説明

作業機械用エネルギー再生システム

【課題】作業機械用エネルギー再生システムを提供する。
【解決手段】流体圧アクチュエータからの吐出流体のエネルギーを電気エネルギーとして再生する場合の再生効率を向上させる方法及び装置。油圧シリンダのヘッド側油チャンバから吐出された油用の吐出流路として機能する流量制御ラインには、可変容量型再生油圧モータが設けられており、再生油圧モータの押しのけ容量を制御することにより、油圧シリンダのヘッド側油チャンバからの吐出油の流量が制御可能とされる。さらに、再生油圧モータの回転により電力を発生する発電機が設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本開示内容は、流体圧アクチュエータを備え、流体圧アクチュエータから吐出された流体のエネルギーを再生する作業機械用のエネルギー再生システムの技術分野に関する。
【背景技術】
【0002】
一般に、油圧式ショベルなどの作業機械は、ポンプからの加圧流体により動作する様々な種類の流体圧アクチュエータが設けられている。従来より、流体圧アクチュエータから吐出された流体のエネルギーを再生する技術が知られている。例えば、流体圧アクチュエータが油圧シリンダである場合において、各油圧シリンダのヘッド側油チャンバから吐出された油の一部をロッド側油チャンバに供給する再生回路が設けられる技術がある。他の技術においては、各油圧シリンダから吐出された油のエネルギーがアキュムレータ内で回収される。
【0003】
しかしながら、再生回路を含む技術によれば、油圧シリンダのヘッド側油チャンバからの吐出油の一部を再生することができるが、油の大部分は、直接、油タンクに迂回され、その結果、エネルギーの再生効率が低いという問題がある。一方、アキュムレータを備える技術では、バッテリなどの他のエネルギー蓄積手段と比較して、より大きなエネルギー蓄積容量を必要とする可能性があり、さらに、エネルギー蓄積時間がより短い。
【0004】
改善手段として、(特許文献1)では、圧力アクチュエータからの吐出流体のエネルギーを電気エネルギーとして再生及び蓄積する技術を提案している。この技術は、油圧シリンダからの吐出油の流入により回転駆動されるタービンを、吐出流路内に設けるものである。このタービンの駆動力により、発電機が電気エネルギーを発生し、よって、吐出油のエネルギーが電気エネルギーとして効果的に再生及び蓄積されることができ、さらには、この電気エネルギーがエンジンに対する代替電源として用いることができ、結果的にも環境に優しい技術となる。
【0005】
一方、油圧式ショベルなどの作業機械は、一般に、油圧シリンダからの吐出油の流量が、絞り量に基づいてメータアウト制御を行う制御弁により制御されるように構成される。特に、上記の参考特許出願に開示された技術では、かかる制御弁の下流側に、吐出油の流入により回転駆動されるタービンを設けている。したがって、タービンがエネルギーを再生するために回転する前に、制御弁は、油圧シリンダからの吐出油を絞って温度を上げ、これによりエネルギーを消費し、結果的にエネルギーの再生効率がより低くなるという問題が生じる。
【0006】
【特許文献1】特開2002−195218号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、上述の実情を鑑みて、上記問題を解決するためになされたものである。
【課題を解決するための手段】
【0008】
一形態において、本発明は、流体を供給/吐出することにより動作するようになされた流体圧アクチュエータを備える作業機械を提供するものであり、可変容量型再生流体圧モータが、流体圧アクチュエータから吐出される流体用の吐出流路に設けられ、この再生流体圧モータの押しのけ容量を制御することにより流体圧アクチュエータからの吐出流体の流量を制御可能とし、さらに、再生流体圧モータを回転させる吐出流体のエネルギーを電気エネルギーとして再生するエネルギー再生装置が設けられていることにより特徴付けられる。
【0009】
他の形態において、本発明は作業機械を提供するものである。この作業機械は、油圧ポンプと当該油圧ポンプに連結され第1及び第2の供給/吐出ポートを有する油圧アクチュエータと油圧アクチュエータからの吐出流ラインとを備える油圧システム、及びエンジンを備える。作業機械は、さらに、第1及び第2の供給/吐出ポート間に流動的に配置され、吐出流ラインの流体圧に曝された可変容量型油圧モータを備え、前記可変容量型油圧モータが、油圧アクチュエータからの吐出流体の流量を制御するように構成されている。また、エネルギー再生装置は、可変容量型油圧モータが設けられ、これに動作可能に連結されており、このエネルギー再生装置は、エンジン及び油圧ポンプの少なくとも一方を動作させるための電力を供給するように構成されている。
【0010】
さらに他の形態において、本発明は作業機械の電力システムを動作させる方法を提供する。本方法は、作業機械の内燃機関を介して油圧ポンプに少なくとも部分的に電力を供給する工程と、油圧ポンプを介して作業機械の少なくとも1つの油圧アクチュエータに油圧流体を供給する工程とを含む。さらに、本方法は、少なくとも1つの油圧アクチュエータの流体吐出ライン内に少なくとも部分的に配置された油圧モータを通して油圧流体を吐出する工程を介して、作業機械の発電機に少なくとも部分的に電力を供給する工程と、発電機からの電力を介して油圧ポンプに少なくとも部分的に電力を供給する工程とを含む。
【発明を実施するための最良の形態】
【0011】
図1においては、参照符号1は、油圧式ショベルなどの作業機械に設けられた油圧シリンダ(例えば、油圧式ショベルに実装されたブームを垂直方向に動かすブーム油圧シリンダ)を示しており、この油圧シリンダ1は、ロッド側油チャンバ1bとヘッド側油チャンバ1cがピストン1aの両側に形成された単一ロッド型である。この油圧シリンダは、ロッド側油チャンバ1bに圧油を供給しヘッド側油チャンバ1cから油を吐出する際に収縮して重量負荷Wの印加方向にピストン1aを動かすように構成されている。さらに、油圧シリンダ1は、ヘッド側油チャンバ1cに圧油を供給しロッド側油チャンバ1bから油を吐出する際に伸長し、重量負荷Wの印加方向とは反対方向に、ピストン1aを動かすように設計されている。
【0012】
また、参照符号2は、油圧シリンダ1に対する圧油供給源としての油圧ポンプを示している。ここで、油圧ポンプ2と油圧シリンダ1との間の油圧回路には、油圧ポンプ2の吐出側に接続された吐出ライン3と、吐出ライン3の下流側に接続された流量制御回路4と、流量制御回路4と油圧シリンダ1のロッド側油チャンバ1bとに接続するようになされたロッド側ライン5と、流量制御回路4と油圧シリンダ1のヘッド側油チャンバ1cとに接続するようになされたヘッド側ライン6とが設けられている。
【0013】
吐出ライン3の中間部では、油タンク7への戻りライン8が分岐して形成され、この戻りライン8では、後述するように、制御装置10からの命令に基づいて動作するように、バイパス弁9が配置されている。さらに、吐出ライン3には、戻りライン8の分岐点の下流側に逆止弁11が配置されており、この逆止弁11が油圧ポンプ2及び戻りライン8に油が逆流するのを防いでいる。
【0014】
流量制御回路4は、矩形環状に第1、第2、第3及び第4の流量制御ライン12、13、14、及び15を接続することにより形成される。ここで、吐出ライン3は、第1の流量制御ライン12と第2の流量制御ライン13との間の接続部分Aに接続され、ロッド側ライン5は、第1の流量制御ライン12と第3の流量制御ライン14との間の接続部分Bに接続され、ヘッド側ライン6は、第2の流量制御ライン13と第4の流量制御ライン15との間の接続部分Cに接続され、油タンク7に達する吐出ライン16は、第3の流量制御ライン14と第4の流量制御ライン15との間の接続部分Dに接続される。
【0015】
第1の流量制御ライン12では、吐出ライン3からロッド側ライン5への供給油の流量を制御するようになされたロッド側メータイン弁17が配置されている。第2の流量制御ライン13では、吐出ライン3からヘッド側ライン6への供給油の流量を制御するようになされたヘッド側メータイン弁18が配置されている。第3の流量制御ライン14では、ロッド側ライン5から吐出ライン16への吐出油の流量を制御するようになされたロッド側メータアウト弁19が配置されている。ロッド側メータイン弁17、ヘッド側メータイン弁18、及びロッド側メータアウト弁19は、制御装置10からの命令に基づいて動作するように構成される。
【0016】
さらに、第4の流量制御ライン15には、可変容量型再生油圧モータ20が配置されている。再生油圧モータ20の押しのけ容量は、制御装置10から押しのけ容量制御手段20aに出力された制御命令に基づき、ゼロから所定の最大値まで変化し、これにより、第4の流量制御ライン15における流量をゼロから所定の最大値まで変化させ、その後、再生油圧モータ20の押しのけ容量の変化により、ヘッド側ライン6から吐出ライン16への吐出油の流量制御(メータアウト制御)を可能とする。さらに、発電機21は、再生油圧モータ20に連動して接続され、ここで、発電機21は、再生油圧モータ20のトルクにより駆動されて、電力を発生することができる。
【0017】
また、第3及び第4の流量制御ライン14及び15には、ロッド側メータアウト弁19や、再生油圧モータ20を迂回するためのバイパスライン14a及び15aもそれぞれ設けられており、さらに、バイパスライン14a及び15aには、油流れを吐出ライン16からロッド側ライン5及びヘッド側ライン6へと可能とするが逆流を防ぐようにする逆止弁51及び22がそれぞれ配置されている。このため、油タンク7からの油の補充は、ロッド側ライン5又はヘッド側ライン6が真空状態となった際に行われるようになる。
【0018】
一方、制御装置10は、マイクロコンピュータなどから構成され、油圧シリンダ1用の制御レバー23から出力された命令信号を受信し、その後、この命令信号に基づいて、油圧ポンプ2の押しのけ容量制御手段2a、バイパス弁9、ロッド側メータイン弁17、ヘッド側メータイン弁18、ロッド側メータアウト弁19、再生油圧モータ20の押しのけ容量制御手段20aなどに、制御命令を出力する。
【0019】
制御装置10から出力される制御命令に関しては、油圧シリンダ1用の制御レバー23が停止位置にある(つまり、制御レバー23において動作が行われない)場合には、制御装置10は、「弁開放」の制御命令をバイパス弁9に出力するとともに、「弁閉鎖」の制御命令をロッド側メータイン弁17、ヘッド側メータイン弁18、及びロッド側メータアウト弁19に出力し、さらに、「変位ゼロ」の制御命令を再生油圧モータ20の押しのけ容量制御手段20aに出力する。このため、油圧ポンプ2から強制的に送出された油は、戻りライン8を通って油タンク7に戻され、また、第1〜第4の流量制御ライン12〜15は、閉じた状態であるため、油圧シリンダ1に/から供給/吐出される油はなく、したがって、油圧シリンダ1が停止される。
【0020】
一方、制御レバー23が油圧シリンダ1の伸長を示す位置にあるように動作している場合には、制御装置10は、「弁閉鎖」の制御命令をバイパス弁9に出力するとともに、「弁開放」の制御命令をヘッド側メータイン弁18及びロッド側メータアウト弁19に出力し、「弁閉鎖」の制御命令をロッド側メータイン弁17に出力し、さらに、「変位ゼロ」の制御命令を再生油圧モータ20の押しのけ容量制御手段20aに出力する。この場合、ヘッド側メータイン弁18及びロッド側メータアウト弁19の開口量は、制御レバー23の動作量の増減に応じて増減するように制御される。
【0021】
したがって、油圧ポンプ2から強制的に送出された油は、吐出ライン3を通って第2の流量制御ライン13に流れ、その後、油の流量は、ヘッド側ライン6を通って油圧シリンダ1のヘッド側油チャンバ1cに供給されるように、第2の流量制御ライン13に配置されたヘッド側メータイン弁18により制御される。一方、ロッド側油チャンバ1bからの吐出油は、ロッド側ライン5を通して第3の流量制御ライン14に流れ、その後、油の流量は、吐出ライン16を通して油タンク7に流れるように、第3の流量制御ライン14に配置されたロッド側メータアウト弁19により制御される。このように、圧油をヘッド側油チャンバ1cに供給し、ロッド側油チャンバ1bから油を吐出することによって、重量負荷Wの印加方向とは反対方向にピストン1aを移動し、油圧シリンダ1を伸長させる。
【0022】
また、制御レバー23が油圧シリンダ1の収縮を示す位置にあるように動作している場合には、制御装置10は、「弁閉鎖」の制御命令をバイパス弁9に出力するとともに、「弁開放」の制御命令をロッド側メータイン弁17及びヘッド側メータイン弁18に出力し、また、「弁閉鎖」の制御命令をロッド側メータアウト弁19に出力する。この場合には、ロッド側メータイン弁17の開口量は、制御レバー23の動作量の増減に応じて増減するように制御される。さらに、制御装置10は、押しのけ容量が制御レバー23の動作量の増減に応じて増減するように、再生油圧モータ20の押しのけ容量制御手段20aに制御命令を出力する。
【0023】
したがって、油圧ポンプ2から強制的に送出される油は、吐出ライン3を通して第1の流量制御ライン12に流れ、その後、油の流量が、ロッド側ライン5を通して油圧シリンダ1のロッド側油チャンバ1bに供給されるように、第1の流量制御ライン12に配置されたロッド側メータイン弁17により制御される。一方、ヘッド側油チャンバ1cからの吐出油はヘッド側ライン6を通って流れ、接続部分Cにおいて第2の流量制御ライン13及び第4の流量制御ライン15に分離される。その後、第2の流量制御ライン13に流れる吐出油は、接続部分Aで吐出ライン3からの圧油に合流し、第1の流量制御ライン12及びロッド側ライン5を通る再生油として、油圧シリンダ1のロッド側油チャンバ1bに供給される。一方、第4の流量制御ライン15の油の流量は、吐出ライン16を通して油タンク7に流れるように、再生油圧モータ20により制御される。このように、圧油をロッド側油チャンバ1bに供給し、ヘッド側油チャンバ1cから油を吐出することによって、重量負荷Wの印加方向にピストン1aを移動し、油圧シリンダ1を収縮する。
【0024】
さらに、油圧シリンダ1を収縮した際に油圧シリンダ1からの吐出流路として機能する第4の流量制御ライン15に配置された再生油圧モータ20が回転すると、発電機21を駆動して電力を発生し、この電力が、油圧ポンプ2の電源としてモータ24を電力供給するようになされた燃料電池装置25に用いられる。
【0025】
燃料電池装置25は、電解水用の電解槽26、電解槽26で生じた水素を吸収するための水素吸蔵合金を含む水素蓄積装置27、燃料電池28などからなる。発電機21は、電源経路29を介して電解槽26に接続されている。電解槽26は、発電機21から供給される電力を用いて水を電解し、水素及び酸素を生成する。その後、水素及び酸素は、燃料電池28用の燃料として用いられて電力を発生し、この電力が油圧ポンプ2を駆動するための電源として役立つようにモータ24に供給される。この場合には、一旦、電解槽26で生じた水素を水素蓄積装置27に蓄積すると、長期間のエネルギー蓄積が可能となる。図1では、参照符号30は、燃料電池28内で電力とともに発生した水を電解槽26に戻すための戻り水経路を示しており、この戻り水経路30を設けることにより、水を再利用することが可能となる。参照符号37は、水素流路を示しており、一方、参照符号36は、酸素流路を示している。参照符号39は、給気口を特定している。
【0026】
加えて、燃料電池28の電力発生を制御可能とするように、水素蓄積装置27から燃料電池28に供給される水素量が制御される構成をとることにより、モータ24の出力を最適に制御することができる。
【0027】
次に、本発明の第2〜第4の実施形態について、図2〜図4の各々を参照して説明する。第2〜第4の実施形態では、第1の実施形態で示したものと共通(同一)の構成要素については、同一の参照番号を付すものとし、これらの説明を省略することに留意されたい。
【0028】
まず、図2に示した第2の実施形態に関して、燃料電池装置25は、メタノール、エタノール、又はLPGなどの化学燃料を原料として用い、水素を生成する改質装置31を備える。ここで、改質装置31により生成される水素は、上述した水素蓄積装置27からの水素に合流し、燃料電池28に供給される。このように、改質装置31を設けることにより、水素蓄積装置27の寸法を大きくすることなく、水素を十分に燃料電池28に供給することができる。
【0029】
また、図3に示した第3の実施形態では、燃料電池装置が設けられていないが、発電機21により発生された電力を蓄積するためのコンデンサ32及び蓄電池33と、蓄電池33から供給されたDC電力をAC電力に変換し、電圧を制御するインバータ34とが設けられている。ここで、モータ24は、インバータ34から供給された電力により駆動されるようになされる。
【0030】
さらに、第1〜第3の実施形態では、モータ24は、油圧ポンプ2を駆動する電源として用いられる。しかしながら、建設機械などの複数の油圧式アクチュエータを備える作業機械の場合には、油圧シリンダ1からの吐出油の再生エネルギーが電力不足となり、また、蓄電池などの電力蓄積装置の大きさが、作業機械に搭載するのに困難なほど大きくなされてしまう可能性がある。ここで、図4に示した第4の実施形態では、エンジン35が油圧ポンプ2用の電源として搭載され、モータ24がエンジン35を支援するための補助電源として用いられる。このように、モータ24を補助電源として用いることにより、エンジン35により消費される化石燃料の量を削減することが可能であり、これはエネルギーの節約に貢献することができ、また環境的にも好ましいことである。
【産業上の利用可能性】
【0031】
上述したように構成された第1の実施形態においては、油圧シリンダ1を収縮すると、圧油は、ロッド側油チャンバ1bに供給されるようになるとともに、油がヘッド側油チャンバ1cから吐出されるようになる。ヘッド側油チャンバ1cからの吐出油が、重量負荷Wの印加により高い圧力を有しており、ヘッド側油チャンバ1cに面するピストン1aの圧力受け面積が、ロッド1dの断面積分、ロッド側油チャンバ1bに面するピストン1aの圧力受け面よりも大きいという理由から、ロッド側油チャンバ1bに供給される圧油よりも多くの量の油が、ヘッド側油チャンバ1cから吐出されるようになる。そして、ヘッド側油チャンバ1cからの吐出油の一部が、上述したように、再生油として、ヘッド側ライン6、第2の流量制御ライン13、第1の流量制御ライン12、及びロッド側ライン5を通して、ロッド側油チャンバ1bに供給される。一方、吐出油の残りは、第4の流量制御ライン15に配置された可変容量型再生油圧モータ20により流量制御(メータアウト制御)を施される。そして、この油は、吐出ライン16を通して油タンク7に吐出され、発電機21が再生油圧モータ20の回転により駆動されて電力を発生する。その後、この電力は、油圧ポンプ2用の電源として、モータ24を電力供給するようになされた燃料電池装置25に用いられ得る。
【0032】
上述したように、本実施形態では、再生油圧モータ20が油圧シリンダ1のヘッド側油チャンバ1cからの吐出油の流入により回転し、発電機21が再生油圧モータ20の回転駆動により電力を発生し、これにより、吐出油のエネルギーが電気エネルギーとして再生されることができる。再生油圧モータ20は、発電機21を駆動するだけでなく、油圧シリンダ1からの吐出油の流量を制御する。
【0033】
したがって、油圧シリンダ1の吐出流路に流量制御用の制御弁を設ける必要がなくなり、その結果、制御弁を通過する際のエネルギー損失がなくなり、これにより、吐出油のエネルギーを電気エネルギーとして高効率で再生することができ、エネルギー再生効率を向上することが可能となる。
【0034】
上述の実施形態は、油圧シリンダを流体圧アクチュエータとして例証しているが、油圧モータに適用し得るものであり、さらに、油圧だけでなく、空気圧の分野の加圧流体に幅広い範囲で適用可能であることを留意すべきである。
【0035】
さらに、上記実施形態では、流体圧アクチュエータからの吐出流体のエネルギーを再生することにより得られた電気エネルギーを、流体圧アクチュエータに加圧流体を供給するようになされたポンプを駆動するためのモータ用の電源として用いているが、本実施形態は、これに限らず、当然ながら、作業機械に搭載される多様な種類の電気機械にも用いることができることは明らかである。
【0036】
本説明は、例示のみを目的とし、あらゆる方法で本開示内容の幅を狭めるものであると解釈されるべきではない。このため、当業者は、本開示内容の意図する趣旨及び範囲を逸脱することなく、本開示の実施形態について、種々の変更が可能であることを理解するであろう。他の形態、特徴、及び利点は、添付の図面及び添付の特許請求の範囲を検討することにより、自明であろう。
【図面の簡単な説明】
【0037】
【図1】本開示内容の第1の実施形態に係るエネルギー再生システムを示す図である。
【図2】本開示内容の第2の実施形態に係るエネルギー再生システムを示す図であり、図1に対して類似要素には類似番号を付してある。
【図3】本開示内容の第3の実施形態に係るエネルギー再生システムを示す図であり、図1及び図2に対して類似要素には類似番号を付してある。
【図4】本開示内容の第4の実施形態に係るエネルギー再生システムを示す図であり、図1〜図3に対して類似要素には類似番号を付してある。
【符号の説明】
【0038】
1 油圧シリンダ
1a ピストン
1b ロッド側油チャンバ
1c ヘッド側油チャンバ
1d ロッド
2 油圧ポンプ
2a 押しのけ容量制御手段
3 吐出ライン
4 流量制御回路
5 ロッド側ライン
6 ヘッド側ライン
7 油タンク
8 戻りライン
9 バイパス弁
10 制御装置
11 逆止弁
12 第1の流量制御ライン
13 第2の流量制御ライン
14 第3の流量制御ライン
14a バイパスライン
15 第4の流量制御ライン
15a バイパスライン
16 吐出ライン
17 ロッド側メータイン弁
18 ヘッド側メータイン弁
19 ロッド側メータアウト弁
20 再生油圧モータ
20a 押しのけ容量制御手段
21 発電機
22 逆止弁
23 制御レバー
24 モータ
25 燃料電池装置
26 電解槽
27 水素蓄積装置
28 燃料電池
29 電源経路
30 戻り水経路
31 改質装置
32 コンデンサ
33 蓄電池
34 インバータ
35 エンジン
36 酸素通路
37 水素通路
39 給気口
51 逆止弁
A 接続部分
B 接続部分
C 接続部分
D 接続部分
W 重量負荷

【特許請求の範囲】
【請求項1】
作業機械用のエネルギー再生システムであって、
流体を供給又は吐出することにより動作するようになされた流体圧アクチュエータと、
可変容量型再生流体圧モータであって、流体圧アクチュエータから吐出される流体用の吐出流路に配置され、可変容量型再生流体圧モータの押しのけ容量を制御することにより流体圧アクチュエータからの吐出流体の流量を制御可能とするようになされた可変容量型再生流体圧モータと、
再生流体圧モータを回転させることにより、吐出流体のエネルギーを電気エネルギーとして少なくとも部分的に再生するエネルギー再生装置と
を備える作業機械用のエネルギー再生システム。
【請求項2】
再生流体圧モータの押しのけ容量が、流体圧アクチュエータからの吐出流体の流量がゼロから所定の最大値まで変化するように制御される請求項1に記載の作業機械用のエネルギー再生システム。
【請求項3】
流体圧アクチュエータへの供給流体の流量が、供給流量制御弁により制御される請求項2に記載の作業機械用のエネルギー再生システム。
【請求項4】
流体圧アクチュエータは、単一ロッドの流体圧シリンダであり、再生流体圧モータは、流体圧シリンダのヘッド側チャンバから吐出される流体用の吐出流路に設けられている請求項3に記載の作業機械用のエネルギー再生システム。
【請求項5】
流体圧アクチュエータの操作器具から入力信号を受信し、該入力信号に基づいて再生流体圧モータ用の押しのけ容量制御手段に制御命令を出力する制御装置をさらに備える請求項4に記載の作業機械用のエネルギー再生システム。
【請求項6】
加圧流体を流体圧アクチュエータに供給するようになされたポンプと、
ポンプと動作可能に連結されたモータと
をさらに備え、
エネルギー再生装置により得られた電気エネルギーが、モータ用の電源として用いられる請求項5に記載の作業機械用のエネルギー再生システム。
【請求項7】
モータが、ポンプ用の補助電源として用いられる請求項6に記載の作業機械用のエネルギー再生システム。
【請求項8】
エネルギー再生装置は、
再生流体圧モータの回転駆動を介して電力を発生する電力発生手段と、
電力発生手段により発生された電力を蓄積する蓄電手段と、
蓄電手段に蓄積された電力をAC電力に変換するインバータと
を備える請求項7に記載の作業機械用のエネルギー再生システム。
【請求項9】
前記吐出流路の吐出ライン内で少なくとも部分的に配置されたメータアウト弁をさらに備え、前記制御装置は、前記可変容量型油圧モータ及び前記メータアウト弁に制御連結されており、
前記制御装置は、操作者入力装置からのアクチュエータの伸長命令に応答して、前記可変容量型油圧モータの前記押しのけ容量制御手段に変位ゼロの命令を出力するように構成され、
前記制御装置は、前記操作者入力装置からのアクチュエータの収縮命令に応答して、前記可変容量型油圧モータの前記押しのけ容量制御手段にゼロでない変位の命令を出力するように構成される請求項6に記載のエネルギー再生システム。
【請求項10】
エンジンと、前記エンジンに動作可能に連結された油圧ポンプと、前記可変容量型油圧モータから分離され前記エネルギー再生装置及び前記油圧ポンプの各々と動作可能に連結された電動機とをさらに備える請求項1に記載のエネルギー再生システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2007−162457(P2007−162457A)
【公開日】平成19年6月28日(2007.6.28)
【国際特許分類】
【出願番号】特願2006−334535(P2006−334535)
【出願日】平成18年12月12日(2006.12.12)
【出願人】(391020193)キャタピラー インコーポレイテッド (296)
【氏名又は名称原語表記】CATERPILLAR INCORPORATED
【出願人】(000190297)新キャタピラー三菱株式会社 (1,189)
【Fターム(参考)】