説明

信号内の基線変化の処理および検出

実施形態に従って、信号から事象の発生を検出するためのシステムおよび方法が提供される。信号処理システムが、信号から事象を検出するために基線変化と信号特性の変化とを解析してもよい。また、システムは信号のスケイログラム内のエネルギーパラメータと不自然な結果とを解析することにより事象を検出してもよい。さらに、システムは信号と、それに対応するスケイログラムとの両方を解析することにより事象を検出してもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本願は、ともに2008年6月30日に出願された「PROCESSING AND DETECTING BASELINE CHANGES IN SIGNALS」と題する米国仮出願第61/077036号、および「SYSTEMS AND METHODS OF SIGNAL PROCESSING」と題する米国仮出願第61/077130号の優先権を主張し、当該出願はその全体が参照により本明細書に組み込まれる。
【0002】
本開示は、一般に、信号の基線変化を検出することに関し、実施形態では、光電脈波信号(PPG信号)の基線変化と、PPG信号のウェーブレット変換の対応する変化とを引き起こす事象を検出することに関する。
【先行技術文献】
【非特許文献】
【0003】
【非特許文献1】Paul S.Addison著、The Illustrated Wavelet Transform Handbook(Taylor&Francis Group 2002)
【発明の概要】
【発明が解決しようとする課題】
【0004】
信号の基線変化を検出するための方法およびシステムが提供される。実施形態では、PPG信号の基線変化と、PPG信号のウェーブレット変換の対応する変化とを引き起こす事象を検出するための方法およびシステムが提供される。
【課題を解決するための手段】
【0005】
実施形態では、信号処理システムがユーザから取得された信号を解析してもよい。信号処理システムは信号の少なくとも1つの信号特性を計算してもよい。例えば、信号処理システムは、選択された時間の間または心イベント(例えば、心周期など)の選択された回数の間の信号のAC成分の平均値または中央値を計算してもよい。
【0006】
また、信号の信号特性を計算することに加えて、信号処理システムは信号の基線変化を検出してもよい。例えば、信号処理システムは時間の経過にともなう基線の短期的および/または長期的変化を計算してもよい。信号処理システムは、基線が変化している場合には基線の変化率を検出してもよく、ならびに/または基線が全体として一定であるか、またはしきい値以下で変化している場合には2つの期間の間の基線のパーセント変化および/もしくは基線の変化の大きさを検出してもよい。実施形態では、信号処理システムが線形特性化技術(例えば、最良適合線、しきい値交差など)、または非線形特性化技術(例えば、曲線適合、テンプレート照合、適応的手法など)を用いて基線変化の形を特徴付けてもよい。
【0007】
信号特性を計算して基線変化を検出した後に、信号処理システムは基線変化後の少なくとも1つの信号特性を計算してもよい。例えば、信号処理システムは基線変化前に計算された同じ信号特性を解析してもよい。
【0008】
基線変化後の信号特性を計算した後に、信号処理システムは事象の発生を検出するために基線変化と信号特性とを解析してもよい。例えば、システムは基線変化の前後で信号のAC成分が増加したと判断してもよい。信号特性の変化を判断したことに呼応して、信号処理システムは基線変化を引き起こしながら事象が発生した(例えば、ユーザが腕を上げた)と判断してもよい。
【0009】
実施形態では、信号処理システムが、変換された信号を生成するためにユーザから取得された信号を変換してもよい。例えば、信号処理システムは信号のウェーブレット変換を実行してもよい。変換された信号を生成した後に、信号処理システムは変換された信号に基づいてスケイログラムを生成してもよい。スケイログラムは、スケイログラムを横切る一連の優位な合体形状である脈拍帯域を含んでいてもよい。
【0010】
信号処理システムはスケイログラムの特性を計算してもよい。特性は、例えば、領域内のエネルギーの平均値または中央値のようなエネルギーパラメータであってもよい。領域の大きさおよび形は任意の好適な方法で選択されてもよい。例えば、脈拍帯域を覆うように第1の領域の高さおよび位置が選択されてもよい(例えば、脈拍帯域の凸部に心合わせされる)。他の実施例として、脈拍帯域が位置付けられることが期待されるスケールの範囲を覆うように第1の領域の高さおよび位置が固定されてもよい。
【0011】
スケイログラムの領域内の特性を計算することに加えて、信号処理システムはスケイログラムの中の不自然な結果を検出してもよい。実施形態では、不自然な結果が高エネルギーで広範囲の円錐形として現れてもよい。システムは、例えば、画像処理技法のような任意の好適な技法を用いて不自然な結果を検出してもよい。さらに、不自然な結果は、平均エネルギーの大きな変化の検出に呼応して、または脈拍帯域内の先行するピーク値との整合性に欠けるピーク値の検出に呼応して検出されてもよい。
【0012】
スケイログラムの特性を計算してスケイログラムの中の不自然な結果を検出することに呼応して、信号処理システムは事象を検出するために、計算された特性および検出された不自然な結果を解析してもよい。実施形態では、信号処理システムが時間の経過によるスケイログラムの領域内のエネルギーパラメータを監視してもよく、スケイログラムの中の不自然な結果の発生を監視してもよい。
【0013】
実施形態では、信号処理システムが、計算された特性(例えば、エネルギーパラメータ)または検出された不自然な結果のどちらか一方を用いて事象の発生を検出してもよい。例えば、ウェーブレット変換の一部に少なくとも部分的に基づいて、信号処理システムが1つ以上の所定のしきい値を計算したり、または使用したりしてもよい。計算された特性または検出された不自然な結果がしきい値を超えたとき、信号処理システムは事象が発生したと判断してもよい。
【0014】
事象を検出した後に、信号処理システムは検出された事象に基づいてアクションを実行してもよい。例えば、信号処理システムは検出された事象に基づいて装置を再較正してもよい。他の実施例として、信号処理システムは検出された事象のフラグを設定してもよい。
【0015】
特許または出願ファイルは色刷りで作成された少なくとも1つの図面を含んでいる。カラー図面を含む本特許または本特許出願公報のコピーは、要求に応じて、および必要な手数料の支払いが済み次第、所轄当局により提供される。
【0016】
本開示の特徴、本開示の本質、およびさまざまな利点は、添付図面と照らしあわせて下記の詳細な説明を検討すれば明らかである。添付図面では、図面全体を通じて類似の参照文字は類似の部分を示している。
【図面の簡単な説明】
【0017】
【図1】実施形態の説明に役立つパルス酸素測定システムを示している。
【図2】実施形態の患者に接続された図1の説明に役立つパルス酸素測定システムのブロック図である。
【図3(a)】実施形態のPPG信号から導出されたスケイログラムの説明図を示している。
【図3(b)】実施形態のPPG信号から導出されたスケイログラムの説明図を示している。
【図3(c)】実施形態の2つの適切な成分を含む信号から導出された説明に役立つスケイログラムを示している。
【図3(d)】実施形態の図3(c)の凸部に関連している信号の説明に役立つ模式図と、これらの新規に導出された信号のさらなるウェーブレット分解の説明に役立つ模式図と、を示している。
【図3(e)】実施形態の逆連続ウェーブレット変換の実行にかかわる説明に役立つステップのフローチャートである。
【図3(f)】実施形態の逆連続ウェーブレット変換の実行にかかわる説明に役立つステップのフローチャートである。
【図4】いくつかの実施形態の説明に役立つ連続ウェーブレット処理システムのブロック図である。
【図5】実施形態のPPG信号の信号特性を示している。
【図6】実施形態のPPG信号のスケイログラムを示している。
【図7A】実施形態の例示的PPG信号を示している。
【図7B】実施形態の図7Aに対応するスケイログラムを示している。
【図8A】実施形態の他の例示的PPG信号を示している。
【図8B】実施形態の図8Aに対応するスケイログラムを示している。
【図9】実施形態の信号内の事象を検出するための説明に役立つプロセスのフローチャートを示している。
【図10】実施形態のスケイログラム内の事象を検出するための説明に役立つプロセスのフローチャートを示している。
【発明を実施するための形態】
【0018】
医学の分野では、脈波計は、対象とする身体部分内を通り抜ける血液もしくは対象とする身体部分内に存在する血液の解析、またはこれらの変動の描写を通じて、器官または身体部分の大きさの変動のような生理的パラメータを測定する機器である。酸素濃度計は血液の酸素飽和度を測定してもよい機器である。1つのよくある種類の酸素濃度計はパルス酸素濃度計であり、このパルス酸素濃度計は光学的に検知された容積脈波の解析により酸素飽和度を測定する。
【0019】
パルス酸素濃度計は、(患者から取られた血液サンプルを分析することにより酸素飽和度を直接的に測定するのとは対照的に)患者の血液の酸素飽和度と、皮膚内の血液容量の変化とを間接的に測定してもよい医療機器である。また、血液酸素飽和測定の補助として、パルス酸素濃度計は、患者の脈拍数を測定するために使用されてもよい。パルス酸素濃度計は、動脈血中のヘモグロビンの酸素飽和度を含むが、これに限らないさまざまな血流特性を通常測定して表示する。
【0020】
酸素濃度計は、通常、指先、足指、額、もしくは耳たぶ、または新生児の場合には足を横切るようにして患者の所定の部位に取り付けられる光センサを含んでいてもよい。酸素濃度計は、血液がかん流した生体組織を通して光源を用いて光を通過させて、生体組織中での光の吸収を光電的に検知してもよい。例えば、酸素濃度計は、光センサで受信される光強度を時間の関数として測定してもよい。時間に対する光強度を表す信号、またはこの信号の数学的操作(例えば、この信号のスケーリングされたバージョン、この信号の対数、この信号の対数のスケーリングされたバージョンなど)は、光電脈波(PPG)信号と呼ばれてもよい。さらにまた、用語「PPG信号」は、本明細書で使用するように、吸収信号(すなわち、生体組織により吸収された光量を表す信号)、または吸収信号の任意の好適な数学的操作を示してもよい。その後、光強度または吸収された光量は、測定中の血液成分量(例えば、酸素ヘモグロビンなど)と、それぞれの個々の脈拍が生成されているときには脈拍数と、を計算するために使用されてもよい。
【0021】
生体組織を通過する光は、血液中に存在する血液成分量を代表する量の血液により吸収される1つ以上の波長であるように選択されている。生体組織を通り抜ける光量は、生体組織内の血液成分の変化量と、関連する光吸収とに基づいて変化する。低酸素飽和度を有する血液に比べて、酸素を非常に豊富に含む血液は、赤色光については相対的に少なくしか吸収しないが、逆に赤外線光はより多く吸収することが観察されているため、赤色および赤外線の波長が使用されてもよい。脈拍周期内の異なる点で2つの波長の強度を比較することにより、動脈血中のヘモグロビンの血液酸素飽和度を推定できる。
【0022】
測定される血液パラメータがヘモグロビンの酸素飽和度であるとき、便利な出発点はランバート−ベーアの法則に基づく飽和計算を仮定する。本明細書では下記の表記法が使用される:
【数1】

ここで、
λ=波長、
t=時間、
I=検出される光強度、
=伝達された光強度、
s=酸素飽和度、
β、β=実験的に導出された吸収係数、
l(t)=時間の関数としての、濃度と、放射体から検出器までの経路長との組み合わせ。
【0023】
従来の方法は2つの波長(例えば、赤色および赤外線(IR))で光吸収を測定し、その後、下記のように「比率の比率」について解くことにより飽和度を計算する。
【0024】
1.最初に、IRおよび赤色に対して(1)の自然対数を取る(自然対数を表すために「log」が使用される)
【数2】

2.その後、(2)を時間に関して微分する
【数3】

3.赤色(3)をIR(3)で割る
【数4】

4.sについて解く
【数5】

離散時間に注目すると、
【数6】

logA−logB=logA/Bを用いて、
【数7】

したがって、(4)は
【数8】

に書き直すことができ、
ここで、Rは「比率の比率」を表している。(5)を用いて(4)をsについて解くと
【数9】

が得られる。
【0025】
(5)から、Rは2点(例えば、最大PPGおよび最小PPG)または点の群を用いて計算できる。点の群を使用する1つの方法は(5)の変更バージョンを使用する。
【0026】
関係
【数10】

を用いると
(5)は
【数11】

になり、
(7)は、xに対するyの勾配がRを与える点の集団を規定し、ここで、
【数12】

である。
【0027】
図1はパルス酸素測定システム10の実施形態の斜視図である。システム10は、センサ12とパルス酸素測定モニタ14とを含んでいてもよい。センサ12は、2つ以上の波長の光を患者の生体組織の中へ光を放射する放射体16を含んでいてもよい。また、検出器18が、もともと放射体16から放射されて生体組織を通過した後に患者の生体組織から出て来た光を検出するためにセンサ12内に提供されてもよい。
【0028】
他の実施形態によれば、後述するように、システム10は、単一センサ12の代わりに、センサアレイを形成する複数のセンサを含んでいてもよい。センサアレイのセンサのそれぞれは、相補型金属酸化膜半導体(CMOS)センサであってもよい。あるいは、アレイの各センサは電荷結合素子(CCD)センサであってもよい。他の実施形態では、センサアレイはCMOSセンサとCCDセンサの組み合わせで構成されていてもよい。CCDセンサは、感光領域と、データを送受信するための伝送領域とを含んでいてもよく、他方、CMOSセンサは画素センサのアレイを有する集積回路で構成されていてもよい。各ピクセルは光検出器と能動増幅器とを有していてもよい。
【0029】
実施形態によれば、放射体16および検出器18は手の指または足の指などの指を挟んで両側にあってもよく、その場合、生体組織から出て来た光は指を完全に通り抜けている。実施形態では、放射体16および検出器18は、患者の額からパルス酸素測定データを取得するように設計されたセンサなどのように、放射体16からの光が生体組織に入り込み、生体組織により反射されて検出器18の中へ入るように配置されてもよい。
【0030】
実施形態では、センサまたはセンサアレイは、図示のようにモニタ14に接続されてモニタ14から電力を得てもよい。他の実施形態では、センサは無線でモニタ14に接続され、それ自身のバッテリまたは同様の電源(図示せず)を含んでいてもよい。モニタ14は、光の放射および検出に関連するセンサ12から受信されたデータに少なくとも部分的に基づいて生理的パラメータを計算するように構成されてもよい。他の実施形態では、計算はモニタリング装置自体の上で実行されてもよく、酸素測定示度の結果はモニタ14に送られてもよい。さらに、モニタ14は生理的パラメータまたはシステムに関する他の情報を表示するように構成された表示部20を含んでいてもよい。図示の実施形態では、また、モニタ14は、例えば、患者の生理的パラメータが所定の正常範囲からはずれている場合に音声警報を鳴らすなどの他のさまざまな実施形態で使用してもよい可聴音を提供するためにスピーカ22を含んでいてもよい。
【0031】
実施形態では、センサ12またはセンサアレイは、ケーブル24を介してモニタ14に通信可能なように接続されてもよい。しかしながら、他の実施形態では、無線送信装置(図示せず)などが、ケーブル24の代わりに、またはケーブル24に加えて使用されてもよい。
【0032】
また、図示の実施形態では、パルス酸素測定システム10がマルチパラメータ患者監視装置26を含んでいてもよい。監視装置はブラウン管型、液晶ディスプレイ(LCD)もしくはプラズマディスプレイなどのフラットパネルディスプレイ(図示のような)、または知られている、もしくは後から開発される他の任意の種類の監視装置であってもよい。マルチパラメータ患者監視装置26は生理的パラメータを計算するように構成されてもよく、ならびにモニタ14からの情報のために、および他の医療モニタリング装置またはシステム(図示せず)からの情報のために、表示部28を提供するように構成されてもよい。例えば、マルチパラメータ患者監視装置26は、パルス酸素測定モニタ14により生成された患者の血液酸素飽和度(「SPO」測定値と呼ばれる)の推定値と、モニタ14からの脈拍数情報と、血圧監視装置(図示せず)からの血圧と、を表示部28上に表示するように構成されてもよい。
【0033】
モニタ14は、センサ入力ポートまたはデジタル通信ポートにそれぞれ接続されたケーブル32または34を介して、マルチパラメータ患者監視装置26に通信可能なように接続されてもよく、および/または無線で通信してもよい(図示せず)。さらに、モニタ14および/またはマルチパラメータ患者監視装置26は、サーバまたは他のワークステーション(図示せず)と情報を共有できるようにするためにネットワークに接続されてもよい。モニタ14はバッテリ(図示せず)により、または壁コンセントのような従来の電源により電力を供給されてもよい。
【0034】
図2は、実施形態の患者40に接続されてもよい図1のパルス酸素測定システム10のようなパルス酸素測定システムのブロック図である。センサ12およびモニタ14の説明に役立つある特定の構成要素が図2に示されている。センサ12は、放射体16と、検出器18と、エンコーダ42とを含んでいてもよい。図示の実施形態では、放射体16は少なくとも2つの波長の光(例えば、赤色およびIR)を患者の生体組織40の中に放射するように構成されてもよい。したがって、放射体16は、患者の生理的パラメータを計算するために使用される波長の光を患者の生体組織40の中に放射するために、赤色発光ダイオード(LED)44のような赤色発光光源と、IRのLED46のようなIR発光光源と、を含んでいてもよい。一実施形態では、赤色波長が約600NMと約700NMの間であってもよく、IR波長が約800NMと約1000NMの間であってもよい。単一センサの代わりにセンサアレイが使用される実施形態では、各センサが単一波長を放射するように構成されてもよい。例えば、第1のセンサは赤色光だけを放射し、他方、第2のセンサはIR光だけを放射する。
【0035】
本明細書で使用するように、用語「光」は、放射源により作り出されるエネルギーを示してもよく、超音波、電波、マイクロ波、ミリメートル波、赤外線、可視光線、紫外線、ガンマ線、またはX線電磁波のうちの1つ以上を含んでいてもよいことが理解される。また、本明細書で使用するように、光は、電波、マイクロ波、赤外線、可視光線、紫外線、またはX線スペクトルの中の任意の波長を含んでいてもよく、任意の好適な波長の電磁波が本技術とともに使用するのに適している可能性がある。検出器18は、放射体16の選ばれて目標とされたエネルギースペクトルに対して特に感度がよいように選択されてもよい。
【0036】
実施形態では、検出器18は赤色およびIR波長の光強度を検出するように構成されてもよい。あるいは、アレイ内の各センサは単一波長の強度を検出するように構成されてもよい。動作について見ると、光は患者の生体組織40を通り抜けた後に検出器18に入射してもよい。検出器18は、受信された光の強度を電気信号に変換してもよい。光強度は生体組織40内の光の吸光度および/または反射率に直接関係している。すなわち、ある特定の波長の光がより多く吸収されたり、またはより多く反射されたりするとき、生体組織から戻ってくるその波長の光はより少なく検出器18により受信される。受信された光を電気信号に変換した後に、検出器18はモニタ14に信号を送信してもよく、患者の生体組織40内での赤色およびIR波長の吸収に基づいて生理的パラメータが計算されてもよい。
【0037】
実施形態では、エンコーダ42は、センサ12がどんな種類のセンサであるか(例えば、センサが額または指のどちらに取り付けることを目的としているのかなど)、および放射体16により放射される光の波長などのセンサ12に関する情報を含んでいてもよい。この情報は、モニタ14内に保存された適切なアルゴリズム、ルックアップ表、および/または較正係数を選択して患者の生理的パラメータを計算するためにモニタ14により使用されてもよい。
【0038】
エンコーダ42は、例えば、患者の年齢、体重、および診断のような患者40に固有の情報を含んでいてもよい。この情報が、モニタ14に、例えば、患者の生理的パラメータ測定値が入るべき患者固有のしきい値範囲などを決定することを可能にしてもよく、付加的な生理的パラメータアルゴリズムを有効にしたり、または無効にしたりすることを可能にしてもよい。エンコーダ42は、例えば、センサ12の種類に対応する値、もしくはセンサアレイ内の各センサの種類に対応する値、センサアレイの各センサ上の放射体16により放射される光の波長、および/または患者の特徴を保存するコード化されたレジスタであってもよい。他の実施形態では、エンコーダ42はメモリを含んでいてもよく、このメモリ上には下記の情報、すなわち、センサ12の種類、放射体16により放射される光の波長、センサアレイ内の各センサがモニタしている特定の波長、センサアレイ内の各センサに対する信号しきい値、他の任意の好適な情報、またはそれらの任意の組み合わせのうちの1つ以上がモニタ14と通信するために保存されていてもよい。
【0039】
実施形態では、検出器18とエンコーダ42とからの信号は、モニタ14に送信されてもよい。図示の実施形態では、モニタ14は、内部バス50に接続された汎用マイクロプロセッサ48を含んでいてもよい。マイクロプロセッサ48はソフトウェアを実行するようになされていてもよく、このソフトウェアには、本明細書で説明する機能を実行する一環として、オペレーティングシステムおよび1つ以上のアプリケーションを含んでいてもよい。また、読み出し専用メモリ(ROM)52、ランダムアクセスメモリ(RAM)54、ユーザ入力56、表示部20、およびスピーカ22もバス50に接続されていてもよい。
【0040】
RAM54およびROM52は一例として示されており、それらに限定するものではない。システム内にデータを記憶するために任意の好適なコンピュータ可読媒体が使用されてもよい。コンピュータ可読媒体は、マイクロプロセッサ48により解釈できる情報を保存できる。この情報はデータであってもよく、またはマイクロプロセッサに特定の機能および/またはコンピュータにより実現される方法を実行させる、ソフトウェアアプリケーションのようなコンピュータ実行可能命令の形を取ってもよい。実施形態に応じて、このようなコンピュータ可読媒体は、コンピュータ記憶媒体およびコンピュータ通信媒体を含んでいてもよい。コンピュータ記憶媒体は、コンピュータ可読命令、データ構造、プログラムモジュール、または他のデータなどの情報記憶用に任意の方法または技術で実現される揮発性および不揮発性の、取り外し可能および取り外し不可能な媒体を含んでいてもよい。コンピュータ記憶媒体は、RAM、ROM、EPROM、EEPROM、フラッシュメモリもしくは他の固体メモリ技術、CD−ROM、DVD、もしくは他の光学式記憶、磁気カセット、磁気テープ、磁気ディスク記憶装置、もしくは他の磁気記憶デバイス、または所望情報を保存するのに使用でき、システムの構成要素によりアクセスできる他の任意の媒体を含んでいてもよいが、これらに限らない。
【0041】
図示の実施形態では、タイムプロセッシングユニット(TPU)58が光駆動回路60にタイミング制御信号を提供してもよく、TPU58は放射体16をいつ発光させるかの制御と、赤色LED44およびIRのLED46に対する多重化されたタイミングの制御とを行ってもよい。また、TPU58は、検出器18から増幅器62とスイッチング回路64とを介しての信号のゲートインを制御してもよい。これらの信号は、どの光源を発光させるのかに応じて適切な時間にサンプリングされる。検出器18からの受信信号は、増幅器66、低域フィルタ、およびアナログデジタル変換器70を介して送られてもよい。その後、デジタルデータは、後でキュー待ちシリアルモジュール(QSM)72(またはバッファ)がいっぱいになったときにRAM54にダウンロードするまで、QSM72内に保存されてもよい。一実施形態では、受信された複数の光の波長またはスペクトルのための増幅器66と、フィルタ68と、A/Dコンバータ70とを有する複数の個別の平行な経路があってもよい。
【0042】
実施形態では、検出器18により受信された光に対応する受信信号および/またはデータの値に基づいてさまざまなアルゴリズムおよび/またはルックアップ表を用いて、マイクロプロセッサ48は、SpO、および脈拍数などの患者の生理的パラメータを決定してもよい。患者40に関する、および特に患者の生体組織から時間とともに出て来る光強度に関する情報に対応する信号は、エンコーダ42からデコーダ74に伝達されてもよい。これらの信号は、例えば、患者の特徴に関連する符号化された情報などを含んでいてもよい。デコーダ74は、これらの信号を変換して、ROM52内に保存されたアルゴリズムまたはルックアップ表に基づいてマイクロプロセッサがしきい値を決定できるようにしてもよい。年齢、体重、身長、診断、投薬、治療などのような患者に関する情報を入力するために、ユーザ入力56が使用されてもよい。実施形態では、表示部20は、患者に一般的に適用される可能性があり、ユーザ入力56を用いてユーザが選択してもよい、例えば、年齢幅または薬物療法群などの値のリストを示してもよい。
【0043】
生体組織の中を通る光信号は、他の発生源の中の雑音により劣化する可能性がある。1つの雑音源は光検出器に到達する周辺光である。他の雑音源は他の電子計器からの電磁結合である。また、患者の動きも雑音を導入して、信号に影響を与える。例えば、動きにより、検出器と皮膚の間の接触、または放射体と皮膚の間の接触が皮膚から離れると、どちらかの接触が一時的に途絶える可能性がある。さらに、血液は流体であるため、慣性効果に対して血液が周囲組織とは異なる反応を表し、その結果、酸素濃度計プローブが取り付けてある点の体積の瞬間的変化をもたらす。
【0044】
雑音(例えば、患者の動きによる)は、医師により信頼されたパルス酸素測定信号を医師も気付かぬ間に劣化させる可能性がある。このことは、離れたところから患者をモニタリングしているとき、動きが小さ過ぎて観察できないとき、または医師が、センサ位置ではなく、機器または患者の他の部分を見ているときに特に当てはまる。パルス酸素測定(すなわち、PPG)信号を処理することは、PPG信号から導出される生理的パラメータの測定値に雑音が影響を与えるのを防ぐために、信号中に存在している雑音量を減少させたり、または、そうでなければ、雑音成分を特定したりする操作を含んでいてもよい。
【0045】
本開示が任意の好適な信号に適用できること、およびPPG信号は単に説明のために使用されているに過ぎないことが理解される。当業者は本開示が、他の生体信号(例えば、心電図、脳波、胃電図、筋電図、心拍信号、病理音、超音波、もしくは他の任意の好適な生体信号など)、動的信号、非破壊試験信号、状態監視信号、流体信号、地球物理学的信号、天文学的信号、電気信号、財務指標を含む財政的信号、音響および音声信号、化学信号、気候指標を含む気象学的信号、ならびに/または他の任意の好適な信号、ならびに/またはそれらの任意の組み合わせを含むが、これらに限らない他の信号に対しても広い適用性を有していることを認識する。
【0046】
一実施形態では、PPG信号が連続ウェーブレット変換を用いて変換されてもよい。PPG信号の変換から導出された(すなわち、ウェーブレット空間内の)情報は、1つ以上の生理的パラメータの測定値を提供するために使用されてもよい。
【0047】
本開示に基づく信号x(t)の連続ウェーブレット変換は、
【数13】

のように定義されてもよく、
ここで、ψ(t)はウェーブレット関数ψ(t)の複素共役であり、aはウェーブレットの拡張パラメータであり、bはウェーブレットの位置パラメータである。式(9)で与えられる変換は、変換表面上の信号の表現を構成するために使用されてもよい。変換はタイムスケール表現と見なされてもよい。ウェーブレットは、さまざまな周波数から構成されており、それらの周波数のうちの1つはウェーブレットの特性周波数として示されてもよく、ウェーブレットに関連する特性周波数はスケールaに反比例する。特性周波数の一例は優位周波数である。特定のウェーブレットの各スケールは、異なる特性周波数を有していてもよい。タイムスケールの中で実現するために必要な基本的な数学的詳細については、例えば、Paul S.Addison著、The Illustrated Wavelet Transform Handbook(Taylor&Francis Group 2002)に記載があり、当該文献はその全体が参照により本明細書に組み込まれる。
【0048】
連続ウェーブレット変換は、一般に時間について高度に局在化しているウェーブレットを用いて信号を分解する。連続ウェーブレット変換は、離散変換と比較して、より高い分解能を提供する可能性があるため、フーリエ変換(もしくは他の任意のスペクトル技法)などの典型的な周波数変換または離散ウェーブレット変換で達成されるよりも、より多くの情報を信号から集める能力を提供する。連続ウェーブレット変換は、信号の関心のあるスケールに亘るスケールを用いて、さまざまなウェーブレットの使用を可能にして、小さいスケールの信号成分は、より小さいスケールのウェーブレットと関連しているため、小さいスケールの信号成分が、変換において高エネルギーで、より小さいスケールで現れるようになっている。同様に、大きなスケールの信号成分は、より大きなスケールのウェーブレットと関連しているため、大きなスケールの信号成分が、変換において高エネルギーで、より大きなスケールで現れるようになっている。その結果、異なるスケールの成分は分離されて、ウェーブレット変換領域に抽出されてもよい。さらに、スケールおよび時間位置において連続範囲のウェーブレットを使用することにより、離散技法に対して可能であるよりも、より高分解能の変換が可能になる。
【0049】
さらに、信号または他の任意の種類のデータを、スペクトル(すなわち、周波数)領域に変換する変換および操作は、二次元座標系において一連の周波数変換値を必然的に生成し、2つの次元は周波数および、例えば、振幅であってもよい。例えば、任意の種類のフーリエ変換は、このような二次元スペクトルを生成する。対照的に、連続ウェーブレット変換などのウェーブレット変換は、三次元座標系に規定されることが必要であり、時間、スケール、および、例えば、振幅の次元を有する表面を生成する。したがって、スペクトル領域で実行される操作はウェーブレット領域では実行できず、その代わりに、ウェーブレット表面をスペクトルに変換しなければならない(すなわち、ウェーブレット表面を時間領域に変換するために逆ウェーブレット変換を実行して、その後、時間領域からスペクトル変換を実行することにより)。逆に、ウェーブレット領域で実行される操作はスペクトル領域では実行できず、その代わりに、最初にスペクトルをウェーブレット表面に変換しなければならない(すなわち、スペクトル領域を時間領域に変換するために逆スペクトル変換を実行して、その後、時間領域からウェーブレット変換を実行することにより)。例えば、時間における特定の点に沿った三次元ウェーブレット表面の断面もまた、スペクトルに基づく技法を使用してもよい周波数スペクトルとは同じではない。少なくともウェーブレット空間が時間次元を含んでいるため、スペクトル技法およびウェーブレット技法は交換可能ではない。スペクトル領域処理に依存するシステムを、ウェーブレット空間処理に依存するシステムに変換するためには、ウェーブレット空間処理に適合させるためにシステムに対して大幅かつ基本的な修正を必要とするということが理解される。(例えば、信号または信号の一部に対する代表的エネルギー値を導出するには、ウェーブレット領域で時間およびスケール全体にわたって二度積分する必要があるが、逆に、スペクトル領域から代表的エネルギー値を導出するには、周波数全体にわたって一度の積分が必要である。さらなる実施例では、時間信号を再構成するには、ウェーブレット領域で時間およびスケール全体にわたって二度積分する必要があるが、逆に、スペクトル領域から時間信号を導出するには、周波数全体にわたって一度の積分が必要である。)振幅に加えて、または振幅に代わるものとして、特に、エネルギー密度、絶対値、位相などのパラメータすべてが、このような変換を用いて生成されてもよいことと、三次元ウェーブレット座標系ではなく、二次元周波数座標系において定義された場合、これらのパラメータは非常に異なる背景および意味を有することとが当技術分野で知られている。例えば、フーリエシステムの位相は、すべての周波数について単一原点に関して計算されるが、ウェーブレットシステムの位相はウェーブレットの位置(多くの場合、時間における位置)およびスケールに関して二次元に展開される。
【0050】
ウェーブレット変換のエネルギー密度関数、すなわち、スケイログラムは
【数14】

のように定義され、
ここで、「||」はモジュロ演算子である。スケイログラムは有用な目的のために再スケーリングされてもよい。1つの一般的な再スケーリングは
【数15】

のように定義され、
例えば、モーレットウェーブレットが使用されるときにウェーブレット空間内の凸部を定義するのに有用である。凸部は平面内の極大点の軌跡と定義される。凸部の任意の妥当な定義が方法において使用されてもよい。また、極大の軌跡から動かされる経路も本明細書の凸部の定義として含まれる。平面内の極大点の軌跡だけに対応している凸部は、「最大凸部」と名付けられる。
【0051】
高速数値計算を要求する実施態様に対して、ウェーブレット変換はフーリエ変換を用いて近似として表されてもよい。たたみこみ定理によれば、ウェーブレット変換は信号とウェーブレット関数との相互相関であるため、ウェーブレット変換は、信号のフーリエ変換と、それぞれの要求されるaスケールに対するウェーブレットのフーリエ変換との積の逆FFTの結果に
【数16】

を乗じたものに関して近似されてもよい。
【0052】
本明細書で後述する技術の説明では、「スケイログラム」は、スケーリングされていない当初のウェーブレット表現、線形再スケーリング、ウェーブレット変換の絶対値の任意の累乗、または他の任意の好適な再スケーリングを含むが、これらに限らない再スケーリングのすべての好適な形を含むと解釈されてもよい。さらに、わかり易く簡潔にするために、用語「スケイログラム」は、ウェーブレット変換、T(a、b)自体、またはT(a、b)の任意の部分を意味すると解釈されるべきである。例えば、ウェーブレット変換の実部、ウェーブレット変換の虚部、ウェーブレット変換の位相、ウェーブレット変換の他の任意の好適な部分、またはそれらの任意の組み合わせが、用語「スケイログラム」で表されることを意図している。
【0053】
代表的時間周期と解釈されてもよいスケールは、ウェーブレット関数の特性周波数に変換されてもよい。任意のaスケールのウェーブレットに関連する特性周波数は、
【数17】

で与えられ、
ここで、マザーウェーブレット(すなわち、a=1における)の特性周波数fはスケーリング定数になり、fは任意のスケールaにおけるウェーブレットに対する代表的周波数または特性周波数である。
【0054】
任意の好適なウェーブレット関数が本開示に関連して使用されてもよい。最も一般的に使用されている複雑なウェーブレットの1つであるモーレットウェーブレットは
【数18】

のように定義され、
ここで、fはマザーウェーブレットの中心周波数である。括弧内の第2項はガウス窓の中の複雑な正弦曲線のノンゼロ平均を補正するため補正項として知られている。実際には、括弧内の第2項はf>>0の値に対して無視し得る程度に小さくなって無視でき、その場合、モーレットウェーブレットは
【数19】

のような簡単な形で書くことができる。
【0055】
このウェーブレットは、スケーリングされたガウスエンベロープの中の複合波である。本明細書にはモーレットウェーブレットの両方の定義が含まれているが、式(14)の関数はノンゼロ平均を有しているため厳密に言えばウェーブレットではない(すなわち、式(14)の関数の対応するエネルギースペクトルのゼロ周波数項はノンゼロである)。しかしながら、式(14)はf>>0のとき極めて小さい誤差で実際に使用されてもよく、(他の同様の似通ったウェーブレット関数とともに)本明細書のウェーブレットの定義に含まれることが当業者により認識される。ウェーブレット関数の定義を含む基本的なウェーブレット理論のより詳しい概説については一般的文献に記載がある。本明細書では、信号のウェーブレット分解からウェーブレット変換機能がどのように引き出される可能性があるかについて検討されている。例えば、PPG信号のウェーブレット分解は医療機器の中で臨床的に有用な情報を提供するために使用されてもよい。
【0056】
信号内の適切な反復特徴は、ウェーブレット空間または再スケーリングされたウェーブレット空間内にタイムスケール帯域を生じさせる。例えば、PPG信号の脈拍成分は、ウェーブレット空間内の脈拍周波数の位置に、または脈拍周波数の周囲に、優位な帯域を作り出す。図3(a)および図3(b)は、実施形態のPPG信号から導出された説明に役立つスケイログラムの2つの図を示している。図3(a)および図3(b)は、このような信号内の脈拍成分に起因する帯域の例を示している。脈拍帯域は図3(a)のプロット内の点線の間に位置している。帯域はスケイログラムを横切る一連の優位な合体形状から形成されている。これは、プロット内に矢印で示されたスケールの領域(毎分60拍に対応する)の中にある図3(b)の変換表面を横切る隆起した帯域としてはっきりと分かる。スケールに関するこの帯域の最大値は凸部である。凸部の軌跡は図3(b)の帯域の上部の黒色曲線として示されている。式(11)で与えられるようなスケイログラムの適切な再スケーリングを使用することにより、ウェーブレット空間内にある凸部が、信号の瞬時周波数に関連している可能性がある。このようにして、脈拍数がPPG信号から求められてもよい。また、スケイログラムを再スケーリングする代わりに、ウェーブレット表面上の凸部から求められたスケールと、実際の脈拍数との間の適切な所定の関係が、脈拍数を決定するために使用されてもよい。
【0057】
脈拍凸部のタイムスケール座標を、ウェーブレット変換により得られたウェーブレット位相情報上へ写像することにより、個々の脈拍が捕捉されてもよい。このようにして、個々の脈拍と、各脈拍の中の成分のタイミングとの間の両方の時間が、心拍異常を検知したり、動脈系コンプライアンスを測定したり、または他の任意の好適な計算または診断を実行したりするために監視され使用されてもよい。凸部の他の定義が使用されてもよい。凸部と、脈拍周波数の発生との間の他の関係が使用されてもよい。
【0058】
上述のように、信号内の適切な反復特徴は、ウェーブレット空間または再スケーリングされたウェーブレット空間内にタイムスケール帯域を生じさせる。周期信号に対して、この帯域はタイムスケール平面内に一定のスケールで残る。多くの実際の信号では、特に、生物学的信号では、帯域は非定常であり、スケール、振幅、またはその両方が時間とともに変化してもよい。図3(c)は、実施形態の変換空間内に2つの帯域を生じさせる2つの適切な成分を含む信号のウェーブレット変換の説明に役立つ模式図を示している。これらの帯域は、ウェーブレット表面の三次元模式図上で帯域Aおよび帯域Bと名付けられている。実施形態では、帯域凸部は、これらの帯域の、スケールに対するピーク値の軌跡と定義される。検討を行うために、帯域Bが、関心のある信号情報を含んでいると仮定してもよい。この帯域Bは「一次帯域」と呼ばれる。さらに、信号が由来し、その後、変換が導出されるシステムが、帯域Aおよび帯域B内の信号成分の間で何らかの形の結合を示すと仮定してもよい。帯域Bの特徴の類似のスペクトル特性を有する雑音または他の誤った特徴が信号内に存在している場合、帯域Bの中の情報があいまいになる(すなわち、不明瞭になったり、断片化したり、または紛失したりする)可能性がある。この場合、帯域Aの凸部は、ウェーブレット空間内で追跡され、振幅信号またはスケール信号のどちらか一方として抽出されてもよく、これらの振幅信号およびスケール信号は、それぞれ、「凸部振幅摂動」(RAP)信号および「凸部スケール摂動」(RSP)信号と呼ばれる。RAPおよびRSP信号は、凸部をそれぞれ時間振幅平面上またはタイムスケール平面上に投影することにより抽出されてもよい。図3(d)の上側のプロットは、図3(c)の凸部Aに関連するRAPおよびRSP信号の模式図を示している。これらのRAPおよびRSP信号の下方には、これらの新規に導出された信号のさらなるウェーブレット分解の模式図がある。この二次的なウェーブレット分解は、図3(c)の帯域Bの領域内の情報を帯域Cおよび帯域Dとして利用することを可能にする。帯域Cおよび帯域Dの凸部は、帯域Cおよび帯域Dを生じさせる信号成分の瞬時タイムスケール特性尺度として働いてもよい。雑音または他の誤った信号特徴の存在下で帯域B自体が不明瞭になっているとき、本明細書では二次的ウェーブレット機能分離(SWFD)と呼ばれるこの技法により、一次帯域B(図3(c))を生じさせる基本的物理プロセスに関連している信号成分の本質に関する情報を抽出できるようにしてもよい。
【0059】
ある場合には、例えば、不自然な結果を取り除くためにスケイログラムの変更(または変換された信号の係数の変更)が行われた場合などに、逆連続ウェーブレット変換が要求される可能性がある。一実施形態では、すべてのスケールaおよび位置bにわたって積分することにより、もともとの信号を、そのウェーブレット変換から復元できる逆連続ウェーブレット変換がある。
【数20】

また式(15)は
【数21】

のように書かれてもよい。
ここで、Cは許容定数として知られているスカラー値である。Cはウェーブレット型依存であり、
【数22】

で計算されてもよい。
【0060】
図3(e)は、上述の検討に基づいて逆連続ウェーブレット変換を実行するために採用されてもよい説明に役立つステップのフローチャートである。式(15)がスケール全体にわたる一連のたたみ込みであると考えることにより逆変換を近似してもよい。フォワード変換の相互相関とは異なり、ここには複素共役がないことを理解すべきである。各時間tについてaおよびbのすべてにわたって積分するとともに、この式はまた、一連の乗算を用いて逆ウェーブレット変換を実行できるようにするたたみこみ定理を利用してもよい。図3(f)は、逆連続ウェーブレット変換の近似を実行するために採用されてもよい説明に役立つステップのフローチャートである。逆連続ウェーブレット変換を実行するための他の任意の好適な技法が本開示に基づいて使用されてもよいことが理解される。
【0061】
図4は、実施形態の説明に役立つ連続ウェーブレット処理システムである。実施形態では、入力信号発生器410が入力信号416を生成する。図示のように、入力信号発生器410は、入力信号416としてPPG信号を提供してもよいセンサ418に接続された酸素濃度計420を含んでいてもよい。入力信号発生器410は、信号416を作り出すために任意の好適な信号源、信号生成データ、信号生成装置、またはそれらの任意の組み合わせを含んでいてもよいことが理解される。信号416は、例えば、生体信号(例えば、心電図、脳波、胃電図、筋電図、心拍信号、病理音、超音波、もしくは他の任意の好適な生体信号など)、動的信号、非破壊試験信号、状態監視信号、流体信号、地球物理学的信号、天文学的信号、電気信号、財務指標を含む財政的信号、音響および音声信号、化学信号、気候指標を含む気象学的信号、ならびに/または他の任意の好適な信号、ならびに/またはそれらの任意の組み合わせなどの任意の好適な信号(複数可)であってもよい。
【0062】
実施形態では、信号416はプロセッサ412に接続されてもよい。プロセッサ412は、信号416を処理するための任意の好適なソフトウェア、ファームウェア、および/もしくはハードウェア、ならびに/またはそれらの組み合わせであってもよい。例えば、プロセッサ412は、1つ以上のハードウェアプロセッサ(例えば、集積回路など)、1つ以上のソフトウェアモジュール、メモリなどのコンピュータ可読媒体、ファームウェア、またはそれらの任意の組み合わせを含んでいてもよい。プロセッサ412は、例えば、コンピュータであってもよく、または1つ以上のチップ(すなわち、集積回路)であってもよい。プロセッサ412は、本開示の連続ウェーブレット変換に関連する計算および変換の任意の好適な質問に関連する計算を実行してもよい。プロセッサ412は、信号416をフィルタリングするために、任意の好適な帯域通過フィルタリング、適応フィルタリング、閉ループフィルタリング、および/もしくは他の任意の好適なフィルタリング、ならびに/またはそれらの任意の組み合わせなどの信号416の任意の好適な信号処理を実行してもよい。
【0063】
プロセッサ412は、任意の好適な揮発性メモリデバイス(例えば、RAM、レジスタなど)、不揮発性メモリデバイス(例えば、ROM、EPROM、磁気記憶デバイス、光記憶デバイス、フラッシュメモリなど)、またはそれらの両方のような1つ以上のメモリデバイス(図示せず)に接続されてもよく、または1つ以上のメモリデバイスを組み込んでもよい。メモリは、例えば、スケイログラムを表すデータのような、入力信号416の連続ウェーブレット変換に対応するデータを保存するために、プロセッサ412により使用されてもよい。一実施形態では、スケイログラムを表すデータは、タイムスケール平面内のエネルギーレベルとしてスケイログラムを表す三次元アレイのような任意の好適な三次元データ構造としてプロセッサ412の内部のRAMまたはメモリ内に保存されてもよい。他の任意の好適なデータ構造が、スケイログラムを表すデータを保存するために使用されてもよい。
【0064】
プロセッサ412は出力414に接続されてもよい。出力414は、例えば、1つ以上の医療機器(例えば、さまざまな生理的パラメータを表示する医療監視装置、医療警報、または生理的パラメータを表示するか、もしくはプロセッサ412の出力を入力として使用するかのどちらかを行う他の任意の好適な医療機器)、1つ以上の表示装置(例えば、モニタ、PDA、携帯電話、他の任意の好適な表示装置、またはそれらの任意の組み合わせ)、1つ以上のオーディオ装置、1つ以上のメモリデバイス(例えば、ハードディスクドライブ、フラッシュメモリ、RAM、光ディスク、他の任意の好適なメモリデバイス、またはそれらの任意の組み合わせ)、1つ以上の印刷装置、他の任意の好適な出力装置、またはそれらの任意の組み合わせのような任意の好適な出力装置であってもよい。
【0065】
システム400はシステム10(図1および図2)に組み込まれてもよく、システム10では、例えば、入力信号発生器410はセンサ12およびモニタ14の一部として実現されてもよく、プロセッサ412はモニタ14の一部として実現されてもよいことが理解される。
【0066】
実施形態に従って、PPG信号のような信号内の基線変化および対応する事象が検出されてもよい。図5は本開示に基づいて解析されてもよい例示的PPG信号500を示している。PPG信号500はパルス502のようなパルスを有する振動信号である。PPG信号500の各パルスは1心周期に対応してもよい。PPG信号500は基線を中心に振動するAC成分504を有している。例えば、図5に示すように、時間506の間、PPG信号500は基線508を中心に振動している。他の実施例として、時間510の間、PPG信号500は異なる基線512を中心に振動している。信号の基線は任意の好適な技法を用いて計算されてもよい。例えば、基線は、選択された時間の間または心周期の選択された回数の間の信号の平均として計算されてもよい。
【0067】
AC成分504はセンサ位置での血液容量の変化により部分的に引き起こされてもよい。血液容量の変化は、各心拍により生成された圧力波により引き起こされてもよい。AC成分504の大きさはセンサ位置での血圧の変化(例えば、動脈内の収縮期血圧と拡張期血圧の差など)に対応してもよい。図5に示すように、AC成分504の振幅は、時間506の間よりも時間510の間の方が大きい。一実施例では、ユーザの指の上に取り付けられたセンサを用いてPPG信号500が生成された可能性がある。時間506の間、ユーザの腕が体側にある可能性があり、重力が血液をユーザの腕内にうっ血させることにより動脈を膨らませる可能性がある。その結果、膨らんだ動脈の拡張には限界があるため、各心拍に起因するAC成分504は小さくなる可能性がある。時間516の間、ユーザが腕を頭の上方へ上げると、重力が血液および他の体液を腕から徐々に排出させる。その結果、動脈が、より容易に拡張できる可能性があるため、時間510の間のAC成分504は、より大きくなる可能性がある。
【0068】
また、AC成分に加えて、PPG信号500は振幅成分514を有しており、この振幅成分514はセンサ放射体と検出器の間の吸収および/または透過の総量に起因する可能性がある。図5は振幅が減少するときに、センサ検出器で受信される光が増加することを表している。また、図5に示すように、振幅成分514は時間506と時間510の間で変化している。例えば、時間506の間、振幅成分514は基線508を中心に振動している。時間516の間にユーザが腕の位置を変化させる(例えば、腕を上げる)と、振幅成分514は大幅に減少する可能性がある。減少は、重力による腕からの流体の流出の結果、ユーザの腕の中の血液などの流体が減少することに起因する可能性があり、このようにして、より多くの光がセンサ検出器で受信できるようになる。最後に、時間510の冒頭に、振幅成分514は基線512を中心に新規の定常振動に落ち着くようになる。
【0069】
実施形態に従って、PPG信号500の信号特性を計算して、基線と信号特性との変化を検出することにより、図4の信号処理システム400のような信号処理システムにより事象を検出できる。信号処理システムは、例えば、PPG信号500のAC成分の信号特性を計算することにより信号特性を計算してもよい。計算される信号特性は、選択された時間の間または心イベントの選択された回数の間のAC成分の振幅の平均値または中央値のような任意の好適な特性であってもよい。所望の信号特性を計算するために信号処理システムは他の任意の好適なアルゴリズムを使用してもよいことが理解される。
【0070】
また、信号処理システムはPPG信号500の基線と基線変化とを計算してもよい。例えば、信号処理システムはPPG信号500の基線を連続的に、または定期的に計算してもよい。また、信号処理システムは時間の経過にともなう基線の短期的および/または長期的変化を計算してもよい。例えば、図5では、信号処理システムは、時間506の間は基線が全体として一定であり、時間516の間は特定の割合で変化しており、時間510の間は全体として一定であるということを計算してもよい。信号処理システムは、基線が変化している場合には基線の変化率を検出してもよく、ならびに/または基線が全体として一定であるか、またはしきい値以下で変化している場合には2つの期間の間の基線のパーセント変化および/もしくは基線の変化の大きさを検出してもよい。実施形態では、信号処理システムが線形特性化技術(例えば、最良適合線、しきい値交差など)、または非線形特性化技術(例えば、曲線適合、テンプレート照合、適応的手法など)を用いて時間516の間の基線変化の形を特徴付けてもよい。基線の形の特徴は、例えば、基線変化を生じさせる生理学的事象の種類に関する情報を提供してもよい。さらにまた、基線に関連する非線型パラメータが計算されてもよい。他の任意の好適な処理技法がPPG信号500の基線を解析する際に使用されてもよい。
【0071】
また、信号処理システムは、基線変化の前、基線変化の間、および/または基線変化の後に、他の任意の信号特性変化があるかどうかを計算してもよい。例えば、信号処理システムはPPG信号500のAC成分の振幅を計算してもよい。例えば、信号処理システムは、選択された時間の間または心周期の選択された回数の間の信号のAC成分の振幅の平均値または中央値を計算してもよい。
【0072】
事象が発生したことを検出するために信号処理システムは1つ以上の信号特性を監視してもよい。例えば、図5に示すように、PPG信号500の基線とAC成分の両方は時間506と時間510の間で変化した。信号処理システムはこれらの変化を解析して、事象が発生したと判断してもよい。例えば、信号処理システムは患者が姿勢を動かしたことを検出してもよい。
【0073】
上述の説明ではPPG信号が事象を検出するために使用されているが、例えば、心電図、脳波(EEG)、胃電図、筋電図(EMG)、心拍信号、病理音、超音波、もしくは他の任意の好適な生体信号、動的信号、非破壊試験信号、状態監視信号、流体信号、地球物理学的信号、天文学的信号、電気信号、財務指標を含む財政的信号、音響および音声信号、化学信号、気候指標を含む気象学的信号、他の任意の好適な信号、またはそれらの任意の組み合わせなどの、任意の好適な信号または装置が事象を検出するために使用されてもよいということが理解される。
【0074】
いくつかの実施形態では、信号特性の変化または基線の変化(例えば、基線レベルの変化、基線の変化率、基線に関連する非線型パラメータ、基線変化の形、またはそれらの任意の組み合わせ)だけに基づいて、信号処理システムが事象の発生を検出してもよい。例えば、信号の一部(例えば、時間506の間のPPG信号500など)に少なくとも部分的に基づいて、信号処理システムが1つ以上の所定のしきい値を計算したり、または使用したりしてもよい。いくつかの実施形態では、多くの順序付けられた不連続状態が存在しているときには、信号特性または基線がしきい値を下回るかどうか、しきい値に等しいかどうか、またはしきい値を超えているかどうかに基づいて、信号処理システムは事象が発生したことを判断してもよい。
【0075】
また、いくつかの実施形態では、信号処理システムが、受信信号を変換することにより事象を検出してもよい。例えば、信号処理システムは連続ウェーブレット変換を用いて信号を変換してもよい。図6は、図5のPPG信号500の連続ウェーブレット変換から生成されたスケイログラム600の略図を示している。この実施例では連続ウェーブレット変換が使用されているが、他の任意の好適な種類の変換もまた使用されてもよい。明確にするために、図6にはPPG信号500の脈拍帯域と基線変化の影響とだけが示されていることが理解される。また、スケイログラム600内の小さいエネルギーまたは振幅値は薄い色合いの灰色で表されており、スケイログラム600内の大きいエネルギーまたは振幅値は濃い色合いの灰色で表されていることが理解される。
【0076】
時間506、510、および516に対して、PPG信号の脈拍帯域602は、スケイログラムの下方のスケールSと上方のスケールSの間にほぼ位置している。図6に示すように、時間506の間のPPG信号500のAC成分の小さい振幅は、同じ時間の間の脈拍帯域602内の小さいエネルギーまたは振幅値に変換されている。同様に、時間510の間のPPG信号500のAC成分の大きい振幅は、同じ時間の間の脈拍帯域602内の大きいエネルギーまたは振幅値に変換されている。さらに、時間516の間のPPG信号500の基線の変化は、不自然な結果606(例えば、高エネルギーで広範囲の円錐形)に変換されている。したがって、スケイログラムのさまざまな領域内の特定の不自然な結果と特性とを解析することにより、事象が検出されてもよい。例えば、信号処理システムは、さまざまな領域内の不自然な結果の実部、虚部、および/または位相を解析してもよい。他の実施例として、信号処理システムは、さまざまな領域内のエネルギーパラメータなどの特性を解析してもよい。
【0077】
信号処理システムは、スケイログラム上の領域(例えば、領域608)内の任意の好適なエネルギーパラメータを計算してもよい。領域608の大きさおよび形は任意の好適な方法で選択されてもよい。例えば、領域608の高さおよび位置は脈拍帯域602を覆うように選択されてもよい。脈拍帯域602は、その位置および大きさを時間とともに変えてもよい。したがって、実施形態では、領域608は脈拍帯域602の凸部604に心合わせされてもよい。例えば、PPG信号から計算される心拍数などを用いる凸部追跡技法または他の任意の好適な技法を用いて、脈拍帯域602の凸部が特定されてもよい。脈拍帯域の凸部は、例えば、Watsonらの「SYSTEMS AND METHODS FOR RIDGE SELECTION IN SCALOGRAMS OF SIGNALS」と題する2008年10月3日に出願された米国特許出願第12/245,326号(代理人整理番号H−RM−01197−1(COV−2−01))に記載された技法を用いて特定されてもよく、当該文献はその全体が参照により本明細書に組み込まれる。知られている凸部位置では、凸部の上下にある選択されたスケール個数を含んで広がるように領域608の高さが選択されてもよい。スケールの個数は、領域608が、脈拍帯域602の一部だけを含んで広がるように、脈拍帯域602のすべてを含んで広がるように、または脈拍帯域のすべてと付加的な量とを加えたものを含んで広がるように、選択されてもよい。実施形態では、脈拍帯域が位置付けられることが期待されるスケールの範囲を覆うように領域608の高さおよび位置が固定されてもよい。例えば、領域608の高さは、特性周波数が約0.5HZであるスケールから、特性周波数が約4HZであるか、または30から240BPMと同等であるスケールまでの範囲に広がっている。領域608の幅は1、2、3、4、5秒などの任意の好適な時間の長さを含むように選択されてもよい。領域608は、エネルギーパラメータをリアルタイムで、またはオフラインで計算しながらスケイログラム全体にわたって摺動してもよい。領域608内で計算されるエネルギーパラメータは、例えば、領域内のエネルギーの平均値または中央値であってもよい。また、他の任意の好適なエネルギーパラメータが使用されてもよいことが理解される。また、信号処理システムは時間の経過にともなうエネルギーパラメータのパーセント変化または大きさの変化を計算してもよい。実施形態では、脈拍帯域の凸部の振幅が、脈拍帯域のエネルギーの代わりに、または脈拍帯域のエネルギーに加えて解析されてもよい。
【0078】
また、エネルギーパラメータを計算することに加えて、信号処理システムは基線変化を表す可能性があるスケイログラムの中の不自然な結果を検出してもよい。不自然な結果は不自然な結果606のような高エネルギーで広範囲の円錐形として現れてもよい。システムは不自然な結果を任意の好適な方法で検出してもよい。例えば、システムは1つ以上のスケールを横切る平均エネルギーの大きな変化の検出に呼応して不自然な結果を検出してもよい。他の実施例として、システムは、画像処理技法を用いて不自然な結果を検出してもよい。さらに他の実施例として、システムは、脈拍帯域内の先行するピーク値との整合性に欠けるピーク値の検出に呼応して不自然な結果を検出してもよい。また、スケイログラム内の不自然な結果は、Watsonらの「SYSTEMS AND METHODS FOR ARTIFACT DETECTION IN SIGNALS」と題する2008年10月3日に出願された米国特許出願第12/245,336号(代理人整理番号H−RM−01192−2(COV−3−02))に記載された技法を用いて検出されてもよく、当該文献はその全体が参照により本明細書に組み込まれる。信号処理システムは不自然な結果の大きさ、形、およびエネルギーパラメータなどの特性を計算してもよい
信号処理システムは事象が発生したことを検出するためにスケイログラムの1つ以上の特性を監視してもよい。実施形態では、信号処理システムは、領域がスケイログラム600全体にわたって動くときに領域608内のエネルギーパラメータを監視してもよく、スケイログラム600の中の不自然な結果の発生を監視してもよい。例えば、信号処理システムは、領域608に対して計算されたエネルギーパラメータが時間506から時間510に増加したと判断してもよい。さらに、信号処理システムは時間516の間の不自然な結果を検出してもよい。その結果、信号処理システムは事象が発生したと判断してもよい。例えば、信号処理システムは時間516の間に患者が姿勢を動かしたことを検出してもよい。
【0079】
いくつかの実施形態では、信号処理システムが、計算されたエネルギーパラメータまたは検出された不自然な結果のどちらか一方を用いて事象の発生を検出してもよい。例えば、ウェーブレット変換600の一部(例えば、領域608の一部など)に少なくとも部分的に基づいて、信号処理システムが1つ以上の所定のしきい値を計算したり、または使用したりしてもよい。計算されたエネルギーパラメータまたは検出された不自然な結果がしきい値を超えたとき、信号処理システムは事象が発生したと判断してもよい。
【0080】
いくつかの実施形態では、事象を検出するためにPPG信号500およびスケイログラム600が一緒に使用されてもよい。例えば、信号処理システムは、PPGと、それに対応するスケイログラムの両方の特徴を解析することにより事象を検出してもよい。他の実施例として、信号処理システムは、PPG信号500とウェーブレット変換600との一部を利用することにより事象を検出してもよい。例えば、信号処理システムは、不自然な結果がスケイログラム600内の(例えば、時間516の間の)いつ発生するかを判断してもよい。この情報に少なくとも部分的に基づいて、信号処理システムは、不自然な結果より前の時間(時間506)内のPPG信号500の信号特性と、不自然な結果の後(時間510)のPPG信号500の信号特性とを比較してもよい。さらに、信号処理システムは、基線変化がPPG信号500内のいつ発生するかを判断してもよい。この情報に少なくとも部分的に基づいて、信号処理システムは、基線変化前および基線変化後の時間内のウェーブレット変換600の特性(例えば、エネルギーパラメータなど)の変化を計算してもよい。
【0081】
事象の検出は、例えば、血圧の変化(収縮期変化および拡張期変化)、体位の変化(例えば、腕の動きなど)、睡眠覚醒、血管拡張、血管収縮、交感神経反応、または副交感神経反応のようなユーザの生理学的変化を示唆してもよい。
【0082】
実施形態では、PPG信号の変化および/またはスケイログラムの変化の検出が、血圧の変化を検出するために使用されてもよい。血圧変化は、関連するPPGピークツーピーク振幅の変化をともなう、顕著で継続的な基線の変化として現れてもよい。例えば、血管収縮剤の投与は、血管を収縮させて血圧を上昇させる可能性がある。血管の収縮は、PPG信号の基線変化(例えば、基線の低下など)、PPG信号の脈動部分のAC成分変化、またはそれらの任意の組み合わせで現れてもよい。また、血管の収縮は、脈動活動に関連するスケイログラムの領域内のエネルギー特性の変化と組み合わされた1つ以上の不自然な結果の検出で現れる。例えば、図7Aは、ユーザの人差し指に取り付けられたプローブから得られた例示的PPG信号700を示している。時間702に角氷がユーザの手の甲の上にのせられると、血管収縮に起因してPPG信号700の基線が低下して、AC成分の振幅が減少する。時間704に角氷が取り除かれると、基線およびAC成分の振幅は通常レベルまで上昇する。図7Bに示すように、不自然な結果およびエネルギー特性の変化が、時間708の間(角氷がユーザの手の上にのっている間)の領域706で検出されてもよい。
【0083】
実施形態では、姿勢の変化の後に、姿勢の変化に対する心臓血管系応答として、血圧がもともとのレベルまで(またはもともとのレベルの近くまで)ゆっくりと戻ってもよい。これは、PPG信号内の計算された信号特性の変化、PPG信号内の基線の変化、スケイログラム内の1つ以上の不自然な結果の検出、スケイログラム内の特性の変化、またはそれらの任意の組み合わせで現れてもよい。体位の変化は、その後に血圧および/または血管緊張の変化に典型的な基線変化、すなわち、姿勢の変化に関連する変化が続く、顕著な動作(例えば、PPGのスケイログラムの複数のスケール全体にわたる高エネルギーの不自然な結果)の検出を通じて特定されてもよい。また、これらの解釈は、患者に取り付けられた他のモニタリング装置(例えば、動作感知器、加速度計、EMGなど)の使用を通じて改善されてもよい。例えば、図8Aに示すように、PPG信号800内の信号特性の変化は、時間802、804、806、808、および810の間に検出されてもよい。信号特性の変化および基線の変化は、対象者の手の高さの変化により引き起こされてもよい。時間850では、対象者の手が0.5メートル上げられた。時間852では、対象者の手が1.0メートル下げられた。時間854では、対象者の手が1.0メートル上げられた。時間856では、対象者の手が0.5メートル下げられた。これらの変化は、時間812、814、816、および818の間に検出されてもよい基線変化を生じさせる可能性がある。さらに、PPG信号800が新規の比較的安定した定常状態条件に落ち着くとき、姿勢の変化の後の心臓血管系応答が検出されてもよい。心臓血管系応答は、例えば、時間820の間に確認されてもよい。図8Bに示すように、不自然な結果822が各姿勢変化の間のスケイログラム824上に検出されてもよい。場合によっては、姿勢の変化が検出されると、ユーザの交感神経/副交感神経反応性を特徴付けるために、さらなる解析が実行されてもよい。
【0084】
刺激(複数可)に対する交感神経反応は、PPG内の基線変化として観察されてもよい関連する血圧の急上昇をともなう血管収縮として現れてもよい。また、心拍数および/もしくは呼吸数の変化、ならびに/またはPPGピークツーピーク振幅の減少も、交感神経反応に関連している可能性があり、スケイログラムにおいて、または他の好適な手段により、観察されてもよい。また、副交感神経反応も観察されてもよい。これは、血圧の低下、および基線の低下(血圧、血管拡張など)をともなう、関連する血管拡張の減少、心拍数の減少、および呼吸数の減少、ならびに/またはPPGピークツーピーク振幅の増加に関連している。刺激に対する交感神経と副交感神経の反応のバランスの測定が、対象者の自律神経系を評価するのに臨床的に有用であることが分かる可能性がある。血管拡張および血管収縮は血圧の変化に通常関連している可能性がある。しかしながら、関連する基線の変化をともなわないPPGピークツーピーク振幅の変化は、血圧の変化をともなわない血管緊張(vasatone)の変化を示唆している可能性がある。PPGにおけるこのような事象を順守することは、薬剤、特に、血管作動性薬剤の投与後に、例えば、その薬剤の効力を監視する際に特に有用である可能性がある。
【0085】
実施形態では、睡眠中の血管運動神経性緊張および/または血圧の変化が、例えば、覚醒、1つの睡眠段階から他の睡眠段階への変化、または睡眠時無呼吸事象のような、1種類以上の事象の指標であってもよい。したがって、血管運動神経性緊張および/または血圧の変化の検出は、PPG信号内の計算された信号特性の変化、PPG信号内の基線の変化、スケイログラム内の1つ以上の不自然な結果の検出、スケイログラム内の特性の変化、またはそれらの任意の組み合わせを通じて現れてもよい。この事象の検出は、診断および/または治療睡眠設定で使用されてもよい。例えば、パルス酸素濃度計センサまたは均等物および他のセンサを含んでいてもよい睡眠ポリグラフ計が、ユーザが睡眠検査を受けている間にユーザのPPG信号を取得してもよい。したがって、PPG信号と、PPG信号から導出されるスケイログラムとを解析することにより、装置はユーザが目覚めるとき、または1つの睡眠段階から他の睡眠段階へ移行するときの事象を検出してもよい。睡眠中の覚醒は、例えば、心拍数および呼吸数の増加に加えて、血圧の上昇および動きの増加として現れてもよい。また、PPG基線における事象は、睡眠ポリグラフ計の中の覚醒の他の知られている指標と関連している可能性が高い。例えば、覚醒の増加は、EMGおよびEEG活性の増加とも関連する可能性がある血圧の上昇を示唆してもよい基線の上昇と関連している可能性がある。
【0086】
実施形態では、激しい息切れが際立った基線移動を引き起こす可能性がある。したがって、実施形態では、不規則な呼吸(例えば、息切れ、または単一の深呼吸もしくは浅呼吸など)の影響が、もともとの信号または変換された信号のどちらか一方内の基線の変化により検出されてもよい。この情報は、ユーザの呼吸および/または呼吸装置がユーザに及ぼす影響の監視に有用である。激しい息切れに起因する胸郭間圧力変化は、血管樹の血圧の関連する変調を引き起こす可能性がある。これらの変調は、例えば、PPG基線の変調を引き起こす可能性があり、それにより、個々の呼吸を監視できる。したがって、不規則な呼吸パターンは、基線で観察されるパターンと区別されてもよい。
【0087】
また、事象の上述した検出がアクションを実行させてもよい。例えば、さらなる解析を行う必要があることを示すフラグが設定されてもよい。他の実施例として、検出により装置の再較正が始動されてもよい。例えば、連続、非侵襲的連続血圧(CNIBP)監視装置が、ユーザの拡張期/収縮期血圧を監視してもよい。事象(例えば、ユーザがCNIBPのプローブに接続された身体部分を別の位置に移動させること)の検出に呼応して、CNIBP監視装置の再較正が自動的に始動されてもよい。
【0088】
図9は、本開示の実施形態の信号内の事象を検出するための説明に役立つプロセスのフローチャートを示している。プロセス900がステップ902から始まる。プロセス900がステップ902から始まった後、プロセスはステップ904および906を並行して実行してもよい。ステップ904では、信号処理システムが信号(例えば、図5のPPG信号500など)の1つ以上の信号特性を計算してもよい。例えば、信号処理システムは信号のAC成分の平均値または中央値を計算してもよい。
【0089】
ステップ906では、信号処理システムが信号の基線を計算してもよい。基線は、選択された時間の間または他の任意の好適な規準の間の信号の平均値または中央値として計算されてもよい。
【0090】
1つ以上の信号特性と信号の基線とを計算した後に、プロセス900はステップ908に進んでもよい。ステップ908では、信号処理システムが1つ以上の信号特性と基線との変化を計算してもよい。例えば、信号処理システムは1つ以上の信号特性と基線とのパーセント変化または大きさの変化を計算してもよい。変化を計算した後に、プロセス900はステップ910に進んでもよい。
【0091】
ステップ910では、信号処理システムが事象を検出するために、計算された信号特性および基線、基線変化、ならびに信号特性の変化を解析してもよい。例えば、システムは変化が同じ時間の間に、または特定の順番で、発生したかどうかを解析してもよい。また、信号処理システムは事象が発生したことを判断するために、基線変化、信号特性の変化、計算された信号特性、計算された基線、またはそれらの任意の組み合わせを使用してもよい。例えば、信号の基線が低下した後に信号のAC成分が増加したとき、システムは姿勢変化を検出してもよい。事象を検出した後に、プロセス900はステップ912に進む。
【0092】
実施形態では、ステップ912で、信号処理システムが、検出された事象に少なくとも部分的に基づいてアクションを実行してもよい。例えば、信号処理システムは検出された事象に基づいて装置(例えば、CNIBP監視装置など)を再較正してもよい。他の実施例として、信号処理システムは信号のさらなる解析を実行できるように、検出された事象にフラグを設定してもよい。例えば、検出された事象が睡眠覚醒であるときには、信号処理システムはユーザの睡眠パターンの解析を実行してもよい。アクションが実行された後に、プロセス900はステップ914で終了する。
【0093】
図10は、本開示の実施形態のスケイログラム内の事象を検出するための説明に役立つプロセスのフローチャートを示している。プロセス1000がステップ1002から始まる。
【0094】
ステップ1004では、スケイログラムが信号から生成されてもよい。信号は、例えば、PPG信号(例えば、図5のPPG信号500など)のような任意の好適な信号であってもよい。スケイログラムはPPG信号のウェーブレット変換を実行することにより生成されてもよい。ウェーブレット変換は、例えば、連続ウェーブレット変換または離散ウェーブレット変換であってもよい。スケイログラムが生成された後に、プロセスはステップ1006および1008を並行して実行してもよい。
【0095】
ステップ1006では、信号処理システムが、スケイログラムの領域(例えば、図6の領域608など)内のエネルギーパラメータのようなスケイログラムの特性を計算してもよい。領域の大きさおよび形は任意の好適な方法で選択されてもよい。例えば、領域の高さおよび位置はスケイログラム内の関心のある帯域または領域を覆うように固定されてもよく、または動的に変化してもよい。
【0096】
ステップ1008では、信号処理システムがスケイログラムの中の不自然な結果を検出してもよい。例えば、信号処理システムはスケイログラム上の高エネルギーで広範囲の円錐形(例えば、図6の不自然な結果606など)を検出してもよい。
【0097】
特性を計算してスケイログラムの中の不自然な結果を検出した後に、プロセスはステップ1010に進んでもよい。ステップ1010では、信号処理システムが事象を検出するために、計算された特性および検出された不自然な結果を解析してもよい。実施形態では、システムが、事象が発生したことを判断するために、計算されたエネルギーパラメータ、検出された不自然な結果、またはそれらの任意の組み合わせを使用してもよい。事象を検出した後に、プロセス1000はステップ1012に進む。
【0098】
ステップ1012では、信号処理システムが、検出された事象に少なくとも部分的に基づいてアクションを実行してもよい。実行されてもよいアクションはプロセス900(図9)のステップ912に記載のアクションと同様であってもよい。例えば、信号処理システムは検出された事象に基づいて装置を再較正してもよい。他の実施例として、信号処理システムは信号のさらなる解析を実行できるように、検出された事象にフラグを設定してもよい。アクションが実行された後に、その後、プロセス1000はステップ1014で終了する。
【0099】
また、信号処理システムは、もともとの信号とその信号の変換とを解析することにより事象を検出してもよい。例えば、信号処理システムは変換における不自然な結果がいつ発生するかを判断してもよい。この情報に少なくとも部分的に基づいて、事象が発生するかどうかを判断するために、信号処理システムは不自然な結果の発生の前後での、もともとの信号の信号特性の変化を解析してもよい。例えば、不自然な結果の発生前の、もともとの信号の信号特性(例えば、AC成分など)が、不自然な結果の発生後の、もともとの信号の信号特性(例えば、AC成分など)と比較されてもよい。さらに、信号処理システムは基線変化がもともとの信号内でいつ発生するかを判断してもよい。この情報に少なくとも部分的に基づいて、事象が発生するかどうかを判断するために、信号処理システムは基線変化の前後でのウェーブレット変換の特性(例えば、特定の領域内のエネルギーなど)の変化を解析してもよい。
【0100】
以上の記述はあくまで本開示の原理の例を示したに過ぎず、限定するためではなく説明のために提示されている記載の実施形態以外により本開示を実施できることが理解される。

【特許請求の範囲】
【請求項1】
信号の少なくとも1つの信号特性を計算するステップと、
信号内の基線変化を検出するステップと、
基線変化後の少なくとも1つの信号特性を計算するステップと、
事象の発生を検出するために基線変化と少なくとも1つの信号特性とを解析するステップと、を含む、信号から事象の発生を検出する方法。
【請求項2】
信号が光電脈波である、請求項1に記載の方法。
【請求項3】
少なくとも1つの信号特性が信号のAC成分に少なくとも部分的に基づいている、請求項1に記載の方法。
【請求項4】
少なくとも1つの信号特性が、期間の間のAC成分の平均値と、期間の間のAC成分の中央値と、期間の間の信号のAC成分の中央値と、からなる群から選択される、請求項3に記載の方法。
【請求項5】
基線変化の検出前後での少なくとも1つの信号特性の変化を計算するステップをさらに含む、請求項1に記載の方法。
【請求項6】
事象が、血圧の変化、体位の変化、血管拡張、血管収縮、交感神経反応、副交感神経反応、および睡眠覚醒のうちの少なくとも1つを含む、請求項1に記載の方法。
【請求項7】
検出された事象に少なくとも部分的に基づいてアクションを実行するステップをさらに含む、請求項1に記載の方法。
【請求項8】
アクションを実行するステップが、検出された事象に少なくとも部分的に基づいて装置を再較正するステップ、または検出された事象のフラグを設定するステップを含む、請求項7に記載の方法。
【請求項9】
信号を受信するステップと、
変換された信号を生成するために信号を変換するステップと、
変換された信号に少なくとも部分的に基づいてスケイログラムを生成するステップと、
事象の発生を検出するためにスケイログラムを解析するステップと、を含む、信号から事象の発生を検出する方法。
【請求項10】
スケイログラムの第1の領域内の第1のエネルギーパラメータを計算するステップと、
スケイログラムの中の不自然な結果を検出するステップと、
不自然な結果の後のスケイログラムの第2の領域内の第2のエネルギーパラメータを計算するステップと、
事象の発生を検出するために第1および第2のエネルギーパラメータと、検出された不自然な結果とを解析するステップと、をさらに含む、請求項9に記載の方法。
【請求項11】
第1のエネルギーパラメータが第1の領域内の平均エネルギーであり、第2のエネルギーパラメータが第2の領域内の平均エネルギーである、請求項10に記載の方法。
【請求項12】
信号が光電脈波であり、第1および第2の領域が脈拍帯域のうちの少なくとも一部を含む、請求項10に記載の方法。
【請求項13】
第1および第2の領域が脈拍帯域の凸部を含む、請求項12に記載の方法。
【請求項14】
不自然な結果が高エネルギーで広範囲の円錐形である、請求項10に記載の方法。
【請求項15】
事象が、血圧の変化、体位の変化、血管拡張、血管収縮、交感神経反応、副交感神経反応、および睡眠覚醒のうちの少なくとも1つを含む、請求項9に記載の方法。
【請求項16】
検出された事象に少なくとも部分的に基づいてアクションを実行するステップをさらに含む、請求項9に記載の方法。
【請求項17】
アクションを実行するステップが、検出された事象に少なくとも部分的に基づいて装置を再較正するステップ、または検出された事象のフラグを設定するステップを含む、請求項16に記載の方法。
【請求項18】
信号の少なくとも1つの信号特性を計算するステップと、
スケイログラムの中の不自然な結果を検出するステップと、
事象の発生を検出するために少なくとも1つの信号特性と不自然な結果とを解析するステップと、をさらに含む、請求項9に記載の方法。
【請求項19】
信号内の基線変化を検出するステップと、
スケイログラムの第1の領域内の第1のエネルギーパラメータを計算するステップと、
後続のスケイログラムの後続の第2の領域内の第2のエネルギーパラメータを計算するステップと、
事象の発生を検出するために基線変化と、第1および第2のエネルギーパラメータとを解析するステップと、をさらに含む、請求項9に記載の方法。
【請求項20】
信号を生成できる信号発生器と、
第1の信号の少なくとも1つの信号特性を計算でき、
第1の信号内の基線変化を検出でき、
基線変化後の少なくとも1つの信号特性を計算でき、
事象の発生を検出するために基線変化と少なくとも1つの信号特性とを解析できるプロセッサと、を含む、信号から事象の発生を検出するシステム。
【請求項21】
少なくとも1つの信号特性が信号のAC成分に少なくとも部分的に基づいている、請求項20に記載のシステム。
【請求項22】
少なくとも1つの信号特性が、期間の間のAC成分の平均値と、期間の間のAC成分の中央値と、期間の間の信号のAC成分の中央値と、からなる群から選択される、請求項21に記載のシステム。
【請求項23】
プロセッサが、さらに、基線変化の検出前後での少なくとも1つの信号特性の変化を計算できる、請求項20に記載のシステム。
【請求項24】
事象が、血圧の変化、体位の変化、血管拡張、血管収縮、交感神経反応、副交感神経反応、および睡眠覚醒のうちの少なくとも1つを含む、請求項20に記載のシステム。
【請求項25】
プロセッサが、さらに、検出された事象に少なくとも部分的に基づいてアクションを開始できる、請求項20に記載のシステム。
【請求項26】
アクションが、検出された事象に少なくとも部分的に基づいて装置を再較正するステップ、または検出された事象のフラグを設定するステップを含む、請求項25に記載のシステム。
【請求項27】
信号を生成できる信号発生器と、
変換された信号を生成するために信号を変換でき、
変換された信号に少なくとも部分的に基づいてスケイログラムを生成でき、
事象の発生を検出するためにスケイログラムを解析できるプロセッサと、を含む、信号から事象の発生を検出するシステム。
【請求項28】
プロセッサが、さらに、
スケイログラムの第1の領域内の第1のエネルギーパラメータを計算でき、
スケイログラムの中の不自然な結果を検出でき、
不自然な結果の後のスケイログラムの第2の領域内の第2のエネルギーパラメータを計算でき、
事象の発生を検出するために第1および第2のエネルギーパラメータと、検出された不自然な結果とを解析できる、請求項27に記載のシステム。
【請求項29】
第1のエネルギーパラメータが第1の領域内の平均エネルギーであり、第2のエネルギーパラメータが第2の領域内の平均エネルギーである、請求項28に記載のシステム。
【請求項30】
信号が光電脈波であり、第1および第2の領域が脈拍帯域のうちの少なくとも一部を含む、請求項28に記載のシステム。
【請求項31】
第1および第2の領域が脈拍帯域の凸部を含む、請求項30に記載のシステム。
【請求項32】
不自然な結果が高エネルギーで広範囲の円錐形である、請求項28に記載のシステム。
【請求項33】
事象が、血圧の変化、体位の変化、血管拡張、血管収縮、交感神経反応、副交感神経反応、および睡眠覚醒のうちの少なくとも1つを含む、請求項27に記載のシステム。
【請求項34】
プロセッサが、検出された事象に少なくとも部分的に基づいてアクションを開始するようにさらに構成されている、請求項27に記載のシステム。
【請求項35】
アクションが、検出された事象に少なくとも部分的に基づいて装置を再較正するステップ、または検出された事象のフラグを設定するステップを含む、請求項34に記載のシステム。
【請求項36】
プロセッサが、さらに、
信号の少なくとも1つの信号特性を計算でき、
スケイログラムの中の不自然な結果を検出でき、
事象の発生を検出するために少なくとも1つの信号特性と不自然な結果とを解析できる、請求項27に記載のシステム。
【請求項37】
プロセッサが、さらに、
信号内の基線変化を検出でき、
スケイログラムの第1の領域内の第1のエネルギーパラメータを計算でき、
後続のスケイログラムの後続の第2の領域内の第2のエネルギーパラメータを計算でき、
事象の発生を検出するために基線変化と、第1および第2のエネルギーパラメータとを解析できる、請求項27に記載のシステム。
【請求項38】
信号から事象の発生を検出するのに用いるコンピュータ可読媒体であって、
信号の少なくとも1つの信号特性を計算し、
信号内の基線変化を検出し、
基線変化後の少なくとも1つの信号特性を計算し、
事象の発生を検出するために基線変化と少なくとも1つの信号特性とを解析するために、その上に記録された計算機プログラム命令を有する、コンピュータ可読媒体。
【請求項39】
信号から事象の発生を検出するのに用いるコンピュータ可読媒体であって、
信号を受信し、
変換された信号を生成するために信号を変換し、
変換された信号に少なくとも部分的に基づいてスケイログラムを生成し、
事象の発生を検出するためにスケイログラムを解析するために、その上に記録された計算機プログラム命令を有する、コンピュータ可読媒体。

【図1】
image rotate

【図2】
image rotate

【図3(a)】
image rotate

【図3(b)】
image rotate

【図3(c)】
image rotate

【図3(d)】
image rotate

【図3(e)】
image rotate

【図3(f)】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2011−526511(P2011−526511A)
【公表日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2011−515653(P2011−515653)
【出願日】平成21年6月29日(2009.6.29)
【国際出願番号】PCT/IB2009/006134
【国際公開番号】WO2010/001231
【国際公開日】平成22年1月7日(2010.1.7)
【出願人】(511002515)
【Fターム(参考)】