説明

ペーシングおよび不整脈処置のためのリード線のない心臓システム

【課題】身体組織のリード線のない電気的刺激のために使用される移植可能な受信刺激器および移植可能な制御送信器を含むシステムを提供すること。
【解決手段】心臓ペーシングおよび不整脈制御は、1つ以上の移植可能な受信刺激器2および外部または移植可能な制御送信器1を用いて達成される。システムは異なる組織部位で外部または移植可能なデバイスを試験し、生理学的な反応およびデバイスの反応を観察し、システムを移植するための好ましい性能を有する部位を選択することにより移植される。このシステムにおいて、制御送信器は、標的の組織位置で受信刺激器に身体を介して音響エネルギーを送信/送達するために遠くの組織位置で活性化される。受信刺激器は、身体組織の電気的刺激のために音響エネルギーを電気的エネルギーに変換する。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の背景)
(1.発明の分野)
本発明のシステムおよび方法は、移植可能なデバイスによる心臓および他の身体組織の電気的な刺激に関する。具体的には、本発明は、従来のリード線/電極のシステムの使用なしにそのような刺激を提供するためのシステムおよび方法に関する。より具体的には、本出願は、心不全の処置のための、ならびに移植可能なペーシングシステムおよびコンポーネントを用いて心臓不整脈を終了させるためのシステムおよび方法を提供する。
【背景技術】
【0002】
身体組織の電気的な刺激は、慢性状態および急性状態の両方の処置のために医療全般で使用される。多くの実施例の中で、末梢筋肉刺激は、緊張と引き裂きの治癒を加速することが報告され、同様に、骨刺激は、骨折における骨の再成長/修復の速度を増すことが示され、神経刺激は、慢性疼痛を軽減するために使用される。電気的な刺激を利用する一般的に移植されるデバイスは、心臓ペースメーカーである。さらに、本態性震顫、パーキンソン病、偏頭痛、卒中に起因する機能不全、およびてんかん発作などの様々な神経と脳の状態を処置するための電気的刺激の使用における研究が奨励されている。
【0003】
そのような刺激を提供するデバイスは、幾つかの場合には、外的に利用され得、他の場合には、該デバイスのすべてまたは一部を移植することがより有利である。本発明は、身体組織に直接的な電気的刺激を供する少なくとも1つの部位が恒久的にまたは一時的に移植されるデバイスに関する。このようなデバイスは、ペースメーカー、移植可能な細動除去器、ならびに心臓組織および他の組織を刺激するための他のデバイスを含む。
【0004】
一般的には、電極/リード線のシステムと接続された電気的なエネルギー源が、身体内の組織を刺激するために使用されてきた。リード線の使用は、感染、リード線不全、および電極/リード線の移動に起因する複雑さなど重大な問題と関連する。
【0005】
刺激を達成するためのリード線の必要性はまた、身体のアクセス可能な位置の数を制限する。リード線の必要性はまた、多数の部位(多部位刺激)で刺激する能力を制限してきた。例えば、てんかんの処置は、最小限恐らく5つまたは6つの刺激部位を必要とし得る。パーキンソン病などの他の病気は、既存のシステムで利用される2つ以上の刺激部位から恩恵を受ける。
【0006】
完全な不全および配置の困難性の問題を超えて、ペースメーカーリード線は、アンテナとして作用し、ペースメーカー電子機器に電磁干渉(EMI)を結合させることによって、内在的に、ペースメーカーシステムのための問題を引き起こす。心臓エレクトログラムセンシングおよび信号処理回路網への干渉は、特に問題がある。携帯電話、無線コンピュータネットワークなどの数の急激な増加に伴って、EMIを誘導するペースメーカーのリード線は、ペースメーカーのデバイスの設計におけるますますの複雑化に拍車をかけ、ペースメーカーデバイスの相当な試験を必要とし続ける。
【0007】
最も一般的に移植される刺激デバイスは、心臓ペースメーカーである。ペースメーカーは、皮下に移植され、チップ電極を有する絶縁された金属リード線によって心臓に接続されるバッテリー電源の電子機器である。ペースメーカーは、当初、幾つかの条件に起因し得る徐脈、低心拍数のために開発され、これらを処置するために最も一般的に使用される。より最近には、ペースメーカーの複合、ならびに関連するセンシングおよびペーシングアルゴリズムにおける進歩は、他の条件、とりわけ、心不全(HF)および頻脈(頻脈性不整脈/頻脈)の処置のためにペースメーカーを使用することにおける進歩を可能とした。
【0008】
一般的な用途において、ペースメーカーのリード線は、心臓血管系の静脈面にアクセスするために鎖骨下静脈またはその支流へ皮膚を介して配置される。このようなシステムは、右心房もしくは右心室に配置されたリード線を有する単一のチャンバか、または右心房壁と接触して配置される1つのリード線および右心室壁と接触して配置される第二のリード線を有する二重チャンバシステムであり得る。心臓再同期治療として一般に公知であるものを介しての心不全の処置のために、二心室ペーシングが利用され、さらなるリード線が左心室と接触して配置されることを必要とする。該左心室にアクセスするためには、第三のリード線は、一般的には、右心房、冠状静脈洞の開口部に進められ、次いで、左心室の後外側のまたは外側の壁の心外膜面上の位置へと冠状静脈洞静脈を介して操縦される。
【0009】
設計および材質における約50年の改良の後に今はあまり一般的ではないが、ペースメーカーのリード線の不全は、いまだ患者にとって重大な危険がある(生命に脅威である出来事を生じ得るペーシングの喪失のためだけではなく、一度移植されると、ペースメーカーのリード線は、重大な危険がある手順または外科処置を用いてのみ抽出されるという事実に起因してもまた)。さらに、除去可能でない場合には、既存の機能しないリード線の位置は、置換リード線の移植を妨げ得る。ペースメーカーのリード線は、絶縁体または伝導体の破損およびコネクタの緩みまたは適合性のないコネクタを含む幾つかの理由に起因して故障し得る。
【0010】
心不全のための二心室ペーシングにおいては、左心室と接触している第三のリード線の配置は、重大な問題であり続ける。冠状動脈洞は、多数の支流が左心室の心外膜の末端に拡大するかなりの変数を伴って、傾き、狭まる多数の支流を有する複雑な静脈道である。第三のリード線の配置は、医師の側に相当の技術を必要とする。十分な操縦可能性および押し込み可能性を提供するために、左心室のリード線の設計またはリード線の導入システム/デバイスの設計は、通常のペーシングリード線よりもはるかに複雑である。しばしば、左心室のリード線の位置付けおよび配置は、実行するのに1時間以上かかり得、患者は、X線透視法の放射線および手順の危険の増加に冒される。一部の患者において(MIRACLE研究においては7.5%)、許容可能であるリードの配置は、解剖学上の制約条件または横隔神経のペーシングに起因して可能ではない。さらに、リード線の移転およびペーシングの喪失は、これらの冠状静脈洞リード線の使用(デバイスの配置から最初の6月以内の複雑な問題の発生率は10%〜20%)において一般的に複雑な問題であった。
【0011】
左心室刺激を達成するリード線の要件は、上述される冠状静脈洞静脈への、または心外膜上にリード線を配置し、次いで、接続のためにペーシングデバイスの位置にリード線を貫通させる外科技術を使用する心外膜への配置を制限する。左心室のリード線は、幾つかの理由のために右配置のリード線のためであるので、心臓チャンバ内部には配置されない。左心室のリード線は、大動脈弁を横切って後ろ向きに、または(大動脈弁または僧帽弁の不十分性を引き起こし得る)僧帽弁を横切ってトランセプト(transptally)に、絶えず位置付けられなければならない。患者は、動脈の循環内にリード線を有することから血栓塞栓性の複雑な問題の危険に冒される。大動脈を介しての左心室へのペーシングリード線の後ろ向きの挿入は、リード線の挿入のための恒久的な動脈穿孔、恒久的な大動脈弁閉鎖不全、および血栓形成を妨げる恒久的な抗凝血を必要とする。代替的には、左心房または左心室にペーシングリード線を挿入するための右心房からの心房トランセプト穿孔はまた、恒久的な抗凝血を必要とし、左心室部位に対しては、僧帽弁閉鎖不全を引き起こす。さらに、すべてのペースメーカーのリード線は、感染発生率と関連し、弁膜心内膜炎の危険は、左心臓でより高くなる。
【0012】
二心室ペーシングシステムを受ける患者において、左心室のリード線の配置のための部位選択は、血行動態の利益を提供するために非常に重要であることが発見された。心不全の処置のために二心室ペーシングを受ける患者の40%までは、利益を受けない(すなわち、血行動態測定および心不全機能別クラスは、改善もしないし、悪化もしない)。利益がないことの最重要原因は、専門家によって、次善の、または不正確な左心室の刺激部位に起因すると考えられている。しかしながら、位置付けの困難性ならびに冠状静脈洞およびその支流の解剖学的構造によって課せられた制限は、しばしばより最適な左心室のペーシング部位を選択する能力を制限する。右心室の刺激との組み合わせにおける、左心室の刺激部位を正確に選択する能力は、心不全の処置において助けとなる。
【0013】
さらに、左心室の刺激は、現在、心臓の心外膜の(外側の)表面上の部位に限定され、該心外膜上の冠状静脈洞経路および外科的に移植された左心室のリード線は、心外膜にねじ込まれる。最近のデータは、左心室の心内膜(ライニングの内側)または心内膜下の(層の内側の)刺激は、さらなる利益を提供する。
【0014】
重要なことには、臨床試験データは、現在、左心室のペーシングだけが、二心室ペーシングのものと等価である血行動態的な利益を生じ得ることを示す。したがって、リード線のないペーシングシステムは、右心室ペーシングのリード線または電極の必要なしに、二心室ペーシングの利益を達成する可能性を有する。
【0015】
心不全なしに患者のためにより多くの生理学的な右心室ペーシングを提供すことは有益でもある。通常の生理学においては、右心房は、最初に上部中隔エリアで刺激され、次いで、衝撃は、特に、右心室頂点への伝導経路を伝わる。しかしながら、右心室のペーシング、事実上常に右心室の頂点に位置するリード線チップ電極から達成され、その結果、それに続く伝導経路は、異常かつゆっくりである。臨床試験は、最近、A−Vブロックを有する患者および有しない患者において、右心室の頂点からのペーシングは、心不全に対する致死率および再入院の総計の増加を生じ得ることを示した。したがって、上部中隔などのより生理学的な位置で右心室をペーシングし得ることは有利である。洞房結節またはA−V接合部伝導病を有する患者における心室をペーシングする最も生理学的な位置は、ヒス束を直接的にペーシングすることである。しかしながら、該位置は、胸部に移植されたパルスジェネレータに取り付けるリード線ベースのシステムによって要求される上方よりの(上大動脈)手法によりアクセスすることが非常に困難である。大腿静脈を介して下方(上大動脈)より電極を送達することは有益であり、そこでは、カテーテルをA−V接合部領域に配置することは、より容易であることが公知である。例えば、公開された一連の恒久的なヒス束のペーシングにおいては、該ヒス束は、最初に、大腿静脈を介して挿入された一時的なカテーテルを使用して識別され、該カテーテルは、恒久的なペーシングリード線を移植するための部位を標的にする位置をしるし付けるために所定位置に残される。A−V接合部または束分岐に係る低伝導病を有する患者においては、最も生理学的なペーシング部位は、左心室の中隔または左心室の頂点であることが発見された。これらは、特化されたプルキンエ伝導ネットワークに近接した位置である。該位置は、既存の経静脈リード線ベースのペーシングシステムを使用してアクセス可能ではない。より通常の伝導を作るためにペーシング部位を選択し得ることが有利である。
【0016】
リード線のないペースメーカーシステムのさらに別の利点は、磁気共鳴映像法(MRI)との適合性が増加することである。既存のペースメーカーのパルスジェネレータは、MRIの高度の静電気のおよび交流の磁界と一般に両立可能である材質で造られ、かつ/または両立可能である遮蔽を含む。しかしながら、リード線は、一般的には、磁界から誘導された電流にさらされるコイル巻きの金属伝導体で作られる。このような電流は、心臓の好ましくない刺激を引き起こし得、潜在的にペースメーカーのパルスジェネレータに損傷を与え得る。リード線のないペースメーカーシステムは、適切な材質の選択および遮蔽がいまだ移植可能なコンポーネントの設計においては採用されなければならないが、リード線に誘導される電流の問題を明らかに排除する。
【0017】
最近、リード線のない皮下に移植可能な細動除去器の概念は、例えば、米国特許第6,647,292号(Bardy)に提案された。本概念において、高エネルギー電気波形は、心室不整脈(VT)または心室細動(VF)を終了させるために胸部内に十分なエネルギー密度を生成する皮下の胸部領域に移植される電極の間で送達される。これは、VT/VFに対するのと同じ電界密度の概念を、外部用途として、または心臓のリード線上に電極を有する移植された細動除去器デバイスとして使用する。外部の細動除去においては、エネルギーは、皮膚表面上の電極の間を送達される。本皮下手法においては、電極は、皮膚の直下に移植されるが、心臓には接触しない。一般的に移植可能であるシステムにおいては、細動除去電極の1つは、移植された制御器の金属に封入されたものからなり得、他の電極は、心臓の右側(右心室)に置かれたリード線上のコイルである。
【0018】
皮下に移植可能な細動除去システムは、心臓組織との直接的な接触を有しないので、リード線ベースのペースメーカーと比較してペーシング治療を組み込む困難さが加わる。皮下の電極を用いてペーシングするためには、十分な電気的フィールドが、心臓におけるペーシング刺激閾値に達するために、胸部に渡る2つの電極の間に造り出されなければならない。この方法はまた、心臓における電気的な効果を正確に局部化するための能力を有しない。これはフィールド効果であるので、胸部の全ての筋肉および神経は、電気的なフィールドにさらされる。該電気的フィールド手法を使用して心臓組織を刺激するために必要とされるペーシングパルスエネルギーレベルは、胸部筋肉の収縮および痛みの感覚が皮下ペーシングと関連するほど十分に高い。痛みは、全ての移植可能な細動除去器の高エネルギー細動除去電荷に伴って生じるが、心臓内リード線を使用しての低エネルギーペーシングに伴う痛みは生じない。ペーシングを実行するために皮下に移植されたデバイスは、患者に痛みを引き起こし、無痛の代替的方法と比較した場合には、受け入れられない。高エネルギー細動除去を可能とし、無痛ペーシング能力もまた含むリード線のないシステムを有することは非常に有利である。
【0019】
VT/VFの終了のために高エネルギー電気的波形を使用することに加えて、リード線ベースの移植可能な細動除去器システムは、一般的には、抗頻脈性不整脈ペーシング(ATP)と呼ばれる、VT/VFを終了する点で効率的であるペーシングアルゴリズムをもまた含む。ATPのためには、リード線ベースの移植可能なシステムおよびリード線のない皮下システムの概念の両方は、特に左心臓において、ペーシング利用の位置を選択する点における制限を有する。VTは、ペーシングの部位が心室頻脈性不整脈の焦点または再入可能回路の近くである場合には、低電圧ペーシング刺激を使用して、迅速に終了され得る。しかしながら、これは、通常、左心室にあり、心内膜の近くにある。上述されたように、既存のペースメーカー/細動除去器デバイスは、抗頻脈性不整脈ペーシングを組み込むが、該ペーシング部位は、右心室リード線に限定され、または左配置のリード線の配置のために上述されたのと同じ制限に従う。さらに、右配置の位置は、特により重大である高速のVTに対しては、電気生理学の実験室試験においてはあまり効率的ではないことが示された。ペーシング刺激は、VTを終了させるために、VT再入可能回路の励起可能な領域(励起可能なギャップ)において、心臓組織を刺激しなければならない。ほとんどのVT回路は、左心室の副心内膜層に位置する。より高速のVTのためには、励起可能なギャップは、小さく、ペーシング刺激は、VTの終了に成功するためには、VT再入可能回路のかなり近くでなければならない。既存のペースメーカー/細動除去器のデバイスにおいては、抗頻脈性不整脈ペーシングがVTを終了させる点において非効率的である場合には、痛みを伴う高エネルギー電気的フィールドショックが送達される。それゆえに、特に心内膜の近くで、左心室におけるペーシング部位を選択し得ることが有利である。抗頻脈性不整脈ペーシング技術を使用した心室頻脈性不整脈の発症を終了させるために左心室の位置を選択する能力を有することは、既存のデバイスと比較してより効率的であることが予期される。
【0020】
リード線を有することと左心臓への制限されたアクセスを有することとの両方についての別の制限は、心房および心室の細動終了のための多部位ペーシングの出現エリアにある。これらの不整脈は、一般的には、左心房および左心室に生じ、左心房および左心室によって維持される。研究は、心房細動(動物およびヒト研究)および心室細動(動物研究)の間の組織内における励起可能なギャップの存在を示した。複数のペーシング部位に配置し、刺激することによって、領域的なペーシングの捕捉が、これらの不整脈中に獲得され得る。これは、刺激が適切な位置で十分な数の部位に適切なタイミングで送達される場合には、心房細動および心室細動の終了は可能であることを意味する。選択された部位の左心室ペーシングで心臓細動を終了させる有利さは、痛みを伴う高エネルギーショックの回避である。本出願において、左配置の刺激および刺激の多部位に対する能力は、有利である。
【0021】
頻脈性不整脈の終了に加えて、移植されたペースメーカーおよび細動除去器は、抗頻脈性不整脈を除去するために使用されてきた。恒久的なペースメーカーを受ける患者において、二重チャンバ(DDD)モードは、幾つかの大きな臨床試験における単一チャンバ(VVI)モードと比較してAFはより少なく発症することが示された。高位右心房およびCS心門の両方の同時的な多部位刺激を組み込むDDDペーシングはまた、AFの抑制のための標準的な単一心房部位DDDペーシングと比較され、AF発症のわずかな減少を示した。通常の右心房付属器官以外の一部位または多部位における心房刺激は、全心房活性時間を短縮することによって心房細動の防止に対して有利であり得る。コッホのトライアングルおよびバッハマン束における右心房部位は、心房伝導管の近くもしくはその中または通常の伝導路の一部分である他の管の中を刺激することによって心房活性時間を減少させ得る。実験的なイヌのモデル(ベッカー)において、4つのペーシング部位(RAにおいて2つおよびLAにおいて2つ)か、または心房間中隔において1部位が、AFの抑制のために必要とされた。これらの結果は非常に有望であるが、これらの結果は、既存のペースメーカーシステムに対する技術的な障害を示す。AFの抑制のために左心房にペーシング部位を組み込む多部位ペーシングの使用は、多数のリード線を使用することと、左心臓内にリード線を使用する点における全ての問題のために、ヒトにおいては評価されなかった。
AFが多部位心房ペーシング(特に左心室において)を用いて抑制され得る場合には、VFは、多部位心室ペーシング(特に左心室において)を用いて抑制され得る。しかしながら、左心室での多数のリード線の移植と関連する困難性は、この防止形態を不可能にした。
これらの理由のために、リード線の必要なしに刺激を成し遂げることが望ましい。本出願において、本発明者らは、ペーシング部位選択における制限を克服する移植可能なリード線のない刺激器システムのために音響エネルギーを使用した方法および装置を説明する。同時係属中の出願において、本発明者らは、さらに改良された刺激器を説明する。本発明の移植のための位置付けを評価し、最適化するための方法およびシステムが、本明細書中に記載される。
【0022】
(2.背景技術の説明)
特許文献1、Enger;Encapsulated Non−Permeable Piezoelectric Powered Pacesetter、5/1972
特許文献2、Bilitch;Leadless Cardiac Pacer、3/1981
特許文献3、Riseら;Wireless Transcutaneous Electrical Tissue Stimulator、9/1987
特許文献4、Ramonら;Leadless Magnetic Cardiac Pacemaker、12/1992
特許文献5(放棄された)、Zwicker;Device for Electrical Stimulation of Cells within a Living
Human or Animal、3/1995
特許文献6、Schulmanら;Structure and Method of
Manufacture of an Implantable Microstimulator、4/1995
特許文献7、Fujiiら;Cardiac Pacemaker Using Wireless Transmission、5/1995
特許文献8、Schroeppelら;Transcutaneous Energy
Coupling Using Piezoelectric Device、5/1998
特許文献9、Stevensonら;EMI Filter for Human Implantable Heart Defibrillators and Pacemakers、5/1998
特許文献10、Nappholzら;EMI Detection in an Implantable Pacemakerなど、5/1998
特許文献11、Stokesら;Leadless Multisite Implantable Stimulus and Diagnostic System、9/1998
特許文献12、Coxら;Implantable Cardiac Cardioverter/Defibrillator with EMI Suppression
Filter with Independent Ground Connection、10/1998
特許文献13、Stevenson;Capacitor with Dual Element Electrode Plates、11/1999
特許文献14、Welle;Ultrasonic Power Communication System、3/2000
特許文献15、Marchesi;Electronic Stimulation Equipment with Wireless Satellite Units、4/2002
特許文献16、Pennerら;SystemsおよびMethods for Communicating with Implantable Devices、6/2002
特許文献17、Stevenson;Electromagnetic Interference (EMI) Filter and Process for Providing Electromagnetic Compatibility of an Electronic Device while in the Presence of an Electromagnetic Emitter Operating at the Same Frequency、7/2002
特許文献18、Bulkesら; Wireless Cardiac Pacing
System with Vascular Electrode−Stents、9/2002
特許文献19、Sweeney;Ultrasonically Activated
Electrodes、11/2003
特許文献20、Penner;Acoustically Powered Implntable Stimulating Device、9/2004
Baker、Jr.らへの特許文献21、Tachycardia arrester、7/1981
Vollmannらへの特許文献22、Implantable cardiac pacer with discontinuous microprocessor programmable antitachycardia mechanisms and patient data telemetry、12/1985
Kolenikらへの特許文献23、Programmable tachycardia pacer、1/1980
Bicherらへの特許文献24、Cardiac Monitor、9/1974
Berkovitsへの特許文献25、Stimulator for Treatment of Tachycardia with a Burst of Stimuli Having a Continuously Variable Rate、9/1972
Berkovitsへの特許文献26、Rate−scanning Pacer for Treatment of Tachycardia、10/1972
Berkovitsらへの特許文献27、Rate scanning demand
pacemaker and method for treatment of tachycardia、3/1086
Grevisへの特許文献28、Apparatus and method for
detecting and treating cardiac tachyarrhythmias、11/1991
Peuignotらへの特許文献29、Method and apparatus for stimulating a heart to eliminate rhythmic abnormalities、especially tachycardias、2/1976
Allenらへの特許文献30、Device for terminating tachycardia、3/1976
Haluskaらへの特許文献31、Implantable cardiac stimulator for detection and treatment of ventricular arrhythmias、5/1989
特許文献32、Combsら、Method and apparatus for treatment of atrial fibrillation、10/1997
特許文献33、Petersonら、Method and apparatus for treatment of fibrillation、6/2000
特許文献34、Krollら、Anti−tachycardia pacing methods and devices、6/2004
Bardyらへの特許文献35、Biphasic waveform for anti−tachycardia pacing for a subcutaneous
implantable cardioverter−defibrillator、2/2005
Osteroffらへの特許文献36、Method and apparatus for inducing defibrillation in a patient
using a T−shock waveform、12/2004
Bardyらへの特許文献37、Radian curve shaped implantable cardioverter− defibrillator canister、9/2004
Bardyらへの特許文献38、Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator、6/2004
Bardyらへの特許文献39、Subcutaneous only implantable cardioverter defibrillator and optional pacer、4/2004
Lysterらへの特許文献40、Adaptive analysis method for an electrotherapy device and apparatus、12/2003
Bardy らへの特許文献41、Unitary subcutaneous only implantable cardioverter− defibrillator and optional pacer、11/2003
【先行技術文献】
【特許文献】
【0023】
【特許文献1】米国特許第3,659,615号明細書
【特許文献2】米国特許第4,256,115号明細書
【特許文献3】米国特許第4,690,144号明細書
【特許文献4】米国特許第5,170,784号明細書
【特許文献5】独国特許発明第4330680号明細書
【特許文献6】米国特許第5,405,367号明細書
【特許文献7】米国特許第5,411,535号明細書
【特許文献8】米国特許第5,749,909号明細書
【特許文献9】米国特許第5,751,539号明細書
【特許文献10】米国特許第5,766,227号明細書
【特許文献11】米国特許第5,814,089号明細書
【特許文献12】米国特許第5,817,130号明細書
【特許文献13】米国特許第5,978,204号明細書
【特許文献14】米国特許第6,037,704号明細書
【特許文献15】米国特許第6,366,816号明細書
【特許文献16】米国特許出願公開第2002/0077673号明細書
【特許文献17】米国特許第6,424,234号明細書
【特許文献18】米国特許第6,445,953号明細書
【特許文献19】米国特許第6,654,638号明細書
【特許文献20】米国特許出願公開第2004/0172083号明細書
【特許文献21】米国特許第4,280,502号明細書
【特許文献22】米国特許第4,561,442号明細書
【特許文献23】米国特許第4,181,133号明細書
【特許文献24】米国特許第3,832,994号明細書
【特許文献25】米国特許第3,693,627号明細書
【特許文献26】米国特許第3,698,398号明細書
【特許文献27】米国特許第4,577,633号明細書
【特許文献28】米国特許第5,063,928号明細書
【特許文献29】米国特許第3,939,844号明細書
【特許文献30】米国特許第3,942,534号明細書
【特許文献31】米国特許第4,830,006号明細書
【特許文献32】米国特許第5,674,251号明細書
【特許文献33】米国特許第6,078,837号明細書
【特許文献34】米国特許第6,754,531号明細書
【特許文献35】米国特許第6,856,835号明細書
【特許文献36】米国特許第6,834,204号明細書
【特許文献37】米国特許第6,788,974号明細書
【特許文献38】米国特許第6,754,528号明細書
【特許文献39】米国特許第6,721,597号明細書
【特許文献40】米国特許第6,671,547号明細書
【特許文献41】米国特許第6,647,292号明細書
【非特許文献】
【0024】
【非特許文献1】Allessie M, Kirchof C、Scheffer GJ、Chorro F、 Brugado Jk “Regional Control of Atrial Fibrillation by Rapid Pacing in Conscious Dogs”、Circulation 1991;84:1689−97
【非特許文献2】DAVID Trial Investigators、“The Dual Chamber and WI Implantable Defibrillator (DAVID) Trial”、JAMA 2002;288:3115−3123
【非特許文献3】Johnson PL、Newton JC、Rollins DL、Smith SM、Ideker RE、“Adaptive Pacing during Ventricular Fibrillation、PACE 2003;26:1824−36
【非特許文献4】Kass DA、Chen C−H、Curry C、Talbot M、Berger R、Fetics B、Nevo E、“Improved Left Ventricular Mechanics from Acute VDD Pacing in Patients with Dilated Cardiomyopathy and Ventricular Conduction Delay”、Circulation 1999;99:1567−73
【非特許文献5】Abraham WT、Fisher WG、Smith AL、Delurgio DB、Leon AR、Loh E、Kocovic DZ、Packer、M、Clavell AL、Hayes DL、Ellestad M、Messenger J、for the MIRACLE study group、“Cardiac Resynchronization in Chronic Heart Failure”、N Engl J Med、2002;346:1845−53
【非特許文献6】Becker R.ら、“Suppression of Atrial Fibrillation by Multisite and Septal Pacing in a Novel Experimental Model”、Cardiovascular Research 2001;54:476−481
【非特許文献7】Kalman J.M.ら、“Regional Entrainment of Atrial Fibrillation in Man”、J Cardiovasc Electrophysiol、1991;7:867−76
【非特許文献8】KenKnight B.H.ら、“Regional Capture of Fibrillating Ventricular Myocardium”、Circ Res 1999;77:849−55
【非特許文献9】Leclercq J.F.ら、“Is Dual Site Better than Single Site Atrial Pacing in the Prevention of Atrial Fibrillation?”、PACE 2000;23”2102−7.
【非特許文献10】Mirza I.ら、“Biatrial Pacing for Paroxysmal Atrial Fibrillation”、J Am Coll Cardiol 2002;40:457−463.
【非特許文献11】Sowton、E.、“Clinical Results with the Tachylog Antitachycardia Pacemaker”、PACE 1984;7(Part II):1313−1317
【非特許文献12】Warren、J.ら、“Clinical Evaluation of Automatic Tachycardia Diagnosis by an Implanted Device”、PACE 1986;9 (Part II):1079−1083
【非特許文献13】Ansalone G、Giannantoni P、Ricci R、Trambaiolo P、Fedele F、Santini M、“Bi−ventricular pacing I heart failure:back to basics in the pathophysiology of left bundle branch block to reduce the number of nonresponders、” Am J Cardiol 2003;91 :55F−61F
【非特許文献14】Auricchio AおよびAbraham WT、“Cardiac resynchronization therapy: current state of the art、” Circulation 2004; 109:300−307
【非特許文献15】Deshmukh PMおよびRomanyshyn M、“Direct His−bundle pacing:present and future”、PACE 2004;27 [PlII]:862−70.
【非特許文献16】Peschar M、de Swart H、Michels KJ、Reneman RSおよびPrinzen FW、“Left ventricular septal and apex pacing for optimal pump function in canine hearts、” JAm Coll Cardiol 2003;41:1218−26
【発明の概要】
【課題を解決するための手段】
【0025】
(発明の概要)
本発明は、第一の移植されたデバイスから第二の移植されたデバイスへのエネルギーおよび信号の情報を送信するために音響エネルギーを利用して、心筋および他の身体組織を電気的に刺激する方法およびデバイスを提供する。一般的に、制御送信器または音響制御送信器と呼ばれる、第一の移植されたデバイスは、適切なタイミングおよび制御の機能を提供し、第二のデバイスに音響エネルギーを送信する。一般的に、受信刺激器と呼ばれる、第二の移植されたデバイスは、音響エネルギーを受信し、該音響エネルギーを電気エネルギーに変換し、該電気エネルギーを刺激電極に負荷する。第二のデバイスは、心筋または他の身体組織と直接的に接触している刺激電極を用いて、電気的刺激を提供するのに所望の位置に恒久的に移植されるように適合されている。必要に応じて、2つ以上の受信刺激器は、単一の制御送信器によって制御されるように移植され得る。
【0026】
本発明にしたがって超音波エネルギー移送を採用する心臓ペースメーカー(または以下に記載される細動除去器/電気的除細動ユニット)は、心内膜の、心外膜の、または心筋内のいずれかにおいて、任意の所望の位置に移植され、または取り付けられるように適合された移植可能な受信刺激器デバイスを備える。様々な最小限に侵襲的な、血管横断的な技術および道具(例えば、カテーテル、スタイレット)は、受信刺激器デバイスをこれらの位置に採用し、配置し、埋め込み、かつ確保するように適合され、使用される。受信刺激器は、さらに、恐らくは、らせんコイル、かえし、タイン、クリップなどを含み得る移植部位への恒久的な取り付けを提供するように適合されている。慢性的な内皮化は、表面におけるタインまたは不規則性などの設計の特性によって、または細胞の成長および接着を刺激することが公知である外表面物質に結合することによって、促進される。代替的に、受信刺激器は、刺激のための好ましい部位の冠状血管系への移植、例えば、血管内での送達および配置に適切であるステント様プラットフォームに組み込まれるために適合され得る。特定の実施形態において、デバイスは、ステントの外表面に置かれ、ステント外側壁と血管内側壁との間の位置で開かれ得る。機能的には、受信刺激器デバイスは、1)制御送信器デバイスからの音響エネルギーを受信し、該音響エネルギーを電気エネルギーに変数する超音波変換器、2)交流電気エネルギーを直流または他の特性を有する波形へと変数する電気回路、および3)該電気エネルギーを心筋層に移送する電極を備える。受信刺激器は、電気出力を構成するために音響エネルギー送信からの信号情報を使用し、例えば、該送信のパルス幅は、電気出力の波形のパルス長/パルス幅を決定する。さらに、受信刺激器は、さらなる制御ロジックのための回路、例えば、個々の受信刺激器(オン‐オフ制御)の選択的な起動、タイミングの遅れ、波形の調節などを備え得る。特に、1つ以上の受信刺激器が単一の制御送信器によって制御されるように移植される場合に、送信されたエネルギー信号は、アドレッシング、またはどの受信刺激器が任意の特定の時に起動されるべきかを識別する選択情報を含み得る。
【0027】
続いて、制御送信器デバイスは、心臓の近くに公知の外科技術(胸筋上または下に)を利用して皮下に移植される(該デバイスは、本発明に関係する特定の適合を有する現在入手可能であるペースメーカーシステムの幾つか、またはほとんど、またはすべてのエレメントを含む)。このような一般的なペースメーカーエレメントは、電源、ペースメーカー制御およびタイミング回路、恐らくはECGセンシング電極を含むセンシングシステム、運動検出器、身体または他の温度センサ、圧力センサ、インピーダンスセンサ(例えば、呼吸サイクルまたは肺浮腫を測定するための)、または他のタイプの生理学的なセンサ、様々な電極および検出器のための信号コンディショニングと分析機能、一般的にはラジオ周波数(RF)リンクを介しての、データ送信、診断およびプログラミング機能のために外部コンソールと通信するシステムを含み得る。さらに、制御送信器デバイスは、音響エネルギーを生成するために超音波増幅器および超音波変換器を含み、心臓の一般的な方向に、および具体的には移植された受信刺激器デバイスの方向に、このようなエネルギーを送信する。音響エネルギー送信の長さ、タイミングおよび電源は、ペースメーカーの制御電子機器によって、検出された自発性、または産発性の生理学的な事象または条件および公知の電気生理学的なパラメータに反応して、必要とされるように制御される。
【0028】
単一の受信刺激器デバイスは、単一部位のペーシングのために上述されるように移植され得るが、さらに、複数の受信刺激器デバイスを移植することが可能であり、同時に送信された音響エネルギーを同時に受け取るか、または同じ送信された音響エネルギーを受信した後に既定の、またはプログラム可能である遅延を介して順に、または該特定のデバイスだけに通電することを意図された特定の特性(すなわち、特定の周波数、振幅の、または音響波形の他の変調または符号化による)の送信された音響エネルギーの信号情報にだけに独立に反応することによって、該複数の受信刺激器は、刺激する。
【0029】
第一の好ましい実施形態において、リード線のない心臓ペースメーカーは、単一のチャンバタイプ、または好ましくは二重のチャンバタイプのいずれかの、移植された従来の(すなわち、リード線/電極を利用する)右心臓ペースメーカーに対する「スレーブの」ペースメーカーとして機能する左心室ペースメーカーとして採用される。このようなスレーブシステムの目的は、HFを有する患者に対し、左心室リード線の配置を必要とすることなしに、有利な処置として右心臓ペースメーカーによって提供された右心室ペーシングと同期する左心室ペーシングを提供することである。
【0030】
このような実施形態において、受信刺激器は、左心室内の所望の位置に移植され、好ましくは、心筋内に完全に埋め込まれる。次いで、特化された制御送信器は、移植された受信刺激器の非音化(insonification)を可能にする位置の皮下に移植される。特化された「スレーブ」制御送信器は、その外部表面上の、またはそこに組み込まれたセンシング電極ならびに移植された従来の右心臓ペースメーカーおよび/または患者のエレクトログラム(心電図の記録)からのペーシングアーチファクト信号を検出することを可能にする処理回路網およびアルゴリズムを含む。信号処理と特化されたアルゴリズムは、ペーシングアーチファクト信号、本来的な心房の、および/または心室の活動から生じる生来の心臓エレクトログラム信号、および/またはペーシングにより開始された非本来的な心房の、および/または心室の起動から生じる生来の心臓エレクトログラム信号を区別する。次いで、スレーブ制御送信器は、右心臓ペースメーカーからの右心房の、または右心室の、または両方のペーシングアーチファクト信号に反応し、または検出された本来的な、もしくは非本来的な活動に反応し、右心房および/または右心室のペーシングされたアーチファクト、もしくは検出された/センシングされた心臓の事象との関係における所望の時間における左心室刺激を生成するために、移植された受信刺激器に音響エネルギーを送信する。例えば、送信が右心室ペーシングのアーチファクトの検出の直後に起きる場合には、左心室ペーシング刺激は、左心室における受信刺激器ペーシングの出力によって送達され、二心室ペーシング治療を生成する。
【0031】
代替的に、移植された制御送信器は、一般的には、右心房、右心室および左心室に対する3つのリード線を有する従来の二心室ペースメーカーと共に動作するように適合され得る。1つの応用においては、左心室のリード線を配置する必要を排除するために、制御送信器は、従来のペースメーカーの左心室の出力に特別の線を介して接続する。次いで、制御送信器は、該特別の線から従来のペースメーカーの左心室ペーシングの出力を検出し、即時に左心室に移植された受信刺激器を起動するために音響エネルギーを送信する。このようなシステムは、左心室のリード線の排除を提供し、センシング電極ならびに関連する信号処理の回路網およびアルゴリズムによって負担解除された単一の制御送信器だけを必要とする。別の応用においては、従来の二心室ペースメーカーのヘッダにおける左心室のリード線に対する入力は、密封され、特化された「スレーブ」制御送信器は、上のパラグラフで記載されるように動作する。
【0032】
別の好ましい実施形態は、リード線のないスタンドアロンの単一チャンバのペースメーカーである。このような実施形態は、この場合は、上述されるのと同じ、または類似する移植可能な受信刺激器デバイスを利用するが、右心房ペーシングを提供するために、心臓の右心房に移植され、または取り付けられ、または右心室の、もしくは左心室のペーシングを提供するために、心臓の右心室または左心室のいずれかに移植され、または取り付けられる。次いで、制御送信器は、一般的には、AAI(心房の)またはVVI(心室の)モードペーシングとして公知である、現在の単一チャンバのペースメーカーデバイスのほとんどの、または全ての特性を組み込む。このような従来のペースメーカーは、一般的に徐脈型不整脈または低心拍数の処置のために、右心房の、または右心室のリード線を利用する。本発明のペースメーカーシステムは、有利にするために、何らの電気的なリード線の使用も必要としない。さらに、左心室のリード線だけを使用する能力は、何らの電気的なリード線を使用しない右心室ペーシングと比較して、左心室のペーシングの潜在的、血行動態的な利益を可能にする。この単一チャンバのペースメーカーシステムに対するさらなる性能向上は、センサ、例えば、運動検出器に応じて患者のペーシング速度を調節する他の患者の生理学的なセンサを含む。この性能向上は、ペーシングのAAIRおよびVVIRのモードのための能力を提供する。
【0033】
上述されるように、身体における電気的な活性および運動、血圧、腔内インピーダンスの変化または心音などの他の患者生理学情報のセンシングは、移植された制御送信器のハウジングに組み込まれた電極および/または他のセンサから提供される。特定の応用においては、制御送信器のための送信変換器は、機械的な/動きのセンシング、または心音センシングのためのセンサとして使用され得る。電気的な活性のセンシングのための例は、本来的な心拍、ペースメーカーのペーシングアーチファクト、ペースメーカーのペーシングの出力によって開始される非本来的な心拍などを含む。
【0034】
リード線のない心臓ペースメーカーシステムの別の好ましい実施形態においては、本二重チャンバ(DDD)のペースメーカーに類似する機能を有する、二重チャンバのペースメーカーが造られ得る。このようなペースメーカーは、2つの移植可能な受信刺激器デバイスおよび1つまたは2つの移植可能な制御送信器デバイスを利用することによって実現される。1つの受信刺激器デバイスは、上述された右心房に移植または取り付けられ、第二の受信刺激器デバイスは、右心室または左心室に移植または取り付けられる。1つの移植された制御送信器デバイスは、2つの移植された受信刺激器に超音波を送り、該受信刺激器に心房および心室に同時または連続的にペーシング刺激を提供させる。連続的である場合には、心房および心室へのタイミングを合わせた刺激が必要とされ、該タイミング合わせを達成するための様々な手段は、リード線のないペースメーカーシステムに組み込まれ得る。1つの可能性においては、単一の音響波形は、第一の、一般的には、心房の受信刺激器を起動する必要がある時に送信される。第二の、一般的には、心室の受信刺激器デバイスは、心房刺激時に送信された音響エネルギーを捕捉し、一時的に格納するための回路網とデバイスを組み込む改変された設計のものであり、既定の遅延の後に、心室をペーシングするために刺激電極に該エネルギーを提供する。順次の刺激はまた、各々の受信刺激器が単一の独特の周波数にだけ反応するように変調され、恐らくは異なる周波数での音響エネルギーの順次の送信を利用して、制御送信器の直接的な制御下において達成され得る。振幅調節、周波数調節、時間区分調節または音響の波形の他の調節もしくは符号化を含む他の方法はまた、多数の移植された受信刺激器デバイスからの選択的かつ順次のペーシングを可能する。代替的に、2つの制御刺激器が移植され得、各々は、1つの特定の受信刺激器だけに音響エネルギーを送信するように構成され、このような構造は、空間的分離、周波数分離、または上述された他の調節もしくは符号化の手段のいずれかを介して達成される。
【0035】
このような二重チャンバのシステムにおいては、エレクトログラムまたは他の患者生理学情報のセンシングは、移植された制御送信器のハウジングに組み込まれた電極および/または他のセンサから提供される。この二重チャンバのペースメーカーシステムへのさらなる性能向上は、センサ、例えば、運動検出器に応じて患者のペーシング速度を調節する他の患者生理学センサを含む。この性能向上は、ペーシングのDDDRモードのための能力を提供する。
【0036】
上述される二重チャンバのペースメーカーシステムは、さらにHF用途のための二心室ペースメーカーとしてさらに適合され得ると理解され得る。二心室ペースメーカーの1つの実施形態においては、2つのペーシング信号間のタイミングの考慮に対する適切な適合を有する、上述されたシステムが、1つの受信刺激器は右心室に移植され、第二の受信刺激器は左心室に移植されて、採用され得る。さらなる性能向上においては、第三の受信刺激器は、左心室ペーシングと同期する両方の二重チャンバの右配置のペーシングを提供するために右心房に移植され得る。上述されるように、複数のペーシング刺激の適切な配列を提供する手段が採用される。
【0037】
別の好ましい実施形態においては、リード線のない心臓ペースメーカーシステムは、従来の単一チャンバまたは二重チャンバの移植可能な電気的除細動細動除去器(ICD)デバイスと共に使用され得る。ICDデバイスは、右心室のリード線に結合された細動除去器の電極を有する、(必要に応じて)右心房および右心室のセンシングおよびペーシングのための従来のリード線/電極のシステムを利用する。本発明のリード線のない受信刺激器デバイスは、既存のリード線ベースのCRT−D(統合ICDおよび心臓再同期ペーシング)デバイスに類似する、左心室ペーシングを組み込む組合されたデバイスを有する、左心室に移植され得る。左心室に移植された受信刺激器は、左心室に対する刺激を提供するために特化された制御送信器からの音響エネルギーを受信する。特化された制御送信器は、移植された受信刺激器の非音化(insonification)を可能にする位置の皮下に移植される。このようなシステムは、再度、左心室のリード線に対する必要および該位置と関連する問題を排除することによって、従来のCRT−Dペースメーカー/細動除去器との関係において有利である。
【0038】
別の好ましい実施形態においては、リード線のない心臓ペースメーカーシステムは、従来のペースメーカーシステムと結合され、単一のデバイスであり得る。好ましくは、このような二重チャンバ(DDD)ペースメーカーは、パルスジェネレータのケースのヘッダと接続された、右心房および右心室のセンシングおよびペーシングのための、従来のリード線/電極のシステムを利用する。DDDパルスジェネレータのケースは、音響送信器もまた含む。従来のリード線を介して達成される右心房および右心室のペーシングに加えて、本発明のリード線のない受信刺激器は、左心室に移植され得る。移植された受信刺激器は、左心室に対する刺激を提供するために、他の方式の従来のペースメーカーに組み込まれた送信器から音響エネルギーを受信する。このようなシステムは、左心室のリード線の必要およびその位置と関連する問題を排除することによって従来の二心室ペースメーカーとの関係において有利である。
【0039】
さらに別の好ましい実施形態においては、リード線のない心臓ペースメーカーシステムは、従来の移植可能な電気的除細動細動除去器(ICD)技術と組み合わせられ、単一のデバイスであり得る。好ましくは、このようなデバイスは、右心房および右心室のセンシングとペーシングのための従来のリード線/電極のシステムならびにパルスジェネレータのケースのヘッダと接続される細動除去を利用する。ICDパルスジェネレータのケースはまた、音響送信器を含む。右心房および右心室のペーシングならびに従来のリード線を介して達成される細動除去に加えて、本発明1つ当たりのリード線のない受信刺激器デバ
イスは、既存のリード線ベースの(CRT−D)デバイスと類似する、二心室ペーシングを組み込む組み合わされたデバイスを有し、左心室に移植可能であり得る。左心室に移植された受信刺激器は、左心室に対する刺激を提供するために他の方法の従来のICDデバイスへ組み込まれた送信器から音響エネルギーを受信する。このようなシステムは、再度、左心室のリード線の必要および該位置と関連する問題を排除することによって、従来のCRT−Dペースメーカー/細動除去器との関係において有利である。
【0040】
ICDデバイスを必要とする患者は、心室の頻脈性不整脈および細動を含む潜在的に致死的な心拍を有する。抗頻脈性不整脈ペーシング技術を使用する心室の頻脈性不整脈の発症を終了させる左心室のリード線の位置を選択するさらなる能力を有することは、既存のデバイスと比較してより効果的であるはずである。選択された部位の左心室ペーシングを用いて頻脈性不整脈を終了させる利点は、痛みを伴う高エネルギーショックの回避であり得る。さらに、任意の心臓チャンバに多数の受信刺激器を移植する能力は、心房細動および心室細動の防止または終了のための多部位ペーシングを可能とし得る。
【0041】
本発明の方法およびシステムは、必要に応じて移植され、外的に配置され得る音響制御送信器から、心臓組織と直接的に接触して移植されるように適合された電極を有する1つ以上の移植された受信刺激器へと、エネルギーおよび信号情報を送信するために音響エネルギーを利用した予防アルゴリズムを含む、抗頻脈性不整脈ペーシング(ATP)のために利用され得る。音響制御送信器は、通常、ECG、またはペーシングおよび必要に応じてより高いエネルギー細動除去および/または電気的除細動を介して段階化された処置を可能にする、頻脈性不整脈の検出を可能にする他のモニタリング手段を有する。全ての場合に、エネルギーは、制御送信器から音響受信刺激器に音響信号によって送達および/または制御される。音響受信刺激器は、音響エネルギーを、刺激する/ペーシングする/細動除去の/電気的除細動の電気エネルギーに変換する。
【0042】
このようなリード線のないペーシングシステムは、スタンドアロンの頻脈性不整脈ペースメーカーとして有利に採用され得る。本発明のこの実施形態においては、1つ以上の受信刺激器は、1つ以上の心臓部位に移植され、制御送信器は、皮下に移植されたデバイスまたは外的に付加されたデバイスのいずれかであり得る。
【0043】
リード線のないペーシングシステムはまた、移植された従来の(すなわち、リード線/電極を利用する)右心臓ペースメーカーとともに、または単一もしくは好ましくは二重のチャンバのタイプである、移植された従来の右心臓ペースメーカー/電気的除細動器/細動除去器とともに、採用され得る。システムのこのような組み合わせの目的は、頻脈性不整脈の終了または防止のために部位特定ペーシングを提供することである。代替的に、ペースメーカー/電気的除細動器/細動除去器との組み合わせで移植されたリード線のないペーシングシステムは、ペーシング治療が頻脈性不整脈の終了に効果がない場合には、高エネルギーショックの能力を患者に提供する。
【0044】
さらなる実施形態においては、リード線のない心臓ペースメーカーシステムは、移植された皮下の、リード線のない電気的除細動器/細動除去器とともに採用される。システムのこのような組み合わせの目的は、抗頻脈性不整脈ペーシング治療のための、ショック送達後のバックアップペーシングのための、および/または血行動態ペーシングサポートのための、リード線のないペーシング能力を提供する。移植された皮下の、リード線のない電気的除細動器/細動除去器は、ペーシング治療が不整脈の終了に非効率的であるか、または頻脈を細動にまで促進する場合には、高エネルギーショック能力を患者に提供する。
【0045】
なおさらなる実施形態においては、リード線のない心臓ペースメーカー/細動除去器システムは、単一の統合された高エネルギー電気的ショック細動除去器およびリード線のない部位特定ペーシングシステムとして採用される。この統合の目的は、単一の皮下に移植された制御デバイスを提供することである。
【0046】
同様に、制御送信器は、ペーシング能力を提供するために、リード線のない、皮下の細動除去器に付随して使用されるように適合され得る。これは、スタンドアロンの抗頻脈性不整脈ペーシングシステムとして、通信が除去細動除去器と制御送信器との間の直接的な接続によって交換される細動除去器ペーシングシステムとして、またはペーシングのための(動態血行バックアップまたは抗頻脈性不整の脈ペーシングシステムのための)および細動除去のための電気的ショックのための受信刺激器に対する音響送信のための能力を有する単一の統合されたデバイスシステムとしてなされ得る。
【0047】
本発明のさらなる局面においては、制御送信器デバイスは、身体内にある、または身体外にある遠くの組織の位置に移植され得る。受信刺激器デバイスは、刺激されるべき身体組織と直接的に接触している刺激電極を有して標的の位置に恒久的に移植されるか、または一時的に配置され得る。遠くの組織位置と標的の組織との様々な組み合わせに応じた患者の反応および/またはデバイス測定における変化を観察することによって、恒久的な移植のために選ばれる部位は、最適化され得、選択され得る。患者の反応は、一般的には、所望の有益な反応と関連する、刺激に対する任意の量的または質的な生理学的な反応であり得る。デバイスの測定値は、信号の強さ、送信効率性などであり得る。
【0048】
このような最適化された配置方法に対する使用は、末梢筋肉の緊張および引き裂きの処置のために電気刺激を利用すること、骨折、筋骨格炎症、慢性疼痛、パーキンソン病、てんかん発作、高血圧、心臓不整脈、心不全、昏睡、脳卒中、聴覚喪失、痴呆、うつ病、偏頭痛、睡眠障害、胃運動障害、排尿障害、肥満および糖尿病を含むが、これらに限定されない。
本出願は、有効性を評価し、これらの移植可能なリード線システムの位置付けを最適化するための方法およびシステムを記載する。制御送信器および受信刺激器の両方の配置は、これらの方法を用いて最適化される。3つの方法は、身体の多様な位置におけるデバイスの配置を含む恒久的な移植に先行しての試験的な配列を使用して記載される。各方法において、1組のデバイスの位置に対して、患者の応答またはデバイス測定がなされる。最
適位置は、患者の反応および/またはデバイス測定値に基づいて決定される。
例えば、本発明は以下の項目を提供する。
(項目1)
心筋を刺激するための方法であって、該方法は、
第一の移植部位で音響エネルギーを生成することと、
心臓刺激部位において該音響エネルギーを受信することであって、該音響エネルギーは、該生成された音響エネルギーに含まれるエネルギー情報と信号情報の両方に基づいて心臓刺激エネルギーに変換されることと
を包含する、方法。
(項目2)
受信することは、少なくとも2つの異なる心臓刺激部位において前記エネルギーを受け取ることを含む、項目1に記載の方法。
(項目3)
前記信号情報は、順次に2つの異なる心臓部位を刺激するために2つの受信刺激器を順次に起動する、項目2に記載の方法。
(項目4)
前記信号情報は、同時に2つの異なる心臓部位を刺激するために2つの受信刺激器を同時に起動する、項目2に記載の方法。
(項目5)
前記心臓刺激エネルギーは、異常な心臓リズムを防止するために送達される、項目1に記載の方法。
(項目6)
前記心臓刺激エネルギーは、異常な心臓リズムを終わらせるために送達される、項目1に記載の方法。
(項目7)
心臓の頻脈性不整脈を検出することと、電気的除細動/細動除去のエネルギーを送達することとをさらに含む、項目6に記載の方法。
(項目8)
心筋を刺激するためのシステムであって、該システムは、
移植可能な音響制御送信器と、
心筋組織と直接的に接触しているように適合された電極集合体を有する移植可能な音響受信刺激器であって、該制御送信器と受信刺激器が、該心筋組織を刺激するのに十分である、受信刺激器へのエネルギー情報と信号情報との両方を提供する音響エネルギーを、送信し受信するように適合されている移植可能な音響受信刺激器と
を備えている、システム。
(項目9)
前記受信刺激器は、音響エネルギーを受信し、交流を生成する音響受信器、該交流を、前記心臓組織を刺激するために直流または波形に変換するための手段、および心筋組織に直流または波形を送達するように適合された電極を含む、項目8に記載のシステム。
(項目10)
前記移植可能な受信刺激器は、心臓チャンバ内の任意の位置に置かれ、確保されるように適合されている、項目9に記載のシステム。
(項目11)
前記移植可能な受信刺激器は、前記心筋組織内の任意の位置に埋め込まれ、確保されるように適合されている、項目9に記載のシステム。
(項目12)
前記移植可能な受信刺激器は、心臓の心外膜上の任意の位置に置かれ、確保されるように適合されている、項目9に記載のシステム。
(項目13)
前記移植可能な受信刺激器は、心臓の冠状静脈または冠状動脈内の任意の位置に置かれ、確保されるように適合されている、項目9に記載のシステム。
(項目14)
前記移植可能な受信刺激器は、ステント上に置かれる、項目13に記載のシステム。
(項目15)
前記移植可能な受信刺激器は、ステント壁の外側と血管壁の内側との間に確保されるように適合されている、項目13に記載のシステム。
(項目16)
前記移植可能な受信刺激器は、左心室と右心室との間の収縮を同期させるために置かれ、確保されるように適合されている、項目8に記載のシステム。
(項目17)
前記移植可能な受信刺激器は、左心室内の収縮を同期させるために置かれ、確保されるように適合されている、項目8に記載のシステム。
(項目18)
前記移植可能な受信刺激器は、前記左心房と前記右心房との間の収縮を同期するために置かれ、確保されるように適合されている、項目8に記載のシステム。
(項目19)
前記移植可能な受信刺激器は、心房と心室との間の収縮を同期させるために置かれ、確保されるように適合されている、項目8に記載のシステム。
(項目20)
前記移植可能な受信刺激器は、心臓内の多数の部位の間の収縮を同期させるために置かれ、確保されるように適合されている、項目8に記載のシステム。
(項目21)
制御送信器は、前記移植可能な音響受信刺激器にエネルギーを送達するために、患者に対して外的に置かれるように適合されている、項目8に記載のシステム。
(項目22)
前記制御送信器は、電源とペーシング信号を提供するための、制御回路網およびタイミング回路網と、該ペーシング信号を音響エネルギー信号に変換する手段と、該音響エネルギー信号を前記受信刺激器に送信する手段とを備える、項目8に記載のシステム。
(項目23)
制御およびタイミング回路網は、刺激のタイミングを調節するために、生理学的な変数または非生理学的な変数をセンシングするための1つ以上の手段を含む、項目22に記載のシステム。
(項目24)
非生理学的な変数をセンシングすることは、移植されたペースメーカーを有する前記移植可能な受信刺激器からの心臓刺激を同期させるために、該ペースメーカーのペーシング出力を検出することと、該検出から刺激のためのペーシング信号のタイミングを合わせることと、を含む、項目23に記載のシステム。
(項目25)
生理学的な変数をセンシングするための手段は、血圧センサを含む、項目23に記載のシステム。
(項目26)
生理学的または非生理学的な変数をセンシングする手段は、前記制御送信器の外面上に位置する組織と接触している電極からのエレクトログラム信号を処理することを含む、項目23または項目24に記載のシステム。
(項目27)
前記エレクトログラム信号プロセッサは、内因性心拍を検出するように適合されている、項目26に記載のシステム。
(項目28)
前記エレクトログラム信号プロセッサは、ペースメーカーのペーシング出力を検出するように適合されている、項目26に記載のシステム。
(項目29)
前記エレクトログラム信号プロセッサは、ペースメーカーのペーシング出力によって開始された非内因性心拍を検出するように適合されている、項目26に記載のシステム。
(項目30)
前記エレクトログラム信号プロセッサは、頻脈性不整脈を検出するように適合されている、項目26に記載のシステム。
(項目31)
前記制御回路網は、頻脈性不整脈を検出した後に、選択的にペーシング、および/または細動除去し得る、項目27に記載のシステム。
(項目32)
生理学的な変数をセンシングする手段は、身体運動をセンシングするための加速度計を含む、項目23に記載のシステム。
(項目33)
生理学的な変数をセンシングするための手段は、心音を処理することを含む、項目23に記載のシステム。
(項目34)
生理学的な変数をセンシングするための手段は、呼吸サイクルまたは肺水腫と関連する身体におけるインピーダンス変化を処理することを含む、項目23に記載のシステム。
(項目35)
生理学的な変数をセンシングするための手段は、体温を処理することを含む、項目23に記載のシステム。
(項目36)
ペースメーカーのペーシング出力をセンシングすることは、前記制御送信器から、移植されたペースメーカーのペーシング出力チャネルにケーブルを接続することと、該ケーブルからのペースメーカーのペーシング出力の発生を検出することと、を含む、項目24に記載のシステム。
(項目37)
少なくとも1つのさらなる受信刺激器デバイスをさらに備えている、項目8に記載のシステム。
(項目38)
前記システムは、前記受信刺激器デバイスを順次に起動するようにプログラムされている、項目37に記載のシステム。
(項目39)
前記システムは、前記受信刺激器デバイスを同時に起動するようにプログラムされている、項目37に記載のシステム。
(項目40)
前記移植可能な音響制御送信器は、従来のペースメーカーのための制御回路網を含み、従来の電気的なペーシングのために前記左心房および/または前記右心室に置かれた電極チップの経静脈リード線を利用するように適合されている、項目8に記載のシステム。
(項目41)
前記移植可能な制御送信器/ペースメーカーの組み合わせは、電源と、多数のペーシング信号を提供するための制御回路網およびタイミング回路網と、少なくとも1つの従来のペーシング出力信号を増幅し、前記経静脈リード線上の電極を介して心筋に負荷する手段であって、少なくとも1つのペーシング信号を音響エネルギー信号に変換するプラス手段を加えた手段と、該音響エネルギー信号を該受信刺激器に送信するための手段とを備えている、項目40に記載のシステム。
(項目42)
項目8に記載の心筋を刺激するシステムであって、該システムは、
移植可能な音響制御送信器と、
移植可能な音響受信刺激器であって、該送信器と該受信刺激器は、音響エネルギーを送信し受信するように適合され、該音響エネルギーの周波数は、20kHzと10MHzとの間にある、移植可能な音響受信刺激器と
を備えている、システム。
(項目43)
前記音響エネルギーの周波数は、最も好ましくは、200kHzと500kHzとの間にある、項目42に記載のシステム。
(項目44)
心筋を刺激するための方法であって、該方法は、
第一の移植部位で音響エネルギーを生成することと、
心臓刺激部位における該音響エネルギーを受信することであって、該音響エネルギーは、該生成された音響エネルギーに含まれるエネルギー情報と信号情報との両方に基づいて心臓刺激エネルギーに変換されていることと、
該刺激を心臓ペースメーカーとを同期させることと
を含む、方法。
(項目45)
心筋を刺激することは、右心室ペースメーカーの刺激と同期して左心室の刺激を提供する、項目44に記載の方法。
(項目46)
心筋を刺激することは、左心室ペースメーカーの刺激と同期して右心室の刺激を提供する、項目44に記載の方法。
(項目47)
前記心筋刺激を同期させることは、ペースメーカーのペーシング出力信号の検出によって実行される、項目44に記載のシステム。
(項目48)
前記心臓ペースメーカーのペーシング出力信号の検出は、エレクトログラム信号からの、心房および/または心室のペーシング信号のアーチファクトをセンシングすることによって実行される、項目47に記載の方法。
(項目49)
前記ペースメーカーのペーシング出力信号の検出は、心臓ペースメーカーのペーシング出力への直接的な接続を介して実行される、項目47に記載の方法。
(項目50)
前記ペースメーカーのペーシング出力信号の検出は、心臓ペースメーカーへの直接的な通信接続を介して実行される、項目47に記載の方法。
(項目51)
前記刺激を同期させることは、エレクトログラム信号からの内因性のまたは非内因性の心拍を検出することによって実行される、項目44に記載の方法。
(項目52)
前記刺激と同期させることは、エレクトログラム信号からの内因性の心拍、非内因性の心拍、およびペーシングのアーチファクトの任意の組み合わせを検出することによって実行される、項目44に記載の方法。
(項目53)
患者の心臓への抗頻脈性不整脈のペーシングの送達のためのシステムであって、該システムは、
心臓組織と直接的に接触して移植されるように適合された電極集合体を有する1つ以上の音響受信刺激器と、
音響制御送信器であって、制御送信器および受信刺激器は、心臓を刺激するのに十分である、該受信刺激器へのエネルギー情報と信号情報との両方を提供する音響エネルギーを、送信し受信するように適合されている、音響制御送信器と、
を備えている、システム。
(項目54)
前記制御送信器は、音響エネルギーを受信し、交流を生成する音響受信器と、心臓組織を刺激するために、該交流を直流または直接波形に変換する方法と、心筋組織に該直流または直接波形を送達するように適合された電極とを備えている、項目53に記載のシステム。
(項目55)
前記制御送信器は、音響エネルギーを前記受信刺激器に方向付ける皮下領域に移植可能である、項目53に記載のシステム。
(項目56)
前記移植可能な受信刺激器は、前記頻脈性不整脈を最適に終了させる位置に置かれ、確保されるように適合されている、項目53に記載のシステム。
(項目57)
前記移植可能な受信刺激器は、前記頻脈性不整脈の伝導路にある組織内の位置に置かれ、確保されるように適合されている、項目55に記載のシステム。
(項目58)
前記移植可能な受信刺激器は、頻脈性不整脈を最適に防止する位置に置かれ、確保されるように適合されている、項目53に記載のシステム。
(項目59)
前記移植可能な受信刺激器は、心臓の通常の伝導路にある組織内の位置に置かれ、確保されるように適合されている、項目53に記載のシステム。
(項目60)
前記移植可能な受信刺激器は、心臓チャンバ内の任意の位置に置かれ、確保されるように適合されている、項目53に記載のシステム。
(項目61)
前記移植可能な受信刺激器は、心筋組織内の任意の位置に置かれ、確保されるように適合されている、項目53に記載のシステム。
(項目62)
前記移植可能な受信刺激器は、心臓の心外膜局面上の位置に置かれ、確保されるように適合されている、項目53に記載のシステム。
(項目63)
2つ以上の受信刺激器は、前記頻脈性不整脈を最適に防止し、または終了させる位置に置かれ、確保されるように適合されている、項目53に記載のシステム。
(項目64)
前記制御送信器は、該制御送信器デバイス上に取り付けられた電極からの心電図をセンシングする回路網を含むように適合されている、項目53に記載のシステム。
(項目65)
前記制御送信器は、頻脈性不整脈の存在または不存在を決定するために心電図を処理する、項目64に記載のシステム。
(項目66)
前記頻脈性不整脈の存在または不存在の決定は、心拍数またはエレクトログラム波形形態学に基づいている、項目65に記載のシステム。
(項目67)
前記音響受信刺激器および前記音響制御送信器のうちの少なくとも1つは、頻脈性不整脈が検出された場合に、電気的除細動/細動除去エネルギーを送達するように適合されている、項目53に記載のシステム。
(項目68)
制御送信器デバイスおよび受信刺激器デバイスの移植される位置を選択し、最適化する方法であって、該方法は、
遠くの組織位置に制御送信器を配置することと、
標的の組織位置に受信刺激器を配置することと、
該受信刺激器が該標的の組織位置に電気的なエネルギーを送達するように、該受信刺激器に音響エネルギーを送達するために制御送信器を起動することと、
第一の反応を観察することと、
該制御送信器および該受信刺激器のうちの少なくとも1つを再位置付けることと、
その後の反応を観察することと、
制御送信器および/または受信刺激器の位置は、いずれがより良いかを決定するために、第一の反応とその後の反応を比較することと、
各々の選択された位置に制御送信器デバイスと受信刺激器デバイスとを移植することと
を含む、方法。
(項目69)
位置付けのために使用される制御送信器は、移植可能な制御送信器デバイスのための部位を選択するために使用される外的に付加されたデバイスである、項目68に記載の方法。
(項目70)
位置付けのために使用される制御送信器は、移植可能な制御送信器デバイスのための部位を選択するために使用される一時的に付加されたデバイスである、項目68に記載の方法。
(項目71)
前記反応は、患者の反応である、項目68に記載の方法。
(項目72)
前記反応は、デバイス測定値である、項目68に記載の方法。
(項目73)
前記デバイス測定値は、前記受信刺激器の電気的な出力振幅である、項目72に記載の方法。
(項目74)
前記デバイス測定値は、前記制御送信器の音響出力振幅である、項目72に記載の方法。
(項目75)
前記デバイス測定値は、前記制御送信器から前記受信刺激器へのエネルギー送達の効率性である、項目68に記載の方法。
(項目76)
前記標的の組織の位置は、心臓組織であり、前記遠くの組織の位置は、心臓と胸骨または胸郭の上にあり、前記観察される患者の反応は、心臓の機能である、項目68に記載の方法。
(項目77)
前記標的の組織の位置は、心臓組織であり、前記遠くの組織の位置は、心臓と胸骨または胸郭の上にあり、前記観察される患者の反応は、心電図である、項目68に記載の方法。
(項目78)
前記標的の組織の位置は、脳組織であり、前記遠くの組織の位置は、頭蓋骨内または頭蓋骨上にあり、前記患者の反応は、脳波図である、項目68に記載の方法。
(項目79)
前記標的の組織の位置は、骨折部にあり、前記遠くの組織の位置は、該骨の上にあり、前記前記デバイス測定値は、該骨への電気的なエネルギー送達である、項目68に記載の方法。
(項目80)
前記遠くの組織の位置だけは、変わるが、前記標的組織の位置は、所定の部位に絶えず保持される、項目68に記載の方法。
(項目81)
前記標的組織の位置だけは、変わるが、前記遠くの組織の位置は、所定の部位に絶えず保持される、項目68に記載の方法。
(項目82)
前記標的組織の位置も前記遠くの組織の位置も両方とも変わる、項目68に記載の方法。
(項目83)
組織を刺激するための移植可能なデバイスの位置を最適化するためのシステムであって、該システムは、
音響制御送信器と、
音響受信刺激器デバイスを含む送達システムと
を備えている、システム。
(項目84)
前記送達システムに含まれる音響受信刺激器は、前記組織に移植されるために該送達システムから機械的に配置され得る、項目83に記載のシステム。
(項目85)
前記送達システムは、カテーテルに一時的に付加された音響受信刺激器である、項目83に記載のシステム。
(項目86)
前記カテーテルは、操縦可能である、項目85に記載のシステム。
(項目87)
前記送達システムは、ガイドシースでカテーテルを動作することを含む、項目85に記載のシステム。
(項目88)
前記ガイドシースは、操縦可能である、項目87に記載のシステム。
(項目89)
前記音響受信刺激器は、恒久的にカテーテルに付加されている、項目83に記載のシステム。
(項目90)
前記カテーテルは、操縦可能である、項目89に記載のシステム。
(項目91)
前記カテーテルは、ガイドシースを介して動作される、項目89に記載のシステム。
(項目92)
前記ガイドシースは、操縦可能である、項目91に記載のシステム。
(項目93)
前記制御送信器は、手動制御下の外的なユニットである、項目83に記載のシステム。
(項目94)
前記制御送信器は、移植されたデバイスである、項目83に記載のシステム。
(項目95)
前記移植された制御送信器は、外的なプログラマーユニットとの通信を介して手動で制御される、項目94に記載のシステム。
【図面の簡単な説明】
【0049】
【図1】図1aおよび図1bは、本発明の原理に従って作られた音響心臓ペーシング、細動除去器および電気的除細動器を示す。
【図2】図2aおよび図2bは、本発明の原理に従って作られたスタンドアロンの音響心臓ペースメーカーの異なる組み合わせを示す。
【図3】図3aおよび図3bは、本発明の音響制御送信器および音響受信刺激器のコンポーネントを示すブロックダイアグラムである。
【図4】図4は、本発明のシステムおよび方法に有用である代表的な音響および電気的な信号を示す。
【図5】図5a、図5bおよび図5cは、本発明の原理に従う小型の移植可能な受信刺激器の2つの実施形態を示す。
【図6】図6は、本発明の原理に従う頻脈性不整脈を処置するための方法を示すブロックダイアグラムである。
【図7】図7a、図7bおよび図7cは、ペーシングおよび細動除去のシステムとの組み合わせ、または頻脈だけを処置するための本発明に従うシステムを示す。
【図8】図8は、本発明の原理に従って作られたスタンドアロンの音響心臓ペースメーカーシステムを示す。
【図9】図9aおよび図9bは、本発明の原理に従う移植された心臓ペースメーカーシステムを示す。
【図10】図10a、図10bおよび図10cは、本発明の原理に従う図9aおよび図9bのシステムの移植を最適化するために有用であるシステムを示す。
【発明を実施するための形態】
【0050】
(発明の詳細な説明)
記載されるシステムおよびデバイスは、音響エネルギーを、心臓を電気的にペーシングするために使用され得る形態の電気エネルギーに変換する1つ以上の移植された受信刺激器デバイスに音響エネルギーおよび情報を送達する制御送信器デバイスを備える。音響エネルギーは、以下のパラメータの適切な選択を用いて単一のバーストまたは多数のバーストとしての超音波を用いて適用され得る。
【0051】
【表1】

制御送信器デバイスは、超音波変換器または移植された受信刺激器の位置で所望の刺激を達成する十分な音響エネルギーと信号情報を生成する適切なサイズおよびアパーチャの変換器を含む。さらに、多数の移植された受信刺激器デバイスは、制御送信器デバイスによって非音化(insonification)された領域内に配置され得る。多数の受信刺激器の移植は、同時に機能し得るが、特定の送信された周波数にだけ反応することによって、または振幅調節、周波数調節、パルス幅調節などの選択的な調節技術の使用を介して、または時間区分多重化を含む符号化技術を介して、多数のデバイスが独立に機能し得る。制御送信器および少なくとも1つの受信刺激器を備えるこのようなペースメーカーシステムは、好ましくは、20kHzと10MHzとの間の超音波周波数で動作し、より好ましくは、100kHzと1MHzとの間の周波数で動作し、最も好ましくは、200kHzと500MHzとの間の周波数で動作する。
【0052】
制御送信器によって生成される信号情報は、対応する電気出力を作るために受信刺激器によって使用されるパルス幅およびパルス振幅情報を最もしばしば備える。代替的に、信号情報は、アドレス情報(特定の受信刺激器デバイスまたは起動するためのデバイス群を識別する)と、受信刺激器デバイスを開始出力する(オンまたはオフ)ための情報を起動するトリガ情報と、受信刺激器が出力を開始する時を制御するための遅延情報と、送達されるべき電力のレベルまたは他の特性などとを含み得る。受信刺激器デバイスは、通常、信号情報(通常、パワー送信において符号化される)の解読を可能にする回路網、電気出力をオンオフし得るデジタルゲート、電気出力のオンオフにおける遅延を可能とするタイマ回路網などのようなさらなる回路網を有する。
【0053】
送信変換器を含む制御送信器デバイスは、一般的には、皮下スペースの皮膚直下に移植され得るが、胸筋下にもまた配置され得る。
【0054】
制御送信器デバイスは、一般的には、患者のエレクトログラムおよび/または他のデバイスからのペーシング信号(ペーシングアーチファクト)を検出するための電極、および、特定の実施形態においては、これらに限定されないが、患者の動き、血圧、温度、呼吸および/または心音を検出するさらなる生理学的なセンサなどのセンサを含む。ペースメーカーの機能の制御のためにこれらの信号を利用するための回路網およびアルゴリズムが提供される。このような電極および他のセンサは、好ましくは、制御送信器デバイスのハウジングに、配置され、または組み込まれる。
【0055】
音響送信器デバイスはまた、例えば、二心室ペースメーカー(CRT)または細動除去器(CRT−D)システムにおいて、従来のリード線ベースの電気刺激を提供するデバイス内に組み込まれ得、従来のリード線/電極のシステムは、右心房および右心室からのセンシングならびに右心房および右心室への刺激を提供し、受信刺激器は、左心室への同期された刺激を提供する。
【0056】
リード線のない心臓ペースメーカーシステムの実施例は、図1から図5および図8から図10に示される。
【0057】
図1aは、従来の移植された二重チャンバのペースメーカーと共に二心室ペーシングのための「スレーブ」構成を示す。この実施例において、外部プログラマ3と通信する手段に加えて、ペーシング制御および超音波送信を提供する回路網を含む制御送信器デバイス1は、皮下に、一般的に心臓上に移植される。超音波信号は、左心室に移植されていることが示される受信刺激器デバイス2に組織を介して、このデバイスによって送信され、この音響エネルギーを受信し、受信刺激器デバイスは、次いで、付加された電極に適用され得る電気パルスに変換する手段を含む。この実施例においては、従来の右心房リード線6および従来の右心室リード線7の両方を利用する、従来の二重チャンバ(DDD)ペースメーカー5も、移植されて示されている。制御送信器1は、患者のエレクトログラムの検出および/または従来のペースメーカー5によって生成されたペーシング信号のアーチファクトの検出を可能にする、センシング電極4ならびに適切な回路網およびアルゴリズム(図示されず)を組み込み、従来のペースメーカー5は、それによって、情報を提供し、制御回路網が適切なときに左心室ペーシングを生じさせる音響送信を開始し得る。
【0058】
図1bは、制御送信器1から音響エネルギーを受信する、左心室の心筋に移植された単一の受信刺激器デバイス2を示す、上述の実施例における心臓の断面図である。ペースメーカー5(図示されず)からの従来のリード線6およびリード線7は、各々、右心房および右心室に配置される。必要に応じて(図示されず)、受信刺激器デバイス2は、左心室の心外膜表面上の冠状静脈または冠状動脈の中に配置された血管ステントに組み込まれ得る。
【0059】
図2は、スタンドアロンのリード線のない心臓ペースメーカーの様々な組み合わせを描写する。図2aは、制御送信器1からの音響エネルギーを受信する,右心室に移植された単一の受信刺激器を示す心臓の断面図である。このような実施形態は、単一チャンバ(VVI)タイプのペースメーカーの機能と適合する。受信刺激器2はまた、VVIペースメーカーとして機能するために左心室(図示されず)に移植され得る。この実施例(図示されず)の別の応用においては、単一の受信刺激器は、単一チャンバ(AAI)タイプのペースメーカーを造り出すために右心房に移植され得る。
【0060】
図2bは、2つの受信刺激器デバイス2がリード線のない二心室ペースメーカー構成を達成するために移植される、さらなる応用を示す。第一の受信刺激器2は、右心室頂点に付加され、第二の受信刺激器は、左心室自由壁に付加されることが示される。両方の受信刺激器デバイス2は、振幅調節、周波数調節、時間区分調節、または音響波形の他の調節もしくは符号化を含み得る方法を介して、同時または選択的に制御送信器1から音響エネルギーを受信する。別の応用において(図示されず)、受信刺激器デバイスのうちの1つは、二重チャンバ(DDD)タイプのペースメーカーを生じさせるために左心室または右心室よりもむしろ右心房内に移植され得る。さらなる応用(図示されず)においては、3つの受信刺激器デバイスは、右心房、右心室および左心室に移植され得、上述された方法を介して同時または連続的に起動され得る。
【0061】
リード線のない心臓ペースメーカーシステムは、図3aおよび図3bのブロックダイアグラムにより詳細に示される。図3aにおいては、制御送信器デバイス1は、:必要に応じて再チャージ可能なバッテリーであるバッテリー10;多数の電極および患者の心電図、他の従来のペースメーカーからのペーシング信号、恐らくは患者の活動を含む他の生理学的なパラメータを検出するために組織に直接的に接触し得る運動センサを含む恐らく他のセンサ、(これらのものは、信号処理回路12に接続される);医師がデバイスパラメータを設定し、患者および/またはデバイスについての診断情報を獲得することを可能にする外部ユニット3から、および外部ユニット3への、例えば、RF通信によっての、データ経路を提供する機能を有する通信モジュール13;セットアップパラメータおよび診断情報を格納し、次に所望の音響ビームを生成する超音波変換器16に次に電気エネルギーを負荷する超音波増幅器15のために必要とされる制御信号を生成するように獲得された生理学的なデータと共に該診断情報を使用する制御とタイミングの回路14から成る。制御送信器デバイス1は、既存のペースメーカーまたはICDデバイスに一般的である生物学的に適合性のある物質から造られる、密閉的に封入されたケース17に収納される。
【0062】
図3bを参照すると、電気的刺激が所望の位置で音響ビームの経路に移植された受信刺激器デバイス2は、送信された音響エネルギーの一部分を遮断し、該音響エネルギーを負荷された超音波圧力波の交流性質を表す交流電気信号に変換する超音波変換器20を含む。この電気信号は、外囲検出器として一般に公知であるタイプのうちの1つであり得、(
送信された超音波バーストの振幅と比例する振幅を有し、送信されたバーストの長さに一般的に等しいパルス長を有する、電圧パルスを生成する)多くの公知の回路構成のうちの1つを有し得る電気回路21に負荷される。回路21はまた、例えば、音響エネルギーの受信とペーシングパルスの出力との間の固定の遅延を提供するために、または単一のパルス以外の特性を有する出力信号を提供するために、異なる構成および機能のものであり得る。次いで、この信号は、デバイスの外側表面に組み込まれ得、それゆえに、刺激されるべき組織と直接的に接触し得る電極22に負荷される。受信刺激器デバイス2はまた、生物学的に適合性のある物質を密閉的に封入されたケース23のうちに封入される。
【0063】
上述された図3aおよび図3bをも参照すると、図4は、本発明の例示の音響信号および電気信号を表す詳細を提供する。図4は、最初に、所望の幅を有し、所望の間隔で繰り返される一連のペーシングパルス31を描写する。制御送信器デバイス1は、所望のペーシングパルス幅を有し、超音波変換器16から放出される所望のペーシングパルス間隔で繰り返される、1つまたは多数の音響送信32を生成する。単一の音響バーストの拡大33は、波形32の下に示される。このバーストは、再度、所望の幅、所望の振動周波数F=1/t、ならびに頂点の正の圧力P+および頂点の負の圧力P−によって示される所望の音響圧力もまた有する。受信刺激器デバイス2の受信変換器20に当たる場合には、音響圧力波は、送信された波形33のものに適合する周波数およびバースト長ならびに送信された音響圧力(〜P+/P−)に比例する振幅を有する電気信号を生成する。次いで、この電気波形は、送信された波形33のバースト長に等しい長さおよび電気信号34の振幅に比例する振幅(VPULSE)を有する所望のパルス35を生成する回路21によって修正され、フィルタされる。したがって、超音波バースト間の時間を変えることによってペーシング率を変え、超音波バーストの長さを変えることによって任意の1つのペーシングパルスの長さを変え、かつ超音波波形の振幅を変えることによって、ペーシングパルスの振幅を変えることは可能であることがこの実施例において理解され得る。
【0064】
実際には、移植された受信刺激器デバイスによって受信されたエネルギーの量(振幅)は、介在する組織および骨における損失によって引き起こされる超音波の減衰に起因して、ビームが端から端まで一般的に一様ではない送信された超音波ビームとの関係における受信刺激器デバイスの空間位置に起因して、および恐らくは制御送信器デバイスとの関係における受信刺激器デバイスの配向(回転)に起因して、変わる。このような変数は、任意の特定の超音波送信パワー(音響圧力振幅)に対する刺激出力パルスの振幅に影響する。この制限は、刺激が一貫するまで超音波送信パワーを調整し、ペースメーカー移植時にペーシング閾値を決定するために現在使用されるものと類似する技術によって克服され得、さらに、これは、刺激の閾値を定期的に決定し、送信デバイスと受信デバイスとの間の相対的な運動を含むシステムにおけるいかなる変化をも補償するようにパワー送信を調節する、制御送信器デバイス内のアルゴリズムによって自動的に調整され得る。この制限はまた、例えば、球状の変換器を使用することによって、またはデバイスの方向敏感性を減じ、または排除するための適切な角度に配置される多数の変換器を使用することによって、この受信能力が全方向性であるように受信刺激器デバイスに組み込まれた変換器の設計によって緩和され得る。
【0065】
図5a〜図5cは、該送達に適合されているカテーテル、スタイレットまたは他の手段による配置に適切である、円筒状の輪郭の小型の移植可能な受信刺激器の2つの実施形態を示す。中空で円筒状の超音波変換器51、少なくとも1つの検出回路ならびに恐らくは他の回路および他の機能を備える回路アセンブリ52ならびに該アセンブリの一端に2つの電極53を有する受信刺激器2などを、図5aは、平面図で示し、図5bは、透視図で示す。変換器51は、強固な圧電物質であり、一般的には、圧電セラミックまたは円筒の対向する面に配置される電極を有する単一の結晶圧電エレメントである。代替的には(図示されず)、変換器51は、一連の、平行した、またはそれらの組み合わせのいずれかで、接続される多数のより小さい円筒状の区分から造られ得る。代替的には(図示されず)、円筒本体の回りに配置された多数のエレメントを含む複合化合物であり得る。変換器および回路は、電気的に絶縁であるが、音響的には透過的な生体適合性のあるハウジング54に封入され得る。回路アセンブリ52は、ガラス繊維基板またはセラミック基板上の、公知の表面はめ込みのまたは混成のアセンブリ技術を使用して製造され得る。電極53は、プラチナ、プラチナ‐イリジウムなどの、または、好ましくは、ステロイド溶出設計の移植された電極で一般に使用される物質から製造される。変換器、回路基板および電極の間の必要な電気配線は、これらの図面には図示されない。この設計の受信刺激器はまた、所望の位置で心筋に接触してデバイスを付加するために、らせんコイル、かえし、タイン、クリップなど(図示されず)の手段を組み込む。このような固定手段は、意図された移植位置および送達方法に依存して変わり得る。このようなデバイスの一般的な寸法は、固定的特性を除いて、長さ1.5センチで直径3.0センチであり、好ましくは、長さ1.0センチで直径2.0センチである。
【0066】
図5cに示されるように、混成回路技術を使用することによって、変換器51の中空内部に適合するように、回路アセンブリ52をさらに小型化することは可能であり得る。これは、完成したデバイスの長さを実質的に減少するという利益を有する。
【0067】
図8に描写されるように、頻脈性不整脈の処置のためには、1つ以上の受信刺激器エレメント2は、心臓内に移植される。この例示において、受信刺激器デバイスは、左心室に移植される。ATPのためには、デバイスは、頻脈性不整脈の発症と相互反応するのに最適である部位に移植される。実施例としてVTを使用して、VTの間に実行される標準的な電気起動配列マッピングは、左心室内のVT再入回路の位置および経路および低伝導のエリアを識別し得る。この試験を使用して、ATPアルゴリズムに最も応答する特定の部位が識別され得る。単一の受信刺激器は、リズム障害を処置するのに十分であり得るが、多数の受信刺激器を使用することは、症状を終了させるために、頻脈性不整脈の伝導を効果的に遮断するように、様々な部位で、恐らくは、様々な時にペーシングする能力を増加させる。多数の受信刺激器の使用は、一般的に、心房細動および心室細動の抑制または処置のために使用される。制御送信器1は、皮下の位置に移植され、受信刺激器デバイスを非音化(insonification)するように配置される。ペーシング配列は、頻脈を終了させるように意図されたATPアルゴリズムに基づいて制御送信器デバイスで始まる。制御送信器デバイスは、不整脈を終了させる試みにおいて、ペーシング治療を送達する1つ以上のアルゴリズムを含み得る。その最も単純な実施形態においては、図8に示された他のいかなるコンポーネントも、頻脈を処置するのに必要ない。
【0068】
図3aおよび図3bに示されるリード線のない心臓ペースメーカーのシステムは、以下のように頻脈を処置するために適合され得る。制御送信器デバイス1は、必要に応じて再チャージ可能なバッテリーであるバッテリー10;多数の電極および/または患者の心電図、他の従来のペースメーカーからのペーシング信号、および/または恐らくは患者の活動を含む他の生理学的なパラメータを検出するために組織に直接的に接触し得る他のセンサ11、(これらのものは、信号条件付け/処理回路12に接続される);医師がデバイスパラメータを設定し、患者および/またはデバイスについての診断情報を獲得することを可能にする外部のプログラミングおよび/または通信のユニット3から、および該ユニット3への、例えば、RF通信によっての、データ経路を提供する機能を有する通信モジュール13;頻脈の存在または不存在を決定し、セットアップパラメータを格納し、診断情報を格納し、および次に所望の音響ビームを生成する超音波変換器16に次に電気エネルギーを負荷する超音波増幅器15のために必要とされる制御信号を生成するために獲得された生理学的なデータと共に該診断情報を使用するエレクトログラムまたは他の心臓の情報を処理する頻脈検出、制御およびタイミングの回路14から成る。出力のタイミングおよび制御を変えることによって、抗頻脈防止および終了のペーシングアルゴリズムは、制御送信器から送達される。制御送信器デバイス1は、好ましくは、既存のペースメーカーまたはICDデバイスに一般的である生物学的に適合性のある物質から造られた密閉的に封入されたケース17に収納される。
【0069】
不整脈検出および抗頻脈ペーシング治療の制御のために使用されるロジックの簡単なブロックダイアグラムは、図6に描写される。抗頻脈検出アルゴリズム118は、頻脈の発症が存在するかどうか決定するために、公知の技術およびエレクトログラムまたは他の心臓情報から処理されたデータ、例えば、速度の決定、速度の変化性、波形形態、基線からの時間/信号の偏位などを使用する。治療送達アルゴリズム119は、不整脈を終了させるために、治療アルゴリズムのための公知の技術、例えば、バーストペーシング、速度適合のペーシング、過駆動抑制ペーシング、自動減衰性ペーシング、早期刺激などを使用する。1つ以上の検出方式またはペーシング治療は、制御器14に存在し得、制御器14へのプログラミング通信に基づいて調節され得る。
【0070】
ATPの送達に適切であるリード線のない心臓ペースメーカーシステムの実施例は、具体的にATPに適合され、図7aから図7cおよび図8で示されるシステムを用いて、図1で示される。
【0071】
図1aは、リード線ベースのペースメーカー、電気的除細動器および/または細動除去器デバイスと共に使用されるリード線のないATPのための「スレーブ」構成を示す。図1aに対する上述の説明と類似し、制御送信器は、共移植されたペースメーカーまたは細動除去器によって生成されるペーシング信号を検出し、検出された各心室のペーシング信号を用いて受信刺激器デバイスを起動するために音響送信を開始する。不整脈の検出およびATPの送達のためのアルゴリズムロジックは、ペースメーカーまたは細動除去器のコンポーネントである。
【0072】
図7aは、リード線のない電気的除細動器または細動除去器デバイスと共に使用されるリード線のないATPデバイスを示す。図7bは、ATPのための受信刺激器への音響送信を使用し、電気的除細動器および/または細動除去器のための高エネルギー皮下電極を使用する統合されたリード線のないデバイスを示す。図7cは、ATPのための受信刺激器への音響送信を使用し、電気的除細動器および/または細動除去器のためのRVにおけるリード線上の高エネルギーコイル電極を使用するリード線のないペーシングシステムを組み込む、統合されたリード線ベースの細動除去器デバイスを示す。図8は、上述されたATPデバイスのためのスタンドアロンの構成を表す。
【0073】
図9aおよび図9bにおいては、本発明の移植されたリード線のない単一チャンバの心臓ペースメーカーシステムは、「スタンドアロンの」心臓ペースメーカーシステムとして例示的な実施形態に示される。理解され得るように、このスタンドアロンのシステムは、二重チャンバのシステム(図示されず)に適合され得る。図9aに描かれるペーシング制御および音響送信を提供するための回路網を含む制御送信器デバイス61は、皮膚直下、一般に心臓上に移植される。制御送信器は、外部プログラマ63と通信するための無線回路網を含む。音響エネルギーは、音響エネルギーを受信し、該音響エネルギーを、次いで、付加された電極を介して組織に負荷され得る電気パルスへ変換する変換器および回路網を含む受信刺激器デバイス62へ組織を介して制御送信器デバイス61によって送信される。図9bにおいては、受信刺激器デバイス62は、左心室中隔に付加されて示される。受信刺激器デバイス62は、既存のペースメーカーシステム、または恒久的に移植されたデバイスを心臓に付加する他の方法(例えば、かえし、タイン、クリップ、縫合など)におけるように、心臓に固定された従来のペーシングリード線に類似する、付加されるねじ込みへリックスを用いて心臓に固定される小型の円筒状の、またはボタン型のデバイスとして示される。
【0074】
図10a、図10bおよび図10cは、任意の上記実施形態におけるような、例えば、図9aおよび図9bにおいて描写され、上述の任意の実施形態におけるような、リード線のない心臓ペースメーカーシステムのための試験システムおよび位置付けシステムを示す。試験システムおよび位置付けシステムは、心臓における受信刺激器62の移植のための、および胸部における制御送信器61の移植のための、様々な位置を評価するために使用される。試験は、例えば、送受信される音響エネルギーの適切なレベルおよび心臓組織を捕捉する/ペーシングするために必要とされる受信刺激器からのその後の電気的出力エネルギーを決定するように実行される。送信されるエネルギーの振幅についての知識は、例えば、効果的にバッテリーパワーを利用するための移植される受信刺激器および移植される制御送信器の位置付けを最適化するために必要とされる。さらに、試験は、胸部外形からの制限、または肺もしくは他の内部組織構造からの干渉なしに、受信刺激器による音響受信を確実にする胸部上のエリアを識別するために実行され得る。これは、音響ウィンドウまたは標的ウィンドウと呼ばれる。なおさらに、試験は、患者の反応、例えば、一部位における捕捉/ペーシングに基づく電気生理学的な反応または収縮反応を評価するために実行され得る。観察される患者の反応は、心電図上のペーシングまたは血圧もしくは収縮性などの心機能の他の測定の証拠である。
【0075】
外部の制御送信器システム64は、一般的には、異なる患者に再使用され得る位置付けまたは試験のために一般に使用され得る。制御送信器デバイス64は、外部の音響送信器65および一般的にはケーブル67によって接続される手動または他の制御器65を含むが,送信器65は、制御器66に統合され得、該統合されたデバイスが外部の送信器として使用されることが理解され得る。送信器65は、一般的には、音響送信ジェルが結合のために使用され、皮膚表面上に重ねて置かれる。カテーテルベースの送達システム68を伴う心臓への静脈または動脈の血管を横断するアクセスを使用して任意の心内膜の位置に配置され得る受信刺激器デバイス62は、図10bおよび図10cに示されるように、試験および位置付けのシステムにも使用される。受信刺激器の組織への恒久的な挿入(移植)に先行して、デバイス62は、一時的に送達システム68に取り付けられる。代替的に(図示されず)、恒久的にデバイス上に付加される受信刺激器エレメントを含む類似するカテーテルベースのデバイスは、心内膜または心筋のいずれかの位置付け部位および試験部位による部位の選択のために使用され得る。図10cは、受信刺激器デバイス62のための一般的な送達システム68のさらなる詳細を示す。理想的には、送達システムからの恒久的な挿入/配置に先行して、受信刺激器上のペーシング電極は、送達システム(図示されず)の長さを伝わる接続線を介してアクセス可能である。送達システム68のこの実施例は、受信刺激器デバイス62が遠位端末に付加されるカテーテル69を備える。受信刺激器62を有するカテーテル69は、操縦可能なガイドシース70に挿入される。操縦可能であり、操縦可能なガイドシースの代わりに使用されるカテーテル69を含む、送達システム68の他の可能な変数が、利用され得る。送達システム68は、血管系または心臓チャンバ内の受信刺激器62の操作および位置付けを可能にする。この実施例においては、送達システム68は、受信刺激器62を位置付け、心臓部位を試験し、次いで、送達システム68は、別の位置に移動され、該部位は、試験される。最適な位置が発見されると、移植可能なデバイス62は、最初に固定手段によって試験された位置で移植され、次いで、機械的な手段によってカテーテル69から開放されることによって、カテーテル69から配置される。代替的な場合に、恒久的に付加されたデバイス62を有する試験カテーテル69は、操縦可能なガイドシース70から除去され、開放可能であり移植可能なデバイス62を有する第二のカテーテル69は、操縦可能なガイドシース70を介してのカテーテル69または移植デバイス62に適合されている個別の送達システム68によって所定の位置に導入される。
【0076】
第一の方法は、制御送信器61のための理想的な位置は、公知または解剖学的な束縛から制限されるが、受信刺激器62のための1つ以上の位置が、可能である状態で使用され得る。一般的には、外部の制御送信器64が、皮膚表面上に配置された音響送信器65を理想的な位置または他の方法で所定の位置の上に重ね、試験目的のために使用される。送信ジェルは、外部の音響送信器65と皮膚との間の結合剤として使用される。代替的に(図9aに図示される)、移植可能な制御送信器デバイス61は、最後の移植位置において皮下に外科的に配置され得、外部のプログラマを用いて制御され得る。受信刺激器デバイス62は、送達システム68を操縦することによって第一の試験位置に配置される。次いで、音響エネルギーは、代替的には該位置で有効性を評価するために、外部の制御器66またはプログラマ63の指導下の移植可能な制御送信器61を使用して、送信/送達される。結果が満足ではない場合には、またはさらなる位置を評価することを望む場合には、受信刺激器デバイス62は、送達システム68の補助をもって新しい部位に移動され、音響エネルギーは、送信/送達され、この部位での有効性は、試験される。この手順は、受信刺激器デバイス62の移植のための所望の位置が識別されるまで繰り返され得る。次いで、受信刺激器デバイス62は、該位置に送達され、配置され、送達システム68は、除去される。移植されるデバイス61が移植されることを意図されるが、外部の制御送信器64が使用された場合には、外部的に応用された制御送信器の位置は、注目され、当技術では公知のように、デバイス61の移植のために、切開および解体が実行される。
【0077】
この方法が利用され得る1つの実施例(心臓ペーシングに加えて)は、てんかんであり、この場合には、制御送信器の位置は、開頭の近くの部位に制限されるので、既知である。この場合には、一般的には、多数の受信刺激器が、脳組織に移植される。受信刺激器は、一般的には、開頭開口部内または皮下の頭蓋骨の外部のいずれかの脳組織の外側に配置される。受信刺激器の位置の配置付けおよび試験は、電気的刺激の脳波図マッピングにおける効果に基づく。この方法が利用され得る別の実施例は、てんかんの処置に類似して、制御送信器は、開頭の近くに制限され、多数の受信刺激器は、一般的には、脳組織に移植される、パーキンソン病である。しかしながら、パーキンソン病の場合には、受信刺激器の位置は、震顫を減少することなど電気的刺激が患者の反応に及ぼす効果に基づき得る。
【0078】
最適化の第二の方法は、受信刺激器のための移植位置が公知であるが、制御送信器のための理想的な位置が変わり得る状態において使用され得る。受信刺激器デバイス62は、最初に、その理想的な位置に移植され、または代替的に送達システム68によってその理想的な位置に保持される。外部の制御送信器デバイス64の送信器65は、結合のための送信ジェルを使用して、皮膚上の第一の試験位置に配置される。次いで、エネルギーは、この位置で有効性を評価するために外部制御器66を使用して、送信/送達される。送信器65は、移動され、試験手順は、所望の位置が識別されるまで繰り返される。次いで、移植可能な制御送信器61は、最適であると識別された位置に移植される。
【0079】
この方法が利用され得る1つの実施例は、骨折の処置においてである。この場合には、受信刺激器デバイスの位置は、骨折の位置によって決定される。次いで、制御送信器デバイスのための可能な位置は、音響エネルギーの送信を最適化するために試験され得る。
【0080】
最適化の第三の方法は、受信刺激器デバイス62も制御送信器デバイス61も移植位置が既知でない状態で使用され得る。この方法は、第一の方法および第二の方法の両方で上に具体化された手順を利用する。この状態においては、最初の位置でデバイスを試験した後に、両方のデバイスの位置は、続く試験で交互に変更され、これは、所望の最適の結果が得られるまで繰り返される。次いで、デバイス61およびデバイス62の両方は、移植される。
【0081】
この第三の方法が利用され得る1つの実施例は、多部位ペーシング(心不全のための二重チャンバのペースメーカーまたは二心室ペーシング)の可能な心臓ペースメーカーである。受信刺激器デバイスを移植する可能性のある場所は多いが、幾つかの位置は、患者に対してより良い生理学的な利益を提供する。制御送信器デバイスのための理想的な位置は、最も多くの音響エネルギーが多数の受信刺激器デバイスに送達され得る部位であるが、胸部外形および介在する肺によって課せられる位置に関する幾つかの制限があり得る。それゆえに、デバイスのための移植位置の最適化は、各デバイスのための異なる部位での試験を必要とし得る。観察される患者の反応は、心電図に関するペーシングまたは血圧もしくは収縮性などの心機能の他の測定であり、証拠である。
【0082】
これらの方法は、移植可能なリード線のない刺激器システムのすべての用途に対して有益であり得、本明細書中に提供される実施例に制限されることを意図されない。

【特許請求の範囲】
【請求項1】
患者の心臓への抗頻脈性不整脈のペーシングの送達のためのシステムであって、該システムは、
心臓組織と直接的に接触して移植されるように適合された電極集合体を有する1つ以上の音響受信刺激器と、
移植可能な音響制御送信器であって、該制御送信器の外面上に位置して組織と接触しているセンシング電極を有する移植可能な音響制御送信器と、
を備え、
該制御送信器は、該音響エネルギーを送信するように構成されており、該受信刺激器は、該音響エネルギーを受信して、該音響エネルギーに含まれるエネルギー情報および信号情報の両方に基づいて該音響エネルギーを心臓刺激エネルギーに変換するように構成されており、
該制御送信器は、該センシング電極からのエレクトログラム信号を処理するためのエレクトログラム信号プロセッサを含むように適合されている、システム。
【請求項2】
前記受信刺激器は、音響エネルギーを受信して交流を生成する音響受信器と、前記心臓組織を刺激するために該交流を直流または波形に変換するための手段と、該直流または該波形を心筋組織に送達するように適合された電極とを備えている、請求項に記載のシステム。
【請求項3】
前記制御送信器は、音響エネルギーを前記受信刺激器に方向付ける皮下領域に移植可能である、請求項に記載のシステム。
【請求項4】
前記移植可能な受信刺激器は、前記頻脈性不整脈を最適に終了させる位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項5】
前記移植可能な受信刺激器は、前記頻脈性不整脈の伝導路にある組織内の位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項6】
前記移植可能な受信刺激器は、頻脈性不整脈を最適に防止する位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項7】
前記移植可能な受信刺激器は、心臓の通常の伝導路にある組織内の位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項8】
前記移植可能な受信刺激器は、心臓チャンバ内の任意の位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項9】
前記移植可能な受信刺激器は、心筋組織内の任意の位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項10】
前記移植可能な受信刺激器は、心臓の心外膜局面上の位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項11】
2つ以上の受信刺激器は、前記頻脈性不整脈を最適に防止し、または終了させる位置に置かれ、固定されるように適合されている、請求項に記載のシステム。
【請求項12】
前記制御送信器は、頻脈性不整脈の存在または不存在を決定するために心電図を処理する、請求項に記載のシステム。
【請求項13】
前記頻脈性不整脈の存在または不存在の決定は、心拍数またはエレクトログラム波形形態学に基づいている、請求項12に記載のシステム。
【請求項14】
前記音響受信刺激器および前記音響制御送信器のうちの少なくとも1つは、頻脈性不整脈が検出された場合に、電気的除細動/細動除去エネルギーを送達するように適合されている、請求項に記載のシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−196485(P2012−196485A)
【公開日】平成24年10月18日(2012.10.18)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−128159(P2012−128159)
【出願日】平成24年6月5日(2012.6.5)
【分割の表示】特願2007−548461(P2007−548461)の分割
【原出願日】平成17年12月21日(2005.12.21)
【出願人】(505465977)イービーアール システムズ, インコーポレイテッド (6)
【Fターム(参考)】