説明

ファラデープローブを利用したマスクの状態のモニタリング

【解決手段】 イオン注入装置において、イオン電流測定器は、ターゲット基板がプラテン上に位置していると仮定して当該ターゲット基板の表面と同一平面になるように、マスクの後方に、配置されている。イオン電流測定器は、イオンビームを横切るように並進させられる。マスクの複数の開口を通過するように方向付けられているイオンビームの電流は、イオン電流測定器を用いて測定される。このようにして、イオン電流測定器によって測定されたイオン電流プロフィールに基づき、イオンビームに対するマスクの位置およびマスクの状態を決定するとしてよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、デバイス製造分野に関する。より具体的に説明すると、本開示は、マスクを利用したイオン注入処理、および、イオン注入時に利用されるマスクの状態をモニタリングする装置およびシステムに関する。
【背景技術】
【0002】
イオン注入処理は、伝導型を変化させる不純物を基板内に注入するために用いられる標準的な技術である。基板内でのドーピングプロフィールをおよび対応する薄膜構造を正確に制御することは、デバイス性能を適切なものとする上で重要な点である。一般的に、所望の不純物材料をイオン源でイオン化して、イオンを加速して所定のエネルギーのイオンビームを形成し、イオンビームを基板の表面に当てる。イオンビームに含まれるエネルギーを持ったイオンは、基板材料のバルクに進入して、基板材料の結晶格子内に埋め込まれて、所望の伝導型を持つ領域が形成される。
【0003】
このようなイオン注入装置は、所望のドーパントをシリコン基板に注入して太陽電池を形成するために利用されるとしてよい。このような太陽電池は、繰り返し利用可能な天然資源を利用し、汚染を発生させず、誰もが利用可能なエネルギーを提供する。環境に関する関心が高まり、エネルギーコストが上昇しているので、太陽電池の重要性が世界的に高まりつつある。製造コストの低減または高性能太陽電池の生産性の向上または高性能太陽電池の効率の改善は、太陽電池を全世界で採用する動きを後押しすることになるだろう。この結果、クリーンなエネルギー技術の利用可能性を広げることができるであろう。
【0004】
太陽電池では、効率を改善するためにドーピングが必要となる場合がある。図1は、選択エミッタ型太陽電池を示す断面図である。エミッタ200に対してドーピングを行って、コンタクト202の下方の領域201にドーパントを追加することで、効率の上昇を図っているとしてよい。領域201のドーピング濃度を高くすることで導電性を改善し、コンタクト202間でのドーピング濃度を低くすることで電荷収集を改善する。コンタクト202は、離間距離が約2−3mmに過ぎない場合がある。領域201は、横幅が約100−300μmに過ぎない場合がある。
【0005】
図2は、インターデジットバックコンタクト型(IBC)の太陽電池を示す断面図である。IBC型太陽電池では、太陽電池の背面に接合部が設けられている。この特定の実施形態のドーピングパターンでは、P型ドーパント領域およびN型ドーパント領域が交互に設けられている。P+型のエミッタ203およびN+型の裏面フィールド204は、ドーピングされているとしてよい。このドーピングによって、IBC型太陽電池の接合部は、機能でき、または、効率が改善できるとしてよい。
【0006】
太陽電池は従来、ドーパントを含有するガラスまたはペーストを、太陽電池内にドーパントを拡散させるように加熱した上で用いてドーピングされていた。この方法では、太陽電池のさまざまな領域に正確にドーピングすることができず、空洞、気泡または汚染物質があると、ドーピングが不均一になってしまう場合がある。イオン注入処理が太陽電池にとって有益なのは、イオン注入処理を採用することで太陽電池に正確にドーピングを行うことが可能となるためである。しかし、太陽電池に対してイオン注入処理を行うためには、所定のドーパントパターンが必要となる、つまり、太陽電池基板の所定の領域のみにイオンを注入する必要があるとしてよい。従来は、基板の所定の領域にのみイオン注入を行うためには、フォトレジストを利用してイオン注入処理を実行していた。しかし、フォトレジストを利用すると、処理工程が増えるので、太陽電池製造コストが上昇することになる。太陽電池表面に設けられる他のハードマスクも同様に、高コストであり、処理工程を増やす必要が出てくる。したがって、マスクを利用してイオン注入を行う方法を改善する必要がある。特に、イオン注入処理で利用されるマスクの状態をモニタリングする必要がある。
【発明の概要】
【課題を解決するための手段】
【0007】
本発明の実施形態例は、イオン注入装置におけるマスクのアラインメントを決定する装置および方法に関する。方法の一例によると、ターゲット基板を支持するように構成されているプラテンに対してマスクの複数の開口を通過するようにイオンビームを方向付ける。ターゲット基板がプラテン上に位置していると仮定して、ターゲット基板に対して略同一平面上となるように、マスクの後方に、イオン電流測定器を配置する。イオンビームを横切るように、イオン電流測定器を並進させる。イオンビームを横切るようにイオン電流測定器を並進させる際にイオン電流測定器の位置を記録する。記録される位置において、イオン電流測定器を用いて、マスクの複数の開口を通過するように方向付けられているイオンビームの電流を測定する。記録される位置のそれぞれにおいて、イオン電流測定器から測定されたイオンビームの電流を受け取ることに応じて、電流信号を生成する。電流信号をコントローラに送信し、平均イオンビーム角度の中心がマスクの複数の開口のうち中央に位置する一の開口となるように、イオンビームまたはマスクのうち少なくとも1つを位置決めするために用いられる制御信号をコントローラによって生成する。
【0008】
一実施形態例によると、イオン注入システムは、イオン源と、ビームライン組立体と、マスクと、イオン電流測定器と、コントローラとを備える。ビームライン組立体は、イオン源からイオンを抽出してイオンビームを形成し、イオンビームをプラテンに向けて方向付ける。マスクは、プラテンの前方に配置されている。マスクは、プラテンに向けてイオンビームの一部分を通過させる複数の開口を有する。イオン電流測定器は、ターゲット基板がプラテン上に位置していると仮定して、ターゲット基板の表面と略同一平面上に配置されている。イオン電流測定器は、ターゲット基板の表面に対して同一平面上で、イオンビームを横切るように並進する。イオン電流測定器はさらに、イオン電流測定器がイオンビームを横切るように並進すると前記複数の開口を通って受信したイオン電流に比例した信号を生成する。コントローラは、イオン電流測定器から信号を受信して、マスクの複数の開口のうち1以上を通るイオンビームの角度がアラインメントされるように、ターゲット基板に対するマスクの配向を決定する。
【図面の簡単な説明】
【0009】
【図1】選択エミッタ型の太陽電池を示す断面図である。
【図2】インターデジットバックコンタクト型の太陽電池を示す断面図である。
【図3A】本開示の実施形態に係る代表的なイオン注入装置を示すブロック図である。
【図3B】マスクを介した注入処理を説明するための断面図である。
【図4】本開示の一実施形態に係るファラデープローブを用いてマスクを介して行われる注入処理を説明するための概略正面図である。
【図5A】本開示の一実施形態に係るファラデープローブを用いてマスクを介して行われる注入処理を説明するための概略斜視図である。
【図5B】本開示の一実施形態に係るファラデープローブを用いてマスクを介して行われる注入処理を説明するための概略上面断面図である。
【図6】本開示の一実施形態に係るマスクとイオンビームとの角度アラインメントを説明するための第1の上面断面図である。
【図7】本開示の一実施形態に係るマスクとイオンビームとの角度アラインメントを説明するための第2の上面断面図である。
【図8】本開示の一実施形態に係るマスクと基板とのアラインメントを説明するための第1の上面断面図である。
【図9】本開示の一実施形態に係るマスクと基板とのアラインメントを説明するための第2の上面断面図である。
【図9A】マスクと基板またはプラテンとの間の間隙が多い場合のフィーチャプロフィールを示す図である。
【図9B】開口が磨耗したマスクの場合の信号プロフィールを、開口が磨耗していないマスクの場合の信号プロフィールに重ねて示す図である。
【図10】本開示の一実施形態に係るマスク侵食についての試験を行うためのファラデープローブの実施形態を示す正面斜視図である。
【図11】図10のマスク侵食について試験を行うためのファラデープローブの実施形態の並進の様子を示す正面斜視図である。
【図12】図10のマスク侵食について試験を行うためのファラデープローブの実施形態の並進の様子を示す正面斜視図である。
【図13】図10のマスク侵食について試験を行うためのファラデープローブの実施形態の並進の様子を示す正面斜視図である。
【発明を実施するための形態】
【0010】
以下では添付図面を参照しつつ本発明をより詳細に説明する。添付図面では、本発明の好ましい実施形態を図示している。しかし、本発明は多くの異なる形態で具現化され得るものであり、本明細書に記載する実施形態に限定されると解釈されるべきではない。逆に、本明細書に記載する実施形態は、本開示を完全に網羅し、本開示によって当業者に本発明の範囲を余すところ無く理解させるために記載されるものである。複数の図面にわたって同様の番号を用いて同様の構成要素を示す。
【0011】
図3Aは、イオン源チャンバ120を備えるイオン注入装置115を示すブロック図である。電源121は、特定の種のイオンを生成するイオン源チャンバ120に必要とされるエネルギーを供給する。生成されたイオンは、一連の電極114によってイオン源から抽出されて、イオンビーム103を形成する。イオンビーム103は、質量分析マグネット116を通過する。質量分析器は、質量分解スリット117の透過率を最大限まで高めるために、所望の質量対電荷率を持つイオンのみが分析器を通過するように、特定の磁界を発生させるように構成されている。所望の種のイオンが質量分解スリット117を通過して、減速ステージ118を通過して、修正マグネット119に到達する。修正マグネット119は、印加磁界の強度および方向に応じてイオンビームを偏向するようにエネルギーが加えられており、支持部(例えば、プラテン)102上に位置している被処理物または基板をターゲットとした帯状ビームを供給する。一部の実施形態によると、第2の減速ステージ122が、修正マグネット119と支持部102との間に配置されているとしてよい。イオンは、電子および基板内の核と衝突するとエネルギーを失って、加速エネルギーに応じた基板内の所望の深さで停止する。マスク104およびイオン電流測定器106(図4に図示)は、プラテン102を収容している処理チャンバに近接した位置に設けられている。
【0012】
図3Bは、マスクを利用する基板100への注入処理を説明するための分解断面図である。基板100に対して所望のパターンでイオン注入処理を行う場合、マスク104をイオンビーム103の経路において基板100の前方に配置するとしてよい。このマスク104は、シャドーマスクまたはプロキシミティマスクであってよい。基板100は、例えば、プラテン102上に載置されている太陽電池であってよい。プラテン102は、基板100を保持するために静電力または物理力を利用するとしてよい。マスク104は、基板100の表面に対して行われるイオン注入の所望のパターンに対応する複数の開口105を有する。
【0013】
マスク104を利用することで、他のイオン注入法では必要とされるシルクスクリーニングまたはリソグラフィー等の処理工程が省略される。しかし、所望のパターンでイオン注入を行うべく基板100に対してマスク104を適切に載置することが困難である場合がある。マスク104、イオンビーム103、およびプラテン102には全て、マスク104のミスアラインメントまたは位置ずれを引き起こしかねない直線状公差または角度公差のばらつきが存在する。
【0014】
図4は、図3Aに示すイオン注入装置の例において基板がプラテン102上に配置されていると仮定して、基板100と平行に、または、同一平面上に配置されているファラデープローブを利用するマスクを備える注入組立体を示す正面概略図である。マスク104は、複数の開口105を有しており、基板100の前方に配置されている(マスク104の後方の点線で一部の輪郭を示している)。開口105はさらに、イオンビームの一部分にマスクを通過させるような構成の孔、スロットまたはその他の形状を持つものとして構成されているとしてよい。マスク104は、並進機構108を用いて、並進させるとしてよく、または、複数の軸に沿って配置するとしてよい。この並進機構108は、基板100からの距離に関して直線方向に、および、開口を通るz方向のイオンビームの通過に関しては角度方向に、マスクを可変的に位置決めするために利用されるサーボモータであってよい。一実施形態によると、基板100は、マスク104の後方で走査されて注入領域パターンを均一にするとしてよい。注入領域は、基板100の表面全体においてX方向およびY方向に「ストライプ」状に設けられるとしてよい。適切に処理を行うためには、マスク104は、開口105を通過して注入されるイオンビームと同様に基板100に対してアラインメントされている必要がある(以下で説明する)。時間が経過すると、マスク104は侵食され、開口105はサイズまたは寸法が不正確になったりすることがあり、所望の注入プロフィールが得られなくなる場合がある。
【0015】
ファラデープローブ106は、マスク104の後方に配置されており、基板100がプラテン102上に位置していない場合にイオンビーム103を横切るようにX方向に移動する。ファラデープローブは、基板がプラテン102上に位置していると仮定して、基板100の表面100aと同じ平面上に(つまり、Z方向)位置している。ファラデープローブ106またはファラデーカップは、基板100がプラテン102上に位置していると仮定して、マスク104の開口105とアラインメントされている基板100の領域に対する注入処理を模倣するべく、表面100aと同じ平面上に入射するイオンビーム103の電流を測定するために用いられる。これに代えて、ファラデープローブ106に複数のファラデーカップを設けるとしてもよいし、または、複数のファラデープローブ106を利用するとしてもよい。ファラデープローブ106は、基板内へのイオンビームの注入を模倣するべく、マスク104の後方に、基板100の表面100aと同一平面になるように、基板100の代わりに配置されている。ファラデープローブ106は、並進機構107によってX方向に移動させられる。並進機構107は、例えば、1以上のサーボモータであるとしてよい。ファラデープローブ106は、電流測定部109に接続されている。このため、ファラデープローブ106は、基板100であると仮定して、入射するイオンビーム103の電流を受け取り、測定部109がファラデープローブ106からグラウンドへと流れる電流を測定する。この電流は、コントローラ110に供給される制御信号へと変換される。
【0016】
コントローラ110は、電流測定部109からの制御信号を読み取り、マスク104またはイオンビーム103について位置修正が必要であるか否かを判断する。コントローラ110は、マスクの位置を修正するために、または、ファラデープローブを並進させるために、並進機構108、並進機構107またはその他のシステムあるいは構成要素に信号を送るとしてよい。一実施形態によると、別の移動制御システムを用いて、新たに所望される位置決め要求を処理し、さまざまな機構、システムおよび構成要素を駆動するとしてよい。コントローラ110はさらに、イオンビームまたは基板100を調整するとしてよい。ファラデープローブ106を利用することによって、マスク104、基板100、および、イオンビームをより正確に配置することが可能となり、基板がプラテン102上に位置している場合にマスク104の開口105と基板100との間のアラインメントを最適化することによって、基板100に対する注入処理が改善される。
【0017】
図5Aは、マスク104の開口を通過するイオンビーム103の一部分を示す概略斜視図である。図から分かるように、マスク104はイオンビーム103の進行方向(つまり、Z方向)に直交している。イオンビーム103がマスク104の開口を通過すると、基板がプラテン上に配置している場合は、イオンビームの一部分である103、・・・、103は、基板の表面全体にドーパント注入「ストライプ」を形成する。入射したイオンビーム103の他の部分は、マスクのうち開口間の領域によって遮蔽される。ファラデープローブ106は、マスク104の後方に位置しており、イオンビーム部分103、・・・、103を横切るようにX方向に並進する。ファラデープローブ106は、イオンビーム103の(Y方向の)先端に向かって位置しているものとして図示されている。しかし、これは説明を目的としたものであり、プローブ106はイオンビーム103のうちY軸方向の任意の箇所に配置されるとしてよい。しかし、ファラデープローブ106は、プローブがビーム103を横切るようにX方向に並進すると、イオンビーム103の注入処置が基板に対して行われていると仮定して、プローブが基板100と略同じイオンビーム部分103、・・・、103を受け取るように、z方向において表面100a(図4に示す)と平行または略同一平面上に配置されるのが最適である。このような構成で、それぞれの開口を通過するイオンビームの一部分のイオン電流をファラデープローブで測定する。また、プローブ106の位置は、プローブが検出するイオンビームの電流のバラツキがマスク104の複数の開口のうち特定の1以上の開口と相関付けられるように、モニタリングされる。例えば、時間が経過すると、マスク104の開口の端部は、イオンビーム103に常に暴露されているために、侵食されてしまうことがある。このため、1以上の開口の幅が所与の注入公差水準およびアラインメント公差水準を超えて大きくなってしまう可能性がある。プローブがイオンビーム部分1031、・・・、103Nを横切るように並進するとプローブの位置をモニタリングすることによって、複数の開口のうち特定の一の開口で測定されるイオンビーム電流が所与の公差水準をみたしていないと判断されるとしてよい。したがって、マスク104の状態、より具体的には、マスクの開口の状態をモニタリングするとしてよい。開口105の幅の増加は最大で約20%までは太陽電池の注入プロフィールの完成度に問題を引き起こすことなく許容され得ることが分かっている。これは、マスクで被覆した領域(つまり、エミッタ型太陽電池の基板のうち複数の開口105のうちの一の開口の後方に配置されていない領域)は通常、基板のうち複数の開口105の後方に配置される部分よりも、ドーピング濃度が高いためである。開口105の端部が侵食されると、エミッタ領域は、設計値よりもドーピング濃度が高くなる。これは、太陽電池の性能を低下させる可能性がある。
【0018】
図5Bは、図5Aに示したイオンビームがマスクを104を通過する様子、および、基板が存在すると仮定してマスクおよび基板100と相対的にファラデープローブ106の位置を決める様子を説明するための上面断面図である。上述したように、ファラデープローブ106は、矢印111で示すように、マスク104の後方でX方向に並進する。ファラデープローブ106がマスク104の後方で並進すると、照射されるイオンビーム103の電流に比例した信号が生成される。この電流およびファラデープローブ106の既知の位置によって、マスク104の状態をモニタリングする。ファラデープローブ106は、例えば、マスク104を適切な位置に配置するべく、マスク104と基板100との間のZ方向における間隔を最適化するべく、マスク104の過度の磨耗または侵食の有無をモニタリングするべく、マスク104の破砕の有無をモニタリングするべく、または、マスク104の熱制御をモニタリングするべく用いることができる。
【0019】
プローブ106が生成する信号は、プローブが矢印111で示されているようにX方向にイオンビームを横切るように並進する場合にプローブに入射するイオンビームの電流に比例した信号であり、イオンビーム103とマスク104との間についてのアラインメント情報も提供する。特に、マスク104の開口105から出射されるイオンビーム103の角度によってビーム部分1031、・・・、103N(図5Aに示す)が所望の注入領域に収まるようにマスク104がイオンビームとアラインメントされると、プローブ106は、マスク104がビーム103の発散角に対してアラインメントされている旨を示す、所望のイオンビーム電流範囲を検出するとしてよい。ビーム103は、同様の電荷を持つ複数の分子で構成されているので、自然に発散してビーム発散角が発生する。しかし、プローブ106が、複数の開口105のうち特定の1以上の開口から出射されるイオンビームの電流を測定した結果、測定された電流が所望の範囲内に無い場合、マスク104およびビーム103が、対象となる基板100の注入領域要件を満たすようにアラインメントされていないか、または、少なくとも最適にはアラインメントされていないことが分かる。
【0020】
図6は、マスクとイオンビームとの間の角度アラインメントを説明するための第1の上面断面図である。ファラデープローブ106は、マスク104とイオンビーム103との間のアラインメントに用いられるとしてよい。マスク104は、イオンビーム103に対して、開口105に起因して発生するビーム角度が対象の基板100の適切な領域に対して注入処理を行うように配向することができる。また、イオンビーム103のビーム発散角に対してマスク104をアラインメントすることによって、マスク104はイオンビーム103のうち利用可能な電流を最適化することができる。イオンビーム103が開口105を通過する角度は一定であるので、ファラデープローブ106が測定するイオンビーム103の振幅は、イオンビーム103の角度とマスク104の角度とがアラインメントされている場合に最適値となる。言い換えると、マスク104の開口105を通過する受け入れ角度が一定である(つまり、開口がマスク全体で特定の位置を貫通するように位置している)ので、プローブ106がX方向にビームを横切るように並進する場合にプローブ106が測定するイオンビーム電流は、ビーム発散角およびマスク角度がアラインメントされている場合に、最適値を取る。このため、プローブ106を用いて開口105を通過して検出されるイオンビーム電流量のフィードバックを供給することによって、イオンビーム103がマスク全体を通過する場合のイオンビーム103の発散角に対してマスク104をアラインメントすることで、対象となる基板100に入射する利用可能なイオンビーム電流を最適化することができる。この結果、対象となる基板100に入射するビーム電流量を最大限に大きくすることによって、注入装置のスループットが最適化されるとしてよい。図6および図7に示すイオンビーム103の角度は、分かりやすいように誇張して図示している。
【0021】
図6では、マスク104とイオンビーム103とがミスアラインメントされている様子を図示している。この具体例では、ピークビーム角度の中心が、マスク104の中間点と一致していない。そうではなく、イオンビーム103の平均ビーム角度600は、マスク104の中心を外れている。このずれを修正するべく、平均ビーム角度600をセンタリングしてマスク104の中心と一致させるべく、マスク104を所定角度または所定距離だけ並進させるとしてよい。別の例では、平均ビーム角度600をセンタリングしてマスク104の中心と一致させるべく、ビーム103を調整する。図7は、マスクとイオンビームとの間の角度アラインメントを説明するための第2の上面断面図である。この実施形態では、平均ビーム角度600がマスク104の中心と一致している。
【0022】
図8は、マスクと基板との間のアラインメントを説明するための第1の上面断面図である。図8は、イオンビーム103がマスク104とアラインメントされておりビームが開口105を最適に通過している理想的なケースを図示している。この結果、注入領域は開口105のサイズ(X方向の幅およびY方向の長さ)と一致することになる。しかし、イオンビーム103は、上述したように同様の電荷を持つ分子または原子で構成されているので、ある程度は発散してしまう。
【0023】
図9は、マスクと基板との間のアラインメントを説明するための第2の上面断面図である。図9では、ビームが発散している様子を示している。開口105を通過するイオンビーム103は、プラテン102に到達した時点では、開口105から出た時点とは寸法が同じではなくなっている。この発散の特性は、イオンビーム103の状態に応じて変わる。マスク104と、プラテン102またはプラテン102上の基板100との間の間隙を小さくして、ビーム発散効果を最小限に抑えるとしてよい。マスク104と、プラテン102またはプラテン102上の基板100との間の間隙を最小限に小さくすることによって、マスクと基板との間のイオンビーム103が発散し得る距離が最小限に抑えられ、実際の注入領域は所望の注入領域と同様になるとしてよい。しかし、マスク104と、プラテン102またはプラテン102上の基板100との間の間隙は、一致公差、組立公差、システム負荷またはその他の理由で、バラツキが見られる可能性がある。進行中に発散するイオンビームの特性を考えると、マスク104と基板100との間のZ方向の間隙を可能な限り小さく維持することが肝要である。この間隙が大きすぎると、注入領域は基板上で意図したターゲット領域を超えてしまう。また、マスク104は、基板100上に2次元パターンを形成する別の構成の孔、スロット等(上述したものと同じ)を有するとしてよい。この実施形態では、X方向およびY方向の角度によって、注入パターンの忠実性が決まる。
【0024】
マスク104と、プラテン102またはプラテン102上の基板100との間の間隙を最適化するべく、ファラデープローブ106は、マスク104の後方でフィーチャプロフィール測定結果を作成する。例えば、図9Aは、マスク104と、プラテン102または基板100との間の間隙が大きい場合のフィーチャプロフィールを示している。同図から分かるように、マスク104と、プラテン102またはプラテン102上の基板100との間の間隙が大きくなると、ファラデープローブ106に形成されるプロフィールは、幅が大きくなり、ピーク振幅が短くなる。一実施形態によると、マスク104と、プラテン102またはプラテン102上の基板100との間の間隙はサーボモータによって調節することができ、ファラデープローブ106は、プロフィールが基板100の仕様を満たすか否かを確認することができる。
【0025】
時間が経過すると、イオンビーム103はマスク104の材料を侵食し、特に、開口105の端部を侵食する。このような侵食が発生する理由としては、少なくとも表面スパッタリングおよび熱サイクルが挙げられる。マスク104は最終的に、開口105の侵食が所定の公差を超えるか、または、寸法が正確でなくなるので、取り替える必要が出てくる。ファラデープローブ106は、マスク104の後方で走査してこの侵食をモニタリングすることができる。一例を挙げると、侵食が発生したマスク104は、振幅が高くライン幅が大きいという信号プロフィールを示す。図9Bは、開口105が磨耗しているマスクの信号プロフィール(網掛け領域105a)と、開口が磨耗していないマスクの信号プロフィール(内側部分105bで示す)とを重ねて示す図である。特に、網掛け領域で示す電流信号プロフィールは、開口が磨耗していないマスクに対応付けられている信号よりも、振幅が高くライン幅が大きい信号である。イオンビーム103の高さはバラツキが見られ得るので、マスク104の侵食は、開口105の片側から開口105の反対側の間で均一ではないとしてよい。一の具体的な実施形態では、ファラデープローブ106は、マスク104に対して角度を持つように配置される。
【0026】
図10は、ファラデープローブがマスク侵食に関して試験を行う実施形態を説明するための正面斜視図である。ファラデープローブ106は、マスク104に対して角度を持つように構成されているので、走査する場合に各開口105の一部分にのみ暴露される。図11、図12および図13は、ファラデープローブの並進時の、図10に示したマスク侵食に関して試験を行うファラデープローブの実施形態を説明する正面斜視図である。マスク104のプロフィールによって、開口105の寸法が均一でないか否かが分かる。
【0027】
イオンビーム103は、侵食に加え、マスク104への堆積またはコーティングを誘発し得る。この場合、開口105は、寸法が大きくなるのではなく、寸法が縮小するか狭幅化する。侵食と同様に、このような開口105の縮小または狭幅化は、開口の長さに沿ってバラツキが見られるのと同様に、開口105の片側から開口105の反対側の間でバラツキが見られるとしてよい。ファラデープローブ106は、マスク104の後方で走査して、コーティングをモニタリングすることができる。一例を挙げると、マスク104にコーティングが形成されて開口105が狭幅化または縮小すると、図9Bに示したものと比較して、振幅が低くなり、ライン幅が小さくなった信号プロフィールが得られる。
【0028】
マスク104は、機械的強度の低い材料またはフィーチャで構成されているとしてよい。このため、マスク104の破砕が懸念される。破砕は、例えば、熱負荷、振動、または侵食によって発生し得る。マスク104が破砕すると、ファラデープローブ106は欠損部分を検出する。マスク104の破損部分または欠損部分は、信号が予想外の領域にイオンビーム103の電流があることを示すので、明らかに分かる。このように破砕が発生した場合には、一実施形態によると、ファラデープローブ106はシステムに対して致命的エラーが発生したので修復処理が必要である旨を通知する。さらに、このように破砕したマスクを検出することで、不適切な注入処理が行われないようにする。
【0029】
マスク104は、寿命が続く間は、イオンビーム103の照射に暴露される。マスク104に加わる電力量は、イオンビーム103のパラメータ、例えば、総電圧またはビーム電流等に応じて決まる。マスク104に加わる電力は、マスク104に対して熱負荷を形成する。結果としてマスク104を構成している材料が熱膨張することによって、マスク104または開口105の位置決めエラーが発生し得る。マスク104の材料はマスク104の熱エクスカーション(thermal excursion)に比例した速度で膨張するので、ファラデープローブ106は、マスク104が機能限界内にとどまるようにマスク104の温度を推定することができる。信号のピッチは、マスク104の温度に応じて変わる。このため、熱負荷によって開口105のサイズまたは寸法が変化すると、ファラデープローブ106はこの変化を測定することができる。
【0030】
上述した実施形態ではファラデープローブ106を利用しているが、光学デジタル撮像システム等の他の測定システムを、単体でまたはファラデープローブ106と組み合わせて用いるとしてもよい。この具体的な実施形態によると、基板100は注入処理後に検査される。画像を撮像して処理する。基板100上の注入領域は、ファラデープローブ106が実行した各条件または各試験について上述したのと同一の信号の変化を示す。別の実施形態によると、マスク104は、光学撮像技術を利用して検査し、画像を撮像して処理するとしてもよい。マスク104上のフィーチャは、ファラデープローブ106が実行した各条件または各試験について上述したのと同一の信号の変化を示すはずである。マスク104を定期的に検査した結果は、ファラデープローブ106によって得られた結果に一致するはずである。
【0031】
本開示は、本明細書に記載した具体的な実施形態によってその範囲を限定されるべきではない。本開示については、本明細書に記載した実施形態および変形例に加えて、その他のさまざまな実施形態および変形例が存在することは、上記の説明および添付図面から当業者には明らかである。このため、当業者に明らかである他の実施形態および変形例は、本開示の範囲に含まれるものとする。さらに、本明細書では特定の目的を実行するべく特定の環境下で行われる特定の実施例に基づき本開示を説明したが、当業者であれば、本開示の有用性はそれらに限定されるものではなく、本開示はさまざまな目的を実現するべくさまざまな環境下で実施して有益な結果を得られるものと認めるであろう。したがって、特許請求の範囲に記載する請求項は、本明細書に記載している本開示の範囲および意図を最大限広く鑑みて解釈されるべきである。

【特許請求の範囲】
【請求項1】
イオン注入装置においてマスクをアラインメントする方法であって、
ターゲット基板を支持するように構成されているプラテンに対してマスクの複数の開口を通過するようにイオンビームを方向付ける段階と、
前記ターゲット基板が前記プラテン上に位置していると仮定して前記ターゲット基板に対して略同一平面となるように、前記マスクの後方に、イオン電流測定器を配置する段階と、
前記イオンビームを横切るように前記イオン電流測定器を並進させる段階と、
前記イオン電流測定器を前記イオンビームを横切るように並進させる際に前記イオン電流測定器の位置を記録する段階と、
記録される前記位置において、前記イオン電流測定器を用いて、前記マスクの前記複数の開口を通過するように方向付けられている前記イオンビームの電流を測定する段階と、
前記記録される位置のそれぞれにおいて、前記イオン電流測定器から測定された前記イオンビームの電流を受け取ることに応じて、電流信号を生成する段階と、
前記電流信号をコントローラに送信する段階と、
平均イオンビーム角度が前記マスクの前記複数の開口のうち中央に位置する一の開口に対してセンタリングされるように制御信号を、前記制御信号に基づいて前記イオンビームまたは前記マスクのうち少なくとも1つを位置決めするために用いられる前記コントローラによって生成する段階と
を備える方法。
【請求項2】
前記マスクの位置の制御は、
マスク並進機構に信号を送ることと、
前記マスク並進機構が受信した前記信号に基づき、前記ターゲット基板に対して前記マスクをずらすことと
を有する請求項1に記載の方法。
【請求項3】
前記ターゲット基板に対して前記マスクをずらすことは、前記プラテンから直線状に所定距離だけ離して前記マスクを可変的に位置決めすることを含む請求項2に記載の方法。
【請求項4】
前記プラテンに対して前記マスクをずらすことは、前記プラテンに対して角度を持つように前記マスクを可変的に位置決めする段階を含む請求項2に記載の方法。
【請求項5】
前記イオン電流測定器を並進させる段階はさらに、接続された並進機構を用いて前記イオン電流測定器を並進させる段階を有し、前記並進機構は、前記イオンビームを横切るように前記イオン電流測定器を移動させるサーボモータを有する請求項1に記載の方法。
【請求項6】
前記記録されている位置において、前記イオン電流測定器を用いて、前記マスクの前記複数の開口を通過するように方向付けられている前記イオンビームの電流を測定する段階はさらに、前記イオン電流測定器からグラウンドへと流れる前記電流を測定する段階を有する請求項1に記載の方法。
【請求項7】
前記イオン電流測定器は、ファラデープローブである請求項1に記載の方法。
【請求項8】
前記イオン電流測定器は、前記マスクの前記複数の開口のそれぞれを通過するように方向付けられる前記イオンビームの一部分に対応付けて、複数のイオン電流測定値を提供する複数のファラデープローブを有する請求項1に記載の方法。
【請求項9】
イオン源と、
前記イオン源からイオンを抽出してイオンビームを形成し、前記イオンビームをプラテンに向けて方向付けるビームライン組立体と、
前記プラテンの前方に配置されており、前記プラテンに向けて前記イオンビームの一部分を通過させる複数の開口を有するマスクと、
ターゲット基板が前記プラテン上に位置していると仮定して前記ターゲット基板の表面と略同一平面に配置されており、前記イオンビームを横切るように並進し、前記イオンビームを横切るように並進すると前記複数の開口を介して受信した前記イオン電流に比例した信号を生成するイオン電流測定器と、
前記イオン電流測定器から前記信号を受信して、前記マスクの前記複数の開口のうち1以上の開口を通る前記イオンビームの角度と、ターゲット基板とをアラインメントするように、前記マスクの配向を決定するコントローラと
を備えるイオン注入システム。
【請求項10】
前記コントローラは、前記マスクの位置と、受信した前記信号とを比較し、前記イオン注入システムはさらに、
前記マスクに接続されており、前記コントローラと通信するように結合されている並進機構を備え、
前記並進機構は、前記イオン電流測定器からの前記信号に応じて前記マスクの位置を修正する請求項9に記載のイオン注入システム。
【請求項11】
イオン注入装置で利用されるマスクの状態を判断する方法であって、
イオンビームに対して直交するように配置されているマスクの、それぞれが所定の長さおよび幅を持つ複数の開口を通過するように、ターゲット基板を支持するべく構成されているプラテンに向けて前記イオンビームを方向付ける段階と、
前記ターゲット基板が前記プラテン上に位置すると共に前記イオンビームに対して直交していると仮定して前記ターゲット基板に対して同一平面となるように、前記マスクの後方に、イオン電流測定器を配置する段階と、
前記イオンビームを横切るように、前記マスクの前記複数の開口に対して角度を持って、前記イオン電流測定器を並進させる段階と、
前記イオンビームを横切るように前記イオン電流測定器を並進させる際に前記イオン電流測定器に入射するイオンビーム電流を検出し、検出した前記イオンビーム電流は前記複数の開口のそれぞれの長さの一部分に対応付ける段階と、
前記イオンビームを横切るように前記イオン電流測定器を並進させる際に、前記イオン電流測定器の位置および角度を記録する段階と、
記録される前記位置において、前記イオン電流測定器を用いて、前記マスクの前記複数の開口を通過するように方向付けられている前記イオンビームの電流を測定する段階と、
前記記録される位置および角度のそれぞれにおいて、前記イオン電流測定器から測定された前記イオンビームの電流を受け取ることに応じて、電流信号を生成する段階と、
前記イオンビームを横切るように前記イオン電流測定器を並進させる際に、生成された前記電流信号に基づいて、前記複数の開口のそれぞれについて電流プロフィールを作成する段階と、
前記複数の開口のそれぞれの長さの一部分に対応する、前記複数の開口のそれぞれの幅を決定する段階と
を備える方法。
【請求項12】
前記マスクの前記複数の開口に対して前記イオン電流測定器の角度を変化させる段階をさらに備える請求項11に記載の方法。
【請求項13】
イオン注入装置においてイオンビームの入射角度を測定する方法であって、
ターゲット基板がプラテン上に位置している場合に、前記ターゲット基板と同一平面となるように、複数の電流センサを含むイオンビーム検出組立体を位置決めする段階と、
前記イオンビーム検出組立体に入射するイオンビームを提供する段階と、
前記複数の電流センサのそれぞれに対応付けて前記イオンビームの電流を検出する段階と、
検出された前記イオンビームの電流を用いて、前記複数の電流センサのそれぞれに対する入射角度を算出する段階と、
前記入射角度を分析して前記イオンビームの均一性を判断する段階と、
算出された前記入射角度に基づいて、前記イオンビームの電流を調整する段階と
を備える方法。
【請求項14】
イオン源と、
前記イオン源からイオンを抽出してイオンビームを形成し、ターゲット基板を支持するために用いられるプラテンに向けて前記イオンビームを方向付けるビームライン組立体と、
前記プラテンの前方に配置されており、前記プラテンに向けて前記イオンビームの一部分を通過させる複数の開口を有するマスクと、
前記ターゲット基板が前記プラテン上に位置していると仮定して前記ターゲット基板と略同一平面に配置されており、前記イオンビームを横切るように並進し、前記イオンビームを横切るように並進する際に前記複数の開口を介して受信した前記イオン電流に比例した信号を生成するイオン電流測定器と、
前記イオン電流測定器から前記信号を受信して、前記ターゲット基板が前記プラテン上に位置していると仮定して、前記マスクの前記複数の開口のうち1以上の開口を通る前記イオンビームの角度が前記ターゲット基板とアラインメントされるように、前記マスクの配向を決定するコントローラと
を備えるイオン注入システム。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公表番号】特表2013−501360(P2013−501360A)
【公表日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2012−523091(P2012−523091)
【出願日】平成22年7月30日(2010.7.30)
【国際出願番号】PCT/US2010/043912
【国際公開番号】WO2011/014779
【国際公開日】平成23年2月3日(2011.2.3)
【出願人】(500324750)バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド (88)
【Fターム(参考)】