それぞれ板ばねの付勢力により周壁130の内壁に向けて押されている。つまり、シール部材28(各ベーンのボス部160とは反対側の端部)は、周壁130の内壁と摺接可能である。これにより、各ベーンの端部と周壁130の内壁との間を通じて油圧室間に作動油が漏れることを防止している。
【0022】
図1および図2に示すように、ベーン161には、規制部材としてのストッパピストン30が設けられている。ストッパピストン30は、有底円筒状に形成され、ベーン161を回転軸方向に貫通して形成された孔17に回転軸方向に往復移動自在に収容されている。ストッパピストン30は、内部にスプリング34を収容する収容穴31を有している。スプリング34は、一端をフロントプレート14に係止されており、他端をストッパピストン30の収容穴31の底に係止されている。
【0023】
リアプレート12のベーンロータ16側端面、すなわちハウジング11の内壁面には圧入穴121が形成され、圧入穴121にリング36が圧入保持されている。リング36には、ストッパピストン30の端部32が入り込む穴部37が形成されている。つまり、ハウジング11の内壁に、ベーンロータ16側に開口する穴部37が形成されている。スプリング34は、リング36に向けてストッパピストン30を付勢する。なお、リング36の穴部37における内径は、ストッパピストン30の端部32の外径よりも大きく設定されている。
【0024】
図2に示すストッパピストン30がリング36の穴部37に入り込んだ状態では、ハウジング11に対するベーンロータ16の相対回転は拘束される。ストッパピストン30がリング36に入り込む所定角度位置は、クランクシャフト8に対するカムシャフト7の位相がエンジン6を始動するときに最適な始動位相であり、本実施形態の排気弁用のバルブタイミング調整装置10では最進角位置である。
【0025】
リング36のベーンロータ16とは反対側に形成された第1圧力室40は遅角油圧室51と連通し、ストッパピストン30の周囲に形成された第2圧力室41は進角油圧室55と連通している。第1圧力室40および第2圧力室41の油圧は、リング36の穴部37からストッパピストン30が抜け出る方向に働く。
【0026】
シュー131は、ベーン161側にストッパ面135を有している。ストッパ面135は、バルブタイミング調整装置10の作動時、ベーン161に当接することによりハウジング11に対するベーンロータ16の進角方向の相対回転を規制する。つまり、ベーン161とストッパ面135とが当接しているとき、ベーンロータ16は最進角位置にある(図1参照)。
【0027】
また、シュー134は、ベーン161側にストッパ面136を有している。ストッパ面136は、バルブタイミング調整装置10の作動時、ベーン161に当接することによりハウジング11に対するベーンロータ16の遅角方向の相対回転を規制する。つまり、ベーン161とストッパ面136とが当接しているとき、ベーンロータ16は最遅角位置にある(図5参照)。
このように、ベーンロータ16は、ベーン161がストッパ面135に当接する位置からストッパ面136に当接する位置まで、ハウジング11に対し相対回転可能である。なお、図4は、ベーンロータ16が最進角位置と最遅角位置との間、すなわち中間位置にある状態を示している。
【0028】
図3(A)に示すように、カムシャフト7に設けられたカムは、略卵形に形成されている。そのため、カムシャフト7は、排気弁71を開閉駆動するとき、排気弁71から変動トルク(カムトルク)を受ける。図3(B)に示すように、カムシャフト7が排気弁71を駆動するときに排気弁71から受ける変動トルクは正・負に変動する。当該変動トルクは、カムシャフト7を経由してベーンロータ16に作用する。変動トルクの正方向はハウジング11に対しベーンロータ16の遅角方向を表し、変動トルクの負方向はハウジング11に対しベーンロータ16の進角方向を表している。本実施形態では、変動トルクの平均は正方向、つまり遅角方向に働く(図1および図3(B)参照)。
【0029】
図1に示すように、特定形状部20は、複数のベーン(161、162、163、164)のうち特定のベーンであるベーン161のボス部160側の端部から進角方向、すなわちカムシャフト7の回転に応じてベーンロータ16に対し遅角方向または進角方向に周期的に作用する変動トルクの平均の方向(遅角方向)とは反対の方向(進角方向)へボス部160の外壁に沿って延びるよう形成されている。特定形状部20は、ボス部160およびベーン161と同じ材料で、ボス部160およびベーン161と一体に形成されている。
【0030】
特定形状部20は、円筒状の部材の周方向の一部を切り取ったような形状であり、図1に示すように、ボス部160の軸Ax方向から見て略円弧状に形成されている。特定形状部20は、ボス部160とは反対側に、ボス部160の軸Axを中心とする仮想円筒面Cの一部と一致する特定曲面21を有している。
【0031】
特定溝部60は、特定形状部20の形状に対応するよう、シュー131の周壁130とは反対側の端部のベーン161側から進角方向へ切り欠かれるよう形成されている。そのため、特定溝部60は、ボス部160の軸Ax方向から見て略円弧状に形成されている。特定溝部60は、特定形状部20の特定曲面21に対向または摺接する曲面61を有している。曲面61は、特定曲面21と同様、ボス部160の軸Axを中心とする仮想円筒面の一部と一致するよう形成されている。
【0032】
ここで、遅角油圧室51および進角油圧室55に供給される作動油の圧力のうちベーン161に対し遅角方向または進角方向、すなわちベーンロータ16の周方向の圧力が有効に作用する面積(「有効作用面積」)は、ベーン161の、特定形状部20が形成された壁面166側よりも特定形状部20が形成されていない壁面167側のほうが大きい。そのため、進角油圧室55の作動油の圧力と遅角油圧室51の作動油の圧力とが同じ場合、ベーン161が作動油から受ける力は、特定形状部20が形成された壁面166側(遅角油圧室51側)からよりも特定形状部20が形成されていない壁面167側(進角油圧室55側)からのほうが大きくなる。
【0033】
本実施形態では、図4および図2に示すように、周壁130の内径をR、ボス部160の外径をr1、仮想円筒面Cの外径をr2、ボス部160の軸方向の長さ(ベーンロータ16の厚さ)をt、各遅角油圧室および進角油圧室の作動油の平均の圧力をP、変動トルクの平均値をΔTとすると、ベーンロータ16および特定形状部20は、下記式1の関係を満たすよう形成されている。
{(R−r1)−(R−r2)}×t×P=ΔT ・・・式1
式1より、
(r2−r1)×t×P=ΔT ・・・式2
【0034】
すなわち、本実施形態では、ベーン161の進角油圧室55側の有効作用面積((R−r1)×t)は、ベーン161の遅角油圧室51側の有効作用面積((R−r2)×t)よりも(r2−r1)×t大きく、ベーン161の進角油圧室55側の有効作用面積とベーン161の遅角油圧室51側の有効作用面積との差分に相当する面積((r2−r1)×t)に作用する作動油の平均の力((r2−r1)×t×P)は、変動トルクの平均値(ΔT)と等しい。
なお、ベーン161の進角油圧室55側の有効作用面積は、ボス部160の軸Axを含む仮想平面による進角油圧室55の断面の面積と一致する。また、ベーン161の遅角油圧室51側の有効作用面積は、ボス部160の軸Axを含む仮想平面による遅角油圧室51の断面の面積と一致する。
【0035】
また、本実施形態では、図5に示すように、ハウジング11のリアプレート12は、特定形状部20、特定溝部60、ボス部160、フロントプレート14、および、リアプレート12により囲まれる空間Sとハウジング11の外部とを連通する連通孔122を有している。空間Sは、ベーンロータ16がハウジング11に対し相対回転するとき、容積が増減する。このとき、連通孔122を経由して空間Sの圧力をハウジング11の外部へ逃がすことができる。
【0036】
次に、バルブタイミング調整装置10の作動を図1〜5に基づき説明する。なお、図1および図2は、エンジン始動前、すなわちエンジン6が停止している時のバルブタイミング調整装置10の状態を示している。
【0037】
<エンジン始動時>
エンジン6が停止している状態ではストッパピストン30はリング36の穴部37に入り込んでいる(図2参照)。エンジン6を始動した直後の状態では、遅角油圧室51、52、53、54、進角油圧室55、56、57、58、第1圧力室40、第2圧力室41に油圧ポンプ1から十分に作動油が供給されていないので、ストッパピストン30はリング36の穴部37に入り込んだ状態を維持し、クランクシャフト8に対しカムシャフト7は最進角位置に保持されている。これにより、作動油が各油圧室に供給されるまでの間、カムシャフト7が受けるトルク変動によりハウジング11とベーンロータ16とが揺動振動して衝突し打音が発生することが防止されている。
【0038】
<エンジン始動後>
エンジン始動後、油圧ポンプ1から作動油が十分に供給されると、第1圧力室40および第2圧力室41に供給される油圧によりストッパピストン30がリング36から抜け出すので、ハウジング11に対しベーンロータ16は相対回転自在となる。そして、各遅角油圧室および各進角油圧室に加わる油圧を制御することにより、クランクシャフト8に対するカムシャフト7の位相差を調整する。
【0039】
<遅角作動時>
バルブタイミング調整装置10が遅角作動するとき、ECU4は、切換弁3に供給する駆動電流を制御する。切換弁3は、油圧ポンプ1と遅角油路100とを接続し、進角油路110とオイルパン2とを接続する。油圧ポンプ1から吐出される作動油は、遅角油路100を経由し、遅角油圧室51、52、53、54に供給される。遅角油圧室51、52、53、54の油圧がベーン161、162、163、164に作用し、ベーンロータ16を遅角方向に付勢するトルクを発生する。このとき、進角油圧室55、56、57、58の作動油は進角油路110を経由し、オイルパン2に排出される。遅角油圧室51、52、53、54の油圧の発生するトルクにより、ベーンロータ16は、ハウジング11に対し遅角方向に回動する。
【0040】
<進角作動時>
バルブタイミング調整装置10が進角作動するとき、ECU4は、切換弁3に供給する駆動電流を制御する。切換弁3は、油圧ポンプ1と進角油路110とを接続し、遅角油路100とオイルパン2とを接続する。油圧ポンプ1から吐出される作動油は、進角油路110を経由し、進角油圧室55、56、57、58に供給される。進角油圧室55、56、57、58の油圧は、ベーン161、162、163、164に作用し、ベーンロータ16を進角方向に付勢するトルクを発生する。このとき、遅角油圧室51、52、53、54の作動油は、遅角油路100を経由し、オイルパン2に排出される。進角油圧室55、56、57、58の油圧の発生するトルクにより、ベーンロータ16は、ハウジング11に対し進角方向に回動する。
【0041】
<中間保持作動時>
ベーンロータ16が目標位相に到達すると、ECU4は切換弁3に供給する駆動電流のデューティ比を制御する。これにより、切換弁3は、油圧ポンプ1と、遅角油路100および進角油路110との接続を遮断し、遅角油圧室51、52、53、54および進角油圧室55、56、57、58からオイルパン2に作動油が排出されることを規制する。このため、ベーンロータ16は目標位相に保持される。このとき、ベーンロータ16に対し遅角方向に変動トルクの平均が作用しているが、本実施形態ではベーン161の進角油圧室55側の有効作用面積とベーン161の遅角油圧室51側の有効作用面積との差分に相当する面積に作用する作動油の平均の力が変動トルクの平均値(ΔT)と等しいため、各進角油圧室と各遅角油圧室との間に差圧を形成することなく、ベーンロータ16を目標位相に保持することができる。
【0042】
<エンジン停止時作動>
バルブタイミング調整装置10の作動中にエンジン停止が指示されると、ベーンロータ16は、上記進角作動時と同様の作動によりハウジング11に対して進角方向に回転する。ベーンロータ16は、ベーン161がシュー131のストッパ面135に当接するまで進角方向へ回転し、最進角位置で回動が停止する(図1参照)。この状態において、ECU4は、油圧ポンプ1の作動を停止するとともに、切換弁3によって進角油路110とオイルパン2とを接続する。これにより、第2圧力室41の圧力が低下し、ストッパピストン30はスプリング34の付勢力によりリング36側へ移動する。その結果、ストッパピストン30は、リング36の穴部37に入り込む。
【0043】
以上説明したように、本実施形態では、特定形状部20は、ベーン161から、カムシャフト7の回転に応じてベーンロータ16に対し遅角方向または進角方向に周期的に作用する変動トルクの平均の方向とは反対の方向へ延びるよう形成されている。そのため、ベーン161の遅角油圧室51側の壁面166または進角油圧室55側の壁面167のうち特定形状部20が形成された壁面166は、特定形状部20が形成されていない壁面167と比べ、遅角油圧室51または進角油圧室55に露出する面積が特定形状部20の分小さい。
【0044】
よって、遅角油圧室51および進角油圧室55に供給される作動油の圧力のうちベーン161に対し遅角方向または進角方向、すなわちベーンロータ16の周方向の圧力が有効に作用する面積(「有効作用面積」)は、ベーン161の、特定形状部20が形成された壁面166側よりも、特定形状部20が形成されていない壁面167側のほうが大きい。なお、有効作用面積は、ベーン161が接する遅角油圧室51または進角油圧室55の、ボス部160の軸Axを含む仮想平面による断面の面積と一致する。そのため、各進角油圧室の作動油の圧力と各遅角油圧室の作動油の圧力とが同じ場合、ベーン161が作動油から受ける力は、特定形状部20が形成された壁面166側からよりも、特定形状部20が形成されていない壁面167側からのほうが大きくなる。これにより、ベーンロータ16に対し作用する変動トルクの平均の力を所定量打ち消すことができる。したがって、各進角油圧室の作動油と各遅角油圧室の作動油との差圧を大きくすることなく、ベーンロータ16を目標の位相で保持するのが容易になる。よって、進角油圧室と遅角油圧室との間の作動油の漏れを抑制しつつ、ハウジング11に対するベーンロータ16の位相を高精度に制御することができる。
【0045】
また、本実施形態では、特定形状部20は、ボス部160とは反対側に、ボス部160の軸Axを中心とする仮想円筒面Cの一部と一致する特定曲面21を有している。ここで、ハウジング11の周壁130の内径をR、ボス部160の外径をr1、仮想円筒面Cの外径をr2、ボス部160の軸方向の長さをt、遅角油圧室および進角油圧室の作動油の平均の圧力をP、変動トルクの平均値をΔTとすると、ベーンロータ16、特定形状部20およびハウジング11は、{(R−r1)−(R−r2)}×t×P=ΔTの関係を満たすよう形成されている。この関係は、「ベーン161の進角油圧室55側の有効作用面積と遅角油圧室51側の有効作用面積との差分に相当する面積」に作用する作動油の平均の力が、変動トルクの平均値と等しいことを表している。よって、この関係を満たす構成の本実施形態では、各進角油圧室の作動油の圧力と各遅角油圧室の作動油の圧力とを同じにすることのみで、ベーンロータ16に対し作用する変動トルクの平均の力を打ち消すことができる。したがって、進角油圧室の作動油と遅角油圧室の作動油との差圧をなくすことができるとともに、ベーンロータ16を目標の位相で保持するのがさらに容易になる。よって、進角油圧室と遅角油圧室との間の作動油の漏れをさらに抑制しつつ、ハウジング11に対するベーンロータ16の位相をさらに高精度に制御することができる。
【0046】
また、本実施形態では、ハウジング11のリアプレート12は、特定形状部20、特定溝部60、ボス部160、フロントプレート14、および、リアプレート12により囲まれる空間Sとハウジング11の外部とを連通する連通孔122を有している。本実施形態では、ベーンロータ16がハウジング11に対し相対回転するとき、空間Sの容積は増減する。そのため、仮に空間Sが密閉空間であった場合、空間Sの圧力が増減することで、ベーンロータ16のハウジング11に対する円滑な相対回転が妨げられるおそれがある。そこで、本実施形態では、空間Sとハウジング11の外部とを連通する連通孔122を形成することにより、ベーンロータ16がハウジング11に対し相対回転するとき、連通孔122を経由して空間Sの圧力をハウジング11の外部へ逃がすことができる。したがって、ベーンロータ16がハウジング11に対し相対回転するときの空間Sの圧力の変動を抑制でき、ベーンロータ16を円滑に相対回転させることができる。
【0047】
(他の実施形態)
上述の実施形態では、特定形状部がベーンのボス部側の端部から、変動トルクの平均の方向とは反対の方向、すなわち進角方向へボス部の外壁に沿って延びるよう形成される例を示した。これに対し、本発明の他の実施形態では、変動トルクの平均の方向が進角方向である場合、特定形状部は、ベーンのボス部側の端部から、変動トルクの平均の方向とは反対の方向、すなわち遅角方向へ延びるよう形成されていてもよい。
【0048】
また、本発明の他の実施形態では、特定形状部がベーンのボス部側の端部から変動トルクの平均の方向とは反対の方向へボス部の外壁に沿って延びるよう形成されているのであれば、ベーンロータ、特定形状部およびハウジングは、{(R−r1)−(R−r2)}×t×P=ΔTの関係を満たしていなくてもよい。
また、本発明の他の実施形態では、特定形状部は、ボス部とは反対側に特定曲面を有していなくてもよい。すなわち、特定形状部のボス部とは反対側の壁面は、ボス部の軸を中心とする仮想円筒面の一部に一致していなくてもよい。
【0049】
また、上述の実施形態では、特定形状部が、ストッパピストンが設けられたベーン(特定のベーン)からボス部の外壁に沿って延びるよう形成される例を示した。これに対し、本発明の他の実施形態では、ストッパピストンが設けられていないベーンから延びるよう形成されることとしてもよい。また、特定形状部は、1つのベーンからのみでなく、複数のベーンから延びるよう形成されていてもよい。この場合、ベーンロータ、特定形状部およびハウジングは、各ベーンの進角室側の有効作用面積と遅角室側の有効作用面積との差分に相当する面積の合計に作用する作動流体の平均の力と変動トルクの平均値とが等しくなるよう形成されることが望ましい。
【0050】
また、上述の実施形態では、ハウジングが4つのシューを有し、ベーンロータが4つのベーンを有する例を示した。これに対し、本発明の他の実施形態では、ハウジングおよびベーンロータは、それぞれシューおよびベーンを1つずつ有する構成であってもよい。この場合、ハウジング内に収容室が1つ形成され、当該収容室が1つのベーンによって遅角室と進角室とに仕切られる。また、本発明の他の実施形態では、ハウジングおよびベーンロータは、それぞれシューおよびベーンを2つずつ、3つずつ、あるいは、5つ以上ずつ有する構成であってもよい。
【0051】
また、上述の実施形態では、ハウジングの2つの板部の一方であるリアプレートに連通孔が形成される例を示した。これに対し、本発明の他の実施形態では、連通孔は、リアプレートに加え、ハウジングの板部の他方であるフロントプレートにも形成されていてもよい。または、連通孔は、リアプレートではなく、フロントプレートに形成されていてもよい。あるいは、連通孔は、リアプレートおよびフロントプレートのどちらにも形成されていなくてもよい。
【0052】
また、本発明の他の実施形態では、ベーンは、遅角室と進角室との間をシールするシール部材を有していなくてもよい。この場合、ベーンは、ボス部とは反対側の端部がハウジングの筒部の内壁に摺接可能に形成されることが望ましい。
また、上述の実施形態では、エンジン始動時のベーンロータの位置が最進角位置である例を示した。これに対し、本発明の他の実施形態では、ベーンロータは、エンジン始動時、最遅角位置、あるいは、最進角位置と最遅角位置との中間位置にあることとしてもよい。
【0053】
また、本発明の他の実施形態では、ベーンロータとハウジングとの相対回転を規制するストッパピストンを備えない構成であってもよい。
本発明のバルブタイミング調整装置は、吸気弁のバルブタイミングを調整するために用いることもできる。
このように、本発明は、上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態に適用可能である。
【符号の説明】
【0054】
6 ・・・・・エンジン(内燃機関)
8 ・・・・・クランクシャフト(駆動軸)
7、9 ・・・カムシャフト(従動軸)
71 ・・・・排気弁
91 ・・・・吸気弁
10 ・・・・バルブタイミング調整装置
11 ・・・・ハウジング
130 ・・・周壁(筒部)
12 ・・・・リアプレート(板部)
14 ・・・・フロントプレート(板部)
131、132、133、134 ・・・シュー
50 ・・・・収容室
16 ・・・・ベーンロータ
160 ・・・ボス部
161、162、163、164 ・・・ベーン
51、52、53、54 ・・・遅角油圧室(遅角室)
55、56、57、58 ・・・進角油圧室(進角室)
20 ・・・・特定形状部
60 ・・・・特定溝部

【特許請求の範囲】
【請求項1】
内燃機関の駆動力を駆動軸から従動軸に伝達する駆動力伝達系に設けられ、前記従動軸により開閉駆動される吸気弁および排気弁の少なくとも一方の開閉タイミングを調整するバルブタイミング調整装置であって、
筒部、当該筒部の両端を塞ぐ板部、および、前記筒部の内壁から径内方向へ延び前記板部と前記筒部との間において収容室を形成するシューを有し、前記筒部の軸を回転中心として前記駆動軸および前記従動軸の一方とともに回転するハウジングと、
前記ハウジングに収容され、前記シューの前記筒部とは反対側の端部と摺接可能な外壁を有する円筒状のボス部、および、当該ボス部の外壁から径外方向に突出することで前記収容室を遅角室および進角室に仕切り前記ボス部とは反対側の端部が前記筒部の内壁と摺接可能なベーンを有し、前記ボス部の軸を回転中心として前記駆動軸および前記従動軸の他方とともに回転し、前記遅角室および前記進角室に供給される作動流体の圧力により前記ハウジングに対し遅角方向または進角方向に相対回転するよう駆動されるベーンロータと、
前記ベーンの前記ボス部側の端部から進角方向または遅角方向へ前記ボス部の外壁に沿って延びるよう形成される特定形状部と、
前記特定形状部の形状に対応するよう、前記シューの前記筒部とは反対側の端部の前記ベーン側から進角方向または遅角方向へ切り欠かれるよう形成される特定溝部と、を備え、
前記特定形状部は、前記ベーンから、前記従動軸の回転に応じて前記ベーンロータに対し遅角方向または進角方向に周期的に作用する変動トルクの平均の方向とは反対の方向へ延びるよう形成されていることを特徴とするバルブタイミング調整装置。
【請求項2】
前記特定形状部は、前記ボス部とは反対側に、前記ボス部の軸を中心とする仮想円筒面の一部と一致する特定曲面を有し、
前記筒部の内径をR、前記ボス部の外径をr1、前記仮想円筒面の外径をr2、前記ボス部の軸方向の長さをt、前記遅角室および前記進角室の作動流体の平均の圧力をP、前記変動トルクの平均値をΔTとすると、
前記ベーンロータ、前記特定形状部および前記ハウジングは、
{(R−r1)−(R−r2)}×t×P=ΔT
の関係を満たすよう形成されていることを特徴とする請求項1に記載のバルブタイミング調整装置。
【請求項3】
前記板部は、前記特定形状部、前記特定溝部、前記ボス部、および、前記板部により囲まれる空間と前記ハウジングの外部とを連通する連通孔を有することを特徴とする請求項1または2に記載のバルブタイミング調整装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−87626(P2013−87626A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−225707(P2011−225707)
【出願日】平成23年10月13日(2011.10.13)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】