説明

ホログラフィックレーダ

【課題】物標が移動している場合には、総経路長差に差が生じ、ホログラフィック合成ができないという問題が生じていた。
【解決手段】本発明のホログラフィックレーダは、第1及び第2の送信波を送信する送信部(S)と、第1及び第2の反射波を受信する受信部(R)と、第1の送信波を送信してから第2の送信波を送信するまでの時間間隔である送信周期を変えて、第1及び第2の送信波を複数回送信するように第1及び第2の送信アンテナを制御する送信波制御部(50)と、送信波を複数回送信した場合の物標からの反射波の検出状況から求められる各周波数ピークに含まれる物標の相対速度に基づき、物標が複数であった場合にその相対速度差から最も適している送信時間間隔の送信周期を選択し、選択した送信周期で第1及び第2の送信波を送信した場合の第1及び第2の反射波を合成して物標の検出を行う方位演算部(11)と、を有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ホログラフィックレーダに関し、特に複数の物標の検出を行うホログラフィックレーダに関する。
【背景技術】
【0002】
車両等に搭載され、車両の前方を走行する他の車両等を検知するレーダとしてホログラフィックレーダが知られている。ホログラフィックレーダにおいては、受信アンテナの数を増やすことによって測定精度を高めることができるが、車載機等に応用する場合に小型化のために送信アンテナ及び受信アンテナを複数配置して、実質的に複数の受信アンテナを備えたのと等価な構成とするものが報告されている(例えば、特許文献1)。そのような従来のホログラフィックレーダは、図1に示すように、複数の送信アンテナ101〜103を順次切り換えて電波を送信し、各送信アンテナから送信された電波の物標からの反射波を複数の受信アンテナ104、105で受信するものである。
【0003】
図1の従来のホログラフィックレーダ100の送信アンテナ101〜103には、高周波信号を発振出力する発振器110及び、分配器112を介して1入力3切換出力の送信側スイッチ114が接続されている。スイッチ114を切り換えることにより、発振器110から出力された高周波信号が、送信アンテナ101〜103へ時分割で供給される。
【0004】
一方、受信アンテナ104、105には、1入力2切換出力の受信側スイッチ116が接続されている。スイッチ116を切り換えることによって、2つの受信アンテナ104、105で得られた受信信号が時分割でミキサ118に供給される。
【0005】
ミキサ118には、分配器112からの送信高周波信号の一部が供給されるとともに、A/Dコンバータ120が接続されており、ミキサ118から供給されたビート信号がデジタル信号に変換される。A/Dコンバータ120に接続された信号処理回路122は、ビート信号についてデータ処理を行い、物標までの距離、相対速度、角度など所望の情報を得る。
【0006】
従来のホログラフィックレーダでは、3つの送信アンテナ101〜103を切り替え、各送信アンテナに対応させて受信アンテナ104、105を切り換えることにより、送信アンテナと受信アンテナのペアの関係を6通りの位置関係で配置したのと等価なデータを得ることができる。
【0007】
ここで、ホログラフィックレーダを構成する複数の送信アンテナ及び複数の受信アンテナを切り換えて受信した信号を合成するホログラフィック合成法について図面を用いて説明する。ホログラフィック合成法とは、電波の経路を考慮した送信アンテナの配置により、仮想的に受信アンテナの数を増やす方法である。図2に、ホログラフィックレーダを構成する送信アンテナ及び受信アンテナの構成図を示す。図2(a)は、間隔3dを置いて配置した2つの送信アンテナTx1、Tx2と、間隔dを置いて配置した4つの受信アンテナRx1〜Rx4を示している。ホログラフィック合成を行うことにより、図2(b)に示すように、1つの受信アンテナTx1と7つの受信アンテナRx1〜Rx7を配置したのと等価なデータを得ることができる。このような構成により、2つの送信アンテナと4つの受信アンテナからなる合計6つのアンテナを用いて、仮想的に1つの送信アンテナと7つの受信アンテナからなる合計8つのアンテナを備えたレーダと等価なデータを得ることができ、レーダ装置の小型化が実現できるというものである。受信アンテナを仮想的に増やすことにより、物標の分離可能数、分離性能、物標の位置の角度精度を向上させることができる。
【0008】
次に、ホログラフィック合成の方法について図3を用いて説明する。図3(a)、(b)は2つの送信アンテナ及び4つの受信アンテナを配置した例を示す。図3(a)では、送信アンテナTx1から電波が送信され、図3(b)では、送信アンテナTx2から電波が送信されている様子を示している。まず、図3(a)に示すように、送信アンテナTx1から矢印211の方向へ電波212を送信し、物標からの反射波213〜216を受信アンテナRx1〜Rx4で受信する。次に、図3(b)に示すように、送信アンテナTx2から矢印211と同じ方向である矢印218の方向へ電波219を送信し、物標からの反射波220〜223を受信アンテナRx1〜Rx4で受信する。ここでは、物標は静止していると仮定する。
【0009】
ここで、図3(a)、(b)の場合の各受信アンテナにおける電波の経路長差をそれぞれ図3(c)、(d)に示す。図3(c)に示すように、アンテナの間隔dあたりの経路長差をαとすると、送信アンテナTx1から電波を送信した際の受信アンテナRx1〜Rx4の経路長差は全て0αである。一方、送信アンテナTx1を基準とした受信アンテナ間の距離はそれぞれ4d、5d、6d、7dであるので、等位相面217を考慮して、受信時における経路長差は、それぞれ4α、5α、6α、7αである。ここで、受信アンテナRx1〜Rx4から物標までの距離をrとすれば、受信アンテナRx1〜Rx4の総経路長差は、それぞれ2r+4α、2r+5α、2r+6α、2r+7αとなる。
【0010】
一方、図3(d)に示すように、送信アンテナTx2から電波を送信した際の受信アンテナRx1〜Rx4における経路長差は、送信アンテナTx1とTx2との間の距離が3dであるので全て3αである。また、送信アンテナTx1を基準とした受信アンテナ間の距離はそれぞれ4d、5d、6d、7dであるので、等位相面224を考慮して、受信時における経路長差は、それぞれ4α、5α、6α、7αである。ここで、受信アンテナRx1〜Rx4から物標までの距離をrとすれば、受信アンテナRx1〜Rx4の総経路長差は、それぞれ2r+7α、2r+8α、2r+9α、2r+10αとなる。
【0011】
ここで、送信アンテナTx1から電波を送信したときに受信アンテナRx4で受信した反射波の総経路長差と、送信アンテナTx2から電波を送信したときに受信アンテナRx1で受信した反射波の総経路長差は共に2r+7αとなっているので、総経路長差の大きさを昇順に並べれば、(2r+4α)から(2r+10α)までαずつ大きくなるように総経路長差を並べることができる。
【0012】
一方、図4(a)のように1つの送信アンテナTx1と間隔4dを離隔した位置に、間隔dの7つの受信アンテナRx1〜Rx7を配置したときの総経路長差は図4(b)のようになり、(2r+4α)から(2r+10α)までαずつ大きくなるように総経路長差が並ぶ。このことは、図3(a)、(b)のように2つの送信アンテナTx1、Tx2と4つの受信アンテナRx1〜Rx4からなるレーダの受信データが、図4(a)のように1つの送信アンテナTx1と7つの受信アンテナRx1〜Rx7を配置したレーダの受信データとが一致することを示している。このようにして、送信アンテナを切り換えることにより、受信アンテナ数を仮想的に増やすことができる。
【0013】
以上の説明においては、物標は静止しているものと仮定したが、次に、物標が移動している場合におけるホログラフィック合成の方法について図5を用いて説明する。図5(a)〜(d)は図3(a)〜(d)に対応しており、図5では物標が移動している点を考慮している。送信アンテナTx1、Tx2を切り換えて電波を送信する場合、Tx1及びTx2からの電波は同時に送信されず、Tx1による送信から所定の時間tを置いてTx2から電波が送信される。そこで、時間tの間に物標が距離sだけレーダに向かって移動していると仮定する。送信アンテナTx1から電波が送信される場合の総経路長差を図5(c)に示す。これは図3(c)に示したものと同一である。送信アンテナTx2から電波が送信される場合の総経路長差を図5(d)に示す。時間tの間に物標が距離sだけレーダ側に近づくのでレーダから物標までの距離は2r−2sとなる。従って受信アンテナRx1〜Rx4における総経路長差は、それぞれ(2r−2s+7α)、(2r−2s+8α)、(2r−2s+9α)、(2r−2s+10α)となる。
【0014】
ここで、送信アンテナTx1及びTx2から電波を送信した場合の総経路長差のみを受信アンテナRx1〜Rx4の順に並べると図6のようになる。説明を簡略化するために、図6には、送信アンテナTx1から送信した電波を受信アンテナRx1で受信した場合(「Tx1→Rx1」)の総経路長差を0αとした場合の総経路長差(「Tx1 → Rx1基準の総経路長差」)も併記している。
【0015】
上述したように、ホログラフィック合成を行うためには、複数の受信アンテナにおける総経路長差が等間隔で並ぶ必要がある。特に、送信アンテナTx1から電波を送信し、受信アンテナRx4で受信した物標からの反射波の受信データと、送信アンテナTx2から電波を送信し、受信アンテナRx1で受信した物標の反射波の受信データの総経路長差は一致している必要がある。しかしながら、物標が移動している場合には、送信アンテナTx1とTx2の切り換えに時間tを要することに伴って、総経路長差に物標の移動によるずれ2sが生じる。しかし、物標が動いていてもその周波数ピークに存在している物標が1つであれば、簡単な位相オフセット補正でホログラフィック合成は問題なく成立させることが出来る。しかしながら、周波数ピークに存在している物標が複数あり、各物標の相対速度が互いに異なっている場合は、各物標の移動によるずれ2sの値が異なるため位相オフセット補正ができずホログラフィック合成が成立しなくなる。
【0016】
ここで、例えば2つの物標が同一の周波数ピークに存在したとして総経路長差の物標の移動によるずれがそれぞれ2sと2s’であったとしても、それが受信信号の位相に変化を与えなければホログラフィック合成を行うことができる。即ち、送信波の波長をλとした場合、(2s−2s’)=nλ(nは整数)を満足すれば、問題は生じない。さらに、物標の差分移動距離(2s−2s’)の絶対値の大きさがλ/12(角度に換算して±60°以内)程度であれば物標の角度推定においては大きな誤差は生じないことが経験上分かっている。
【0017】
ここで、移動距離sとs’の大きさは、送信する電波の送信周期と物標の移動速度によって変わってくるため、許容できる移動距離の範囲は送信周期に依存する。FM−CW方式のレーダにおいて、送信する電波の周波数の時間的変化の様子を図7に示す。波形35、36は、それぞれ送信アンテナTx1から送信された電波のアップ期間の波形、ダウン期間の波形を示す。同様に波形37、38は、それぞれ送信アンテナTx2から送信された電波のアップ期間の波形、ダウン期間の波形を示す。ホログラフィック合成で用いるのは波形35と37であるので、両者の時間間隔Tの間に物標が移動する距離がs及びs’となる。
【0018】
ここで、物標の移動距離sとs’を用いた差分移動距離(2s−2s’)を位相差に換算した場合の2物標の相対速度差と位相差との関係を送信周波数が266Hzの場合についてプロットした図を図8に示す。図8においては360°の周期で同様の直線が現れている。位相差をφとすると、−60°≦φ≦60°の範囲であればホログラフィック合成が可能であるが、そのような条件を満たす2物標の相対速度差は、0〜0.33[km/h]の速度V11、1.67〜2.33[km/h]の速度V12、3.67〜4.33[km/h]の速度V13・・・と不連続な値をとる。例えば、相対速度差3[km/h]では位相差が-180°となりホログラフィック合成は成立しない。
【先行技術文献】
【特許文献】
【0019】
【特許文献1】特開2000−155171号公報
【発明の概要】
【発明が解決しようとする課題】
【0020】
上記のように、1つの周波数ピークに複数物標が存在していて相対速度差がある場合には、送信アンテナTx1からの電波の送信時からTx2からの電波の送信時までの期間に物標が移動する距離がそれぞれ異なるため総経路長差に差が生じ、ホログラフィック合成ができないという問題が生じていた。さらに、物標の移動によって生じる総経路長差に一定の許容範囲を設定した場合であっても、相対速度差の大きさによっては許容範囲を超えてしまい、ホログラフィック合成を行うことができないという問題が生じていた。
【課題を解決するための手段】
【0021】
本発明のホログラフィックレーダは、第1の送信アンテナから物標に対して第1の送信波を送信し、第2の送信アンテナから物標に対して第2の送信波を送信する送信部と、複数の受信アンテナを用いて、第1の送信波の物標からの反射波である第1の反射波と、第2の送信波の物標からの反射波である第2の反射波とを受信する受信部と、第1の送信波を送信してから第2の送信波を送信するまでの時間間隔である送信周期を変えて、第1の送信波及び第2の送信波を複数回送信するように第1の送信アンテナ及び第2の送信アンテナを制御する送信波制御部と、これまでの検出状況、即ち送信波を複数回送信した場合の物標からの反射波の検出状況から各周波数ピークに含まれる物標の相対速度を求め、物標が複数であった場合にその相対速度差から最も適している送信時間間隔の送信周期を選択し、選択した送信周期で第1の送信波及び第2の送信波を送信した場合の第1の反射波と第2の反射波とを合成して物標の検出を行う方位演算部と、を有することを特徴とする。
【発明の効果】
【0022】
本発明のホログラフィックレーダは、複数の物標が異なる速度で移動している場合であっても、ホログラフィック合成が成立する可能性を高めることができるという利点がある。
【図面の簡単な説明】
【0023】
【図1】従来のホログラフィックレーダの構成図である。
【図2】ホログラフィックレーダを構成する送信アンテナ及び受信アンテナの構成図である。
【図3】ホログラフィック合成法の説明図である。
【図4】ホログラフィック合成法の説明図である。
【図5】物標が移動した場合におけるホログラフィック合成法の説明図である。
【図6】物標が移動した場合におけるホログラフィック合成における総経路長差を示す表である。
【図7】FM−CW方式のレーダにおける送信波の波形図である。
【図8】送信周波数が266Hzの場合の相対速度差と位相差との関係を示す図である。
【図9】本発明のホログラフィックレーダの構成図である。
【図10】FM−CW方式のレーダにおける送信波及び受信波の周波数の時間依存性を示した図、並びに送信波及び受信波の差信号であるビート信号の時間依存性を示した図である。
【図11】UP側及びDOWN側の周波数スペクトラムを示した図、並びに周波数スペクトラムにおけるピーク情報に基づいて得られた角度スペクトラムを示す図である。
【図12】本発明の実施例1のホログラフィックレーダの動作方法のフローチャートである。
【図13】送信周波数が450Hzの場合の相対速度差と位相差との関係を示す図である。
【図14】送信周波数が650Hzの場合の相対速度差と位相差との関係を示す図である。
【図15】送信周期を変えた場合の送信波の波形図である。
【図16】本発明の実施例2に係るホログラフィックレーダの動作方法のフローチャートである。
【図17】送信のタイミングを変えた場合の送信波の波形図である。
【発明を実施するための形態】
【0024】
以下、図面を参照して、本発明に係るホログラフィックレーダについて説明する。ただし、本発明の技術的範囲はそれらの実施の形態には限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
【実施例1】
【0025】
図9に本発明の実施例1に係るホログラフィックレーダの構成図を示す。送信部Sは、FM−CW波である送信信号を生成する発振器5及び信号生成部15を備えており、生成した送信信号を用いて、第1の送信アンテナ1aから物標(図示せず)に対して第1の送信波2aを送信し、第2の送信アンテナ1bから物標に対して第2の送信波2bを送信する。第1の送信アンテナ1a及び第2の送信アンテナ1bの電波の送信の切り換えはスイッチSWによって行われる。スイッチSWは送信波制御部50から周期T(図7参照)で出力される切り替え信号によって制御される。第1の送信波2aの物標からの反射波である第1の反射波4a、4b、・・・、4nと、第2の送信波2bの物標からの反射波である第2の反射波4a、4b、・・・、4nとを受信アンテナ部Rに設けられた受信アンテナ3a、3b、・・・、3nからなる受信アンテナ群3で受信する。例えば、図10(a)に示すように信号生成部15が出力する三角波の1周期毎に第1の送信アンテナ1aと第2の送信アンテナ1bが切り換えられ、第1の送信波2aと第2の送信波2bが交互に送信される。
【0026】
受信アンテナ群3で受信した信号は、受信部Rに入力される。受信部Rは、ミキサ7a、7b、・・・、7n、及びA/D変換器8a、8b、・・・、8nを備えている。ミキサ7a、7b、・・・、7nは、受信アンテナ群3からの受信信号を発振器5からの送信信号と混合して、送信信号と受信信号との差信号であるビート信号を生成する。A/D変換器8a、8b、・・・、8nは、ミキサ7a、7b、・・・、7nからのビート信号をデジタル受信信号に変換し、信号処理部10に供給する。
【0027】
信号処理部10は、高速フーリエ変換(Fast Fourier Transform:FFT)回路9、方位演算部11、距離・相対速度演算部12を備えている。FFT回路9に供給された各受信アンテナのデジタル受信信号は、各受信アンテナ毎に、かつ三角波のUP区間、DOWN区間毎にFFT処理即ち高速フーリエ変換により周波数分析されて図11(a)、(b)に示すようなUP側とDOWN側の周波数スペクトラムが得られる。他の受信アンテナについては同じ物標の反射波が受信されるため、周波数スペクトラムの形、ピーク周波数はUP側、DOWN側共に図11(a)、(b)と同じであり、同じピーク周波数の位置に同じ電力値を持つ周波数スペクトラムが得られる。但し、受信アンテナに応じて物標の反射波の位相が異なるため受信アンテナ間で同じ周波数に位置するピークは位相情報が異なる。
【0028】
FFT回路9で得られた受信アンテナ毎の各ピーク情報、即ち周波数、電力、位相等の情報が、方位演算部11に供給される。通常、図11(a)、(b)に示す各ピークには複数の物標の情報が含まれている。方位演算部11は、本発明のホログラフィック合成法により合成を行った上で、最尤推定法やMUSIC(Multiple Signal Classification)法などを用いて周波数ピーク情報から物標を分離して角度を推定する。即ち、各受信アンテナから得られた各周波数スペクトラムにおいて周波数が等しいn個のピーク情報を基にホログラフィック合成を行い、所定の角度推定方式により図11(c)に示すような角度スペクトラムを演算により求める。そして角度スペクトラムにおいて所定レベル以上のピークの角度を物標の角度として算出し、物標情報(角度スペクトラムにおける角度と電力、および周波数スペクトラムにおけるピーク周波数)を距離・相対速度演算部12に供給する。図11(c)はダウン側ピークPd1にθ1、θ2の角度に位置する2つの物標が存在することを示している。尚、図11(c)では、ダウン側ピークPd1の角度スペクトラムに対応するUP側ピークの角度スペクトラムを重ねて表示している。
【0029】
本実施例では、角度推定に用いる周波数ピーク情報として図10(a)に示す連続する第1の送信波2aおよび第2の送信波2bに対して得られた2周期分の周波数ピーク情報を用いて図2乃至図6で説明したホログラフィック合成法により物標の角度を推定する。
【0030】
以上の処理により、UP側及びDOWN側の周波数ピークそれぞれが1または複数の物標に分離され角度、電力、周波数を持つ物標情報として距離・相対速度演算部12に出力される。
【0031】
距離・相対速度演算部12ではUP側の物標情報とDOWN側の物標情報から角度、電力の近いもの同士ペアリングが行われ、そのUP周波数とDOWN周波数から物標の距離及び速度が、UP側の角度とDOWN側の角度の平均値から物標の角度が求められ、目標物標情報として出力される。
【0032】
送信波制御部50は、第1の送信波を送信してから第2の送信波を送信するまでの時間間隔である送信周期を変えて、第1の送信波及び第2の送信波を複数回送信するように第1の送信アンテナ及び第2の送信アンテナを制御する送信波制御信号を出力する。例えば、1回目の送信周波数を266Hzとし、2回目の送信周波数を450Hzとし、3回目の送信周波数を650Hzとする。送信波制御部50は、これら3種類の送信周波数を切り換えながら連続的に送信する。
【0033】
方位演算部11は、これまでの検出状況、即ち前回において送信波を複数回送信した場合の物標からの反射波の検出状況から求めた各周波数ピークに含まれる物標の相対速度を距離・相対速度演算部12から読み出し、1つの周波数ピークに物標が複数あった場合にその相対速度差から最も適している送信時間間隔の送信周期を選択する。例えば、算出した相対速度差に基づいてそれぞれの送信周波数で生じる位相誤差の計算をした結果が、送信周波数266Hzで送信した場合の位相差の絶対値の大きさが75°、送信周波数450Hzで送信した場合の位相差の絶対値の大きさが30°、送信周波数650Hzで送信した場合の位相差の絶対値の大きさが130°であった場合は、位相差の最も小さい送信周波数450Hzを選択する。
【0034】
方位演算部11は、選択した送信周期で第1の送信波及び第2の送信波を送信した場合の第1の反射波と第2の反射波とを合成して前述したホログラフィック合成法により物標の検出を行う。
【0035】
次に、本発明のホログラフィックレーダの動作方法について、図12のフローチャートを用いて説明する。図12は方位演算部11が行う処理を示す。この処理は図11に示したピーク周波数毎に行われる。まず、ステップS101において、角度推定を行う今回の周波数ピークに対し、前回の対応する周波数ピーク(今回のピーク周波数に最も近い前回の周波数ピークを選択)で求められた物標の相対速度を距離・相対速度演算部12から読み出す。換言すれば、これまでの検出状況、即ち送信波を複数回送信した場合の物標からの反射波の検出状況から各周波数ピークに含まれる物標の相対速度を求める。
【0036】
尚、今回の演算において前回演算した物標のデータを用いるのは、前回と今回において物標の相対速度にほとんど差がないと考えられるためである。今回の演算において、ホログラフィック合成法を用いず角度推定を行い、ペアリングすることで物標の相対速度を求めてもよい。
【0037】
ステップS102において、前回の1つの周波数ピークに複数物標があったか否かを判断し、複数物標があった場合にステップS103でその相対速度差を算出する。なお、単体の場合は送信周波数を選択する必要はないので、ステップS108において、例えば送信周波数266Hzを選択してしまえばよい。次に、ステップS104において、送信周波数266Hzで第1の送信アンテナ1a及び第2の送信アンテナ1bから物標に向かって電波を送信したときの相対速度差と位相差との関係を示す特性を基に、ステップS103で算出した相対速度差から差分移動距離を計算してそれを位相差に換算する。図15に第1及び第2の送信アンテナから送信される電波の波形を示す。送信周波数266Hzで送信される期間は61で示された期間であり、第1の送信アンテナ1aから送信される電波のアップチャープ信号61a、ダウンチャープ信号61b、第2の送信アンテナ1bから送信される電波のアップチャープ信号61c、ダウンチャープ信号61dから構成される。第1の送信アンテナ1aと第2の送信アンテナ1bの電波の送信の時間間隔T11は送信周波数266Hzの逆数に相当する。図8に送信周波数が266Hzの場合の相対速度差と位相差との関係を示す。図8に示す特性を表すデータは図示せぬメモリに予め記憶されている。ホログラフィック合成が可能な位相差φの範囲は、経験上−60°≦φ≦60°の範囲であるが、そのような条件を満たす相対速度差は、0〜0.33[km/h]の速度V11、1.67〜2.33[km/h]の速度V12、3.67〜4.33[km/h]の速度V13・・・と不連続な値をとる。
【0038】
次に、ステップS105において、送信周波数450Hzで第1の送信アンテナ1a及び第2の送信アンテナ1bから物標に向かって電波を送信したときの相対速度差と位相差との関係を示す特性を基に、ステップS103で算出した相対速度差から差分移動距離を計算してそれを位相差に換算する。図15に第1及び第2の送信アンテナから送信される電波の波形を示す。送信周波数450Hzで送信される期間は62で示された期間であり、第1の送信アンテナ1aから送信される電波のアップチャープ信号62a、ダウンチャープ信号62b、第2の送信アンテナ1bから送信される電波のアップチャープ信号62c、ダウンチャープ信号62dから構成される。第1の送信アンテナ1a及び第2の送信アンテナ1bからの電波の送信の時間間隔T12は送信周波数450Hzの逆数に相当する。図13に送信周波数が450Hzの場合の相対速度差と位相差との関係を示す。図13に示す特性を表すデータは図示せぬメモリに予め記憶されている。ホログラフィック合成が可能な位相差φの範囲は、経験上−60°≦φ≦60°の範囲であるが、そのような条件を満たす相対速度差は、0〜0.67[km/h]の速度V21、3.33〜4.67[km/h]の速度V22、7.33〜8.67[km/h]の速度V23・・・と不連続な値をとる。
【0039】
次に、ステップS106において、送信周波数650Hzで第1の送信アンテナ1a及び第2の送信アンテナ1bから物標に向かって電波を送信したときの相対速度差と位相差との関係を示す特性を基に、相対速度差から差分移動距離を計算してそれを位相差に換算する。図15に第1及び第2の送信アンテナから送信される電波の波形を示す。送信周波数650Hzで送信される期間は63で示された期間であり、第1の送信アンテナ1aから送信される電波のアップチャープ信号63a、ダウンチャープ信号63b、第2の送信アンテナ1bから送信される電波のアップチャープ信号63c、ダウンチャープ信号63dから構成される。第1の送信アンテナ1a及び第2の送信アンテナ1bからの電波の送信の時間間隔T13は送信周波数650Hzの逆数に相当する。図14に送信周波数が650Hzの場合の相対速度差と位相差との関係を示す。図14に示す特性を表すデータは図示せぬメモリに予め記憶されている。ホログラフィック合成が可能な位相差φの範囲は、経験上−60°≦φ≦60°の範囲であるが、そのような条件を満たす相対速度差は、0〜1.0[km/h]の速度V31、5.0〜7.0[km/h]の速度V32、7.33〜8.67[km/h]の速度V23・・・と不連続な値をとる。
【0040】
次に、ステップS107において、位相差の絶対値の大きさが最小となる送信周波数を決定する。例えば、角度推定を実施しようとしている周波数ピークに物標が2つ存在していてその相対速度差が11[km/h]の場合について説明する。まず、送信周期266Hzで送信した場合の受信データがホログラフィック合成に採用できるか否かを検討する。図8からわかるように、相対速度差11[km/h]における位相差は180°(または−180°)であり、送信周期450Hzで送信した場合は、図13を参照すると相対速度差11[km/h]における位相差は90°であり、送信周期650Hzで送信した場合は、図14を参照すると相対速度差11[km/h]における位相差は60°であるので、位相差の絶対値が60°以下である送信周期650Hzで送信した場合のデータをホログラフィック合成に採用するデータと決定する。なお、位相差の絶対値が60°以下(又は−60°以上)のデータが複数ある場合は、より0°に近いものを採用する。
【0041】
次に、ステップS109において、送信周波数650Hzで受信したデータを用いてホログラフィック合成を行い、従来と同様の方法により角度推定処理を行う。
【0042】
本発明によれば、送信周波数を266Hz、450Hz、650Hzと3通りに変えて電波を送信しているので、ホログラフィック合成が可能な位相差の絶対値の許容範囲を60°以下とすると、全体の相対速度差の76.7%の範囲でホログラフィック合成を行うことができ、266Hz単独の場合に比べて、ホログラフィック合成を行うことができる範囲を42%増加させることができる。
【0043】
本実施例では、送信周波数を3回にわたって変化させて電波を送信する例を示したが、送信回数は3回には限られず、2回でもよいし、4回以上でもよい。さらに本実施例では送信周波数を266、450、650Hzと変化させた例を示したが、周波数の値はこれらには限られない。
【0044】
なお、本実施例では、送信波制御部50が、第1の送信波及び第2の送信波の周波数を変化させることにより、第1の送信波及び第2の送信波を複数回送信するように第1の送信アンテナ及び第2の送信アンテナを制御する例を示したが、送信波制御部50が、第1の送信波及び第2の送信波の周波数を異なる速度で移動する複数の物標の相対速度差によって決定するようにしてもよい。例えば、送信周波数266Hzで送信した場合に、2つの物標の相対速度差が11[km/h]であることが分かったとする。この場合、図8からわかるように、266Hzでは位相差φが180°であり、ホログラフィック合成が可能な−60°≦φ≦60°の範囲に入らない。次に、送信周波数450Hzでの送信を検討すると、図13から相対速度差11[km/h]における位相差φは90°であり依然として、ホログラフィック合成はできない。次に、送信周波数650Hzでの送信を検討すると、図14から相対速度差11[km/h]における位相差φは60°であり、ホログラフィック合成が可能な−60°≦φ≦60°の範囲に入り、ホログラフィック合成が可能であることがわかる。このようにして、複数の物標の相対速度差が既知である場合には、相対速度差から送信周波数を決定するようにしてもよい。
【実施例2】
【0045】
次に、本発明の実施例2のホログラフィックレーダの動作方法について、図16のフローチャートを用いて説明する。本実施例では、送信周波数を変える代わりに送信のタイミングを変えて電波を送信する点を特徴としている。実施例2においても、図12のステップS101、S103は同じであり、ステップS103の後に図16の処理が実行される。まず、ステップS201において、第1の送信タイミングで第1の送信アンテナ1a及び第2の送信アンテナ1bから物標に向かって電波を送信したときの相対速度差と位相差との関係を示す特性を基に、相対速度差から差分移動距離を計算してそれを位相差に換算する。図17に第1及び第2の送信アンテナから送信される電波の波形を示す。第1の送信タイミングで送信される期間は71で示された期間であり、第1の送信アンテナ1aから送信される電波のアップチャープ信号71a、ダウンチャープ信号71b、第2の送信アンテナ1bから送信される電波のアップチャープ信号71c、ダウンチャープ信号71dから構成される。第1の送信アンテナ1aと第2の送信アンテナ1bの電波の送信の時間間隔はT21である。ここで、T21の逆数から求められる周波数が650Hzであるとすると、相対速度差と位相差との関係は図14の波形と同様となり、ホログラフィック合成が可能な位相差φの条件−60°≦φ≦60°を満たす相対速度差は、0〜1.0[km/h]の速度V31、5.0〜7.0[km/h]の速度V32、7.33〜8.67[km/h]の速度V33・・・と不連続な値をとる。
【0046】
次に、ステップS202において、第2の送信タイミングで第1の送信アンテナ1a及び第2の送信アンテナ1bから物標に向かって電波を送信したときの相対速度差と位相差との関係を示す特性を基に、相対速度差から差分移動距離を計算してそれを位相差に換算する。図17に第1及び第2の送信アンテナから送信される電波の波形を示す。第2の送信タイミングで送信される期間は72で示された期間であり、第1の送信アンテナ1aから送信される電波のアップチャープ信号72a、ダウンチャープ信号72b、第2の送信アンテナ1bから送信される電波のアップチャープ信号72c、ダウンチャープ信号72dから構成される。第1の送信アンテナ1aと第2の送信アンテナ1bの電波の送信の時間間隔はT22である。ここで、波形72a〜72dは実施例1の波形71a〜71dと同様であるが、電波を送信しない期間72eを設けることにより、T22>T21となっている。ここで、T22の逆数から求められる周波数が450Hzであるとすると、相対速度差と位相差との関係は図13の波形と同様となり、ホログラフィック合成が可能な位相差φの条件−60°≦φ≦60°を満たす相対速度差は、0〜0.67[km/h]の速度V21、3.33〜4.67[km/h]の速度V22、7.33〜8.67[km/h]の速度V23・・・と不連続な値をとる。
【0047】
次に、ステップS203において、第3の送信タイミングで第1の送信アンテナ1a及び第2の送信アンテナ1bから物標に向かって電波を送信したときの相対速度差と位相差との関係を示す特性を基に、相対速度差から差分移動距離を計算してそれを位相差に換算する。図17に第1及び第2の送信アンテナから送信される電波の波形を示す。第3の送信タイミングで送信される期間は73で示された期間であり、第1の送信アンテナ1aから送信される電波のアップチャープ信号73a、ダウンチャープ信号73b、第2の送信アンテナ1bから送信される電波のアップチャープ信号73c、ダウンチャープ信号73dから構成される。第1の送信アンテナ1aと第2の送信アンテナ1bの電波の送信の時間間隔はT23である。ここで、波形73a〜73dは実施例1の波形71a〜71dと同様であるが、電波を送信しない期間73eを設けることにより、T23>T21となっている。ここで、T23の逆数から求められる周波数が266Hzであるとすると、相対速度差と位相差との関係は図8の波形と同様となり、ホログラフィック合成が可能な位相差φの条件−60°≦φ≦60°を満たす相対速度差は、0〜0.33[km/h]の速度V11、1.67〜2.33[km/h]の速度V12、3.67〜4.33[km/h]の速度V13・・・と不連続な値をとる。
【0048】
次に、ステップS204において、位相差の絶対値の大きさが最小となる送信周波数を決定する。例えば、物標の相対速度差が11[km/h]の場合について説明する。まず、第1の送信タイミングで送信した場合の受信データがホログラフィック合成に採用できるか否かを検討する。第1の送信タイミングで送信した場合は、図14から相対速度差11[km/h]における位相差は60°であり、第2の送信タイミングで送信した場合は、図13から相対速度差11[km/h]における位相差は90°であり、第3の送信タイミングで送信した場合は、図12から相対速度差11[km/h]における位相差は180°(または−180°)であり、位相差が最小となる第1の送信タイミングで送信した場合のデータをホログラフィック合成に採用するデータと決定する。
【0049】
次に、ステップS205において、第1の送信タイミングで受信したデータを用いてホログラフィック合成を行い、従来と同様の方法により角度推定処理を行う。
【0050】
本発明によれば、送信タイミングを3通りに変えて電波を送信しているので、送信タイミングを変えない場合に比べて、広い範囲の相対速度差においてホログラフィック合成を行うことにより、物標の検出を正確に行うことができる確率を高めることができる。
【0051】
本実施例では、送信タイミングを3回にわたって変化させて送信する例を示したが、送信タイミングを変える回数は3回には限られず、2回でもよいし、4回以上でもよい。
【0052】
なお、本実施例では、送信波制御部50が、第1の送信波及び第2の送信波の送信のタイミングを変化させることにより、第1の送信波及び第2の送信波を複数回送信するように第1の送信アンテナ及び第2の送信アンテナを制御する例を示したが、送信波制御部50が、第1の送信波及び第2の送信波の送信のタイミングを異なる速度で移動する複数の物標の相対速度差によって決定するようにしてもよい。例えば、第1の送信タイミング(送信周波数650Hzに相当)で送信した場合に、2つの物標の相対速度差が10[km/h]であることが分かったとする。この場合、図14からわかるように、位相差φが120°であり、ホログラフィック合成が可能な−60°≦φ≦60°の範囲に入らない。次に、第2の送信タイミング(送信周波数450Hzに相当)での送信を検討すると、図13から相対速度差10[km/h]における位相差φは180°であり依然として、ホログラフィック合成はできない。次に、第3の送信タイミング(送信周波数266Hzに相当)での送信を検討すると、図8から相対速度差10[km/h]における位相差φは0°であり、ホログラフィック合成が可能な−60°≦φ≦60°の範囲に入り、ホログラフィック合成が可能であることがわかる。このようにして、複数の物標の相対速度差が既知である場合には、相対速度差から送信のタイミングを決定するようにしてもよい。
【符号の説明】
【0053】
1a 第1の送信アンテナ
1b 第2の送信アンテナ
2a 第1の送信波
2b 第2の送信波
3 受信アンテナ群
3a、3b、・・・、3n 受信アンテナ
4a、4b、・・・、4n 反射波
5 発振器
7a、7b、・・・、7n ミキサ
8a、8b、・・・、8n A/D変換器
9 FFT回路
10 信号処理部
11 方位演算部
12 距離・相対速度演算部
15 信号生成部
50 送信波制御部
S 送信部
R 受信部

【特許請求の範囲】
【請求項1】
第1の送信アンテナから物標に対して第1の送信波を送信し、第2の送信アンテナから前記物標に対して第2の送信波を送信する送信部と、
複数の受信アンテナを用いて、前記第1の送信波の前記物標からの反射波である第1の反射波と、前記第2の送信波の前記物標からの反射波である第2の反射波とを受信する受信部と、
前記第1の送信波を送信してから前記第2の送信波を送信するまでの時間間隔である送信周期を変えて、前記第1の送信波及び前記第2の送信波を複数回送信するように前記第1の送信アンテナ及び前記第2の送信アンテナを制御する送信波制御部と、
前記送信波を複数回送信した場合の前記物標からの反射波の検出状況から求められる各周波数ピークに含まれる物標の相対速度に基づき、前記物標が複数であった場合にその相対速度差から最も適している送信時間間隔の送信周期を選択し、前記選択した送信周期で第1の送信波及び第2の送信波を送信した場合の第1の反射波と第2の反射波とを合成して前記物標の検出を行う方位演算部と、
を有することを特徴とするホログラフィックレーダ。
【請求項2】
前記送信波制御部は、前記第1の送信波及び前記第2の送信波の周波数を変化させることにより、前記送信周期を変える、請求項1に記載のホログラフィックレーダ。
【請求項3】
前記送信波制御部は、前記第1の送信波及び前記第2の送信波の送信のタイミングを変化させることにより、前記送信周期を変える、請求項1に記載のホログラフィックレーダ。
【請求項4】
前記送信波制御部は、前記第1の送信波及び前記第2の送信波の周波数を異なる速度で移動する複数の物標の相対速度差によって決定する、請求項1に記載のホログラフィックレーダ。
【請求項5】
前記送信波制御部は、前記第1の送信波及び前記第2の送信波の送信のタイミングを異なる速度で移動する複数の物標の相対速度差によって決定する、請求項1に記載のホログラフィックレーダ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−202955(P2012−202955A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−70606(P2011−70606)
【出願日】平成23年3月28日(2011.3.28)
【出願人】(000237592)富士通テン株式会社 (3,383)
【Fターム(参考)】