説明

偏心光学系、偏心光学系を用いた画像表示装置及び撮像装置

【課題】
非常に小さく、軽量でかつ形状の自由度が高い1個の光学素子によって、画像表示素子の画像を虚像として観察者眼球に投影することが可能な偏心光学系を提供する。
【解決手段】
少なくとも5面の光学面を有する偏心光学系であり、光学面は、XYZ座標空間におけるY−Z面内において軸上主光線に対して偏心しており、かつ、少なくとも1面はY−Z面と直交するX−Z面内において偏心した面であり、複数の光学面のうち少なくとも2面は回転非対称面であり、少なくとも2面の回転非対称面のうち、少なくとも1面はXの奇数次数項を有する回転非対称面であることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転非対称面を用いた偏心光学系と、それを用いた画像表示装置、および撮像装置といった光学装置に関するものである。
【背景技術】
【0002】
従来、複数の光学面を有するプリズムを、画像表示素子を観察する光学系として用いることが知られている。このようなプリズムにおいて、表示素子から発した光はプリズム内に入射し、プリズム内部で反射してプリズムから射出し、観察者眼球に到達することにより拡大された虚像として画像を観察することができる。
【0003】
このような画像を観察する光学系として、特許文献1には、少なくとも3つの反射面により1次像を形成して眼球に投影するプリズムによるものが、特許文献2、3には、ホログラム素子を眼鏡レンズ部に配置したものなどが提案されている。
【0004】
また、その他の画像表示装置の光学系として、特許文献4には、導光板と接眼レンズによって眼球に投影するものが、そして、特許文献5では、3面で挟まれた空間を屈折率1より大きい媒質で満たされ、少なくとも1面は対称面を持たない曲面からなる偏心光学系を備え、2つの画像表示素子は一直線上に配列して配置されるので、輻輳角を有する配置とする場合に画像表示素子と偏心光学系の軸上主光線がねじれて配置されても収差補正されるものなどが提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−76429号公報
【特許文献2】特開2007−94175号公報
【特許文献3】特開2004−325985号公報
【特許文献4】特開2006−3879号公報
【特許文献5】特許第3924348号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1では、3つの反射面での3回の反射により、表示素子11から観察者の瞳に至る光路中で3回交差する。このような光路の折り曲げのために、表示素子側(図の上部)の素子形状が大きくなる。眼鏡のフレーム等に保持し、レンズの外側に配置する提案がされているが、導光路が外部に出っ張り外観上好ましくない。
【0007】
特許文献2、3にはホログラム素子を利用した方法が提案されている。これによると、ホログラムによる回折を利用して光学系を薄型にしたレイアウトが可能である。しかしながら、ホログラムには別の問題もある。ホログラム素子は製造が非常に困難であり、コストも高い。
【0008】
さらに、波長選択性が高いため、波長の非常に狭いレーザー光線のような光源を用いるか、またはLEDの一部の波長のみを利用するといった方法が取られており、レーザー光源はまだまだ3原色の小型化されたチップは開発途上であり高コストで、消費電力も高く、眼鏡に組み込めるものではない。また、LED光源を利用したものは狭帯域のバンドパスフィルターを通過させるため光の利用効率が低い。
【0009】
さらにホログラム素子の課題として、低消費電力であり、自発光タイプで照明系もいらず、小型化に有利な有機ELパネルが使用できない。有機ELパネルはLEDよりも波長帯が比較的広く、ホログラム素子との組み合わせは効率が悪く、不要光も多くなり画質を確保できない。
【0010】
特許文献4では、導光板あるいはプリズムと接眼レンズを組合せる必要があり、複数の光学素子を筐体内に配置させる。したがって、棒状の光学部材支持部材が配置されるため外観上問題があった。さらに、組立、調整の工数がかかり、耐水性などの装置の耐性にも問題があった。
【0011】
特許文献5では、偏心光学系を3面で構成しているため、光学系は三角プリズムの断面形状を成し、画像表示素子は観察者眼球とは逆方向に配備される。この配置では表示素子部が観察者の顔の前方に配備されるため眼鏡型の画像表示装置とはならない。
【0012】
本発明は、従来技術のこのような状況に鑑みてなされたものであって、その主たる目的は、非常に小さく、軽量でかつ形状の自由度が高い1個の光学素子によって、画像表示素子の画像を虚像として観察者眼球に投影することが可能な偏心光学系を提供するところにある。
【課題を解決するための手段】
【0013】
上記課題を解決するため、本発明の偏心光学系は、少なくとも5面の光学面を有する偏心光学系であり、前記光学面は、XYZ座標空間におけるY−Z面内において軸上主光線に対して偏心しており、かつ、少なくとも1面は前記Y−Z面と直交するX−Z面内において偏心した面であり、前記複数の光学面のうち少なくとも2面は回転非対称面であり、前記少なくとも2面の回転非対称面のうち、少なくとも1面はXの奇数次数項を有する回転非対称面であることを特徴とする。
【0014】
さらに、前記偏心光学系に入射する軸上主光線と、前記偏心光学系から射出する軸上主光線のX−Z面内における角度をαとした場合に、
5°≦α ≦ 45°
を満たすことを特徴とする。
【0015】
さらに、前記偏心光学系において、前記少なくとも5面の光学面により形成された空間は、屈折率1.3以上の光学媒質で満たされていることを特徴とする。
【0016】
さらに、前記偏心光学系は5面の光学面を有し、画像を表示する画像表示面から射出した光が前記偏心光学系に入射し、その後前記偏心光学系から射出し、射出瞳を形成して観察者の眼球に投影するとともに、前記偏心光学系に入射し、前記偏心光学系から射出するまでの光の経路に沿って順に、入射面である透過面の第1面、前記第1面に対向した内部反射面である第2面、前記第2面に対向した内部反射面かつ透過面である第3面、前記第3面に対向しかつ前記第2面に隣接した内部反射面である第4面、前記第4面に隣接しかつ前記第3面に対向した内部反射面である第5面によって構成されることを特徴とする。
【0017】
さらに、前記偏心光学系において、前記第3面において、少なくとも1回の内部反射は全反射作用を有することを特徴とする。
【0018】
さらに、前記偏心光学系において、前記第3面は、回転非対称面であることを特徴とする。
【0019】
さらに、前記偏心光学系において、前記第3面は、Y−Z面内において負のパワーを有
することを特徴とする。
【0020】
さらに、前記偏心光学系において、前記第4面は、回転非対称面であることを特徴とする。
【0021】
さらに、前記偏心光学系において、前記第5面は、回転非対称面であることを特徴とする。
【0022】
さらに、前記偏心光学系において、前記第5面は、Y−Z面内において正のパワーを有することを特徴とする。
【0023】
さらに、前記偏心光学系において、前記第2面は、回転非対称面であることを特徴とする。
【0024】
さらに、前記偏心光学系において、前記第2面は、X−Z面内においてチルトまたはシフトした面であることを特徴とする。
【0025】
さらに、前記偏心光学系において、前記第5面は、X−Z面内においてチルトまたはシフトした面であることを特徴とする。
【0026】
さらに、前記偏心光学系において、前記第1面は、X−Z面内においてチルトまたはシフトした面であることを特徴とする。
【0027】
さらに、前記偏心光学系において、前記第3面は、X奇数次数項を有する回転非対称面であることを特徴とする。
【0028】
さらに、前記偏心光学系において、前記第5面は、X奇数次数項を有する回転非対称面であることを特徴とする。
【0029】
さらに、前記偏心光学系において、前記第2面は、X奇数次数項を有する回転非対称面であることを特徴とする。
【0030】
さらに、前記偏心光学系において、第4面はX奇数次数項を有する回転非対称面であることを特徴とする。
【0031】
また、本発明の画像表示装置は、前記偏心光学系を有し、前記第1面に対向して前記画像表示素子を配備し、前記第3面の透過領域に対向して観察者の眼球を配備させたとき、前記観察者に拡大した虚像を呈示することを特徴とする。
【0032】
さらに、前記画像表示装置において、前記偏心光学系の射出瞳は、前記第3面の射出窓近傍、または、前記第3面と観察者の眼球の間に形成されることを特徴とする。
【0033】
さらに、前記画像表示装置において、前記画像表示素子からの画像を前記偏心光学系の入射面から取り込み、前記偏心光学系の射出面から略平行光として射出し、観察者の眼球に投影する場合、前記画像表示素子は、軸上主光線周り(γ)に回転して配備されることを特徴とする。
【0034】
また、本発明の撮像装置は、前記偏心光学系を有し、前記第1面に対向して撮像素子を配備し、前記第3面の透過領域の前方近傍に開口絞りを配備し、外界像を撮像することを特徴とする。
【0035】
さらに、前記撮像装置において、略平行光を入射瞳から前記偏心光学系に入射し、前記偏心光学系の外部の撮像素子によって撮像する場合、前記撮像素子は、軸上主光線周り(γ)に回転して配備されることを特徴とする。
【発明の効果】
【0036】
以上、本発明によれば、光学系の配置の自由度が高く、入射光軸と射出光軸がY−Z面内、X−Z面内のそれぞれにおいて同軸上ではなく、ある角度を有している偏心光学系であり、画像表示素子の画像を虚像として観察者眼球に投影することが可能な偏心光学系を提供することができる。
【図面の簡単な説明】
【0037】
【図1】本発明の実施形態に係る偏心光学系の構成を示す図である。
【図2】実施例1における偏心光学系のY−Z断面での光路図である。
【図3】実施例1における偏心光学系のX−Z断面での光路図である。
【図4】実施例1の光学系全体の横収差図を示す図である。
【図5】実施例1の光学系全体の横収差図を示す図である。
【図6】実施例2における偏心光学系のY−Z断面での光路図である。
【図7】実施例2における偏心光学系のX−Z断面での光路図である。
【図8】実施例2の光学系全体の横収差図を示す図である。
【図9】実施例2の光学系全体の横収差図を示す図である。
【図10】偏心光学系を用いた画像表示装置の基本構成図である。
【図11】偏心光学系を用いた画像表示装置の上面図である。
【図12】偏心光学系を用いた画像表示装置の側面図である。
【図13】偏心光学系を用いた画像表示装置の正面図である。
【図14】偏心光学系を用いた画像表示装置の側面図である。
【図15】偏心光学系を用いた画像表示装置の側面図である。
【図16】プリズム光学系を用いた撮像装置の基本構成図である。
【発明を実施するための形態】
【0038】
本発明に係る偏心光学系1は、少なくとも5面の光学面を有し、少なくとも5面の光学面はXYZ座標空間におけるY−Z面内において軸上主光線に対して偏心しており、かつ、少なくとも1面はY−Z面と直交するX−Z面内において偏心した面であり、複数の光学面のうち少なくとも2面は回転非対称面であり、少なくとも2面の回転非対称面のうち、少なくとも1面はXの奇数次数項を有する回転非対称面であることが好ましい。
【0039】
このような構成により、少なくとも5面の光学系はY−Z面内において軸上主光線に対して偏心(シフトまたはチルト)することで、Y−Z面内において光軸である軸上主光線は同軸上ではなく、偏心光学系に入射する光軸と射出する光軸は異なる向きに設定することが可能となる。このような偏心光学系1を、例えば、画像表示装置Pとして用いる場合には、画像を表示する画像表示素子2の位置と、その画像表示素子2の画像を観察する観察者眼球位置をY−Z面内においてある程度自由に配置させることが可能となる。
【0040】
さらに、少なくとも1面はY−Z面と直交するX−Z面内において軸上主光線に対して偏心した面とすることで、X−Z面内においても光軸である軸上主光線は同軸上ではなく、偏心光学系1に入射する光軸と射出する光軸は異なる向きに設定することができる。このような偏心光学系1を、例えば、画像表示装置Pに用いる場合には、画像を表示する画像表示素子2の位置と、その画像表示素子2の画像を観察する観察者の眼球位置をX−Z面内においてある程度自由に配置させることが可能となる。
【0041】
ところで、このような構成の偏心光学系1においては、Y−Z面内において通常のザイデル収差とは異なる、光学面の偏心による収差、いわゆる偏心収差が発生する。この偏心収差はパワーを有する光学面を偏心させることによって発生し、軸上において通常発生しないコマ収差や非点収差が発生し、軸外においても像面の倒れ、非対称な歪曲収差などが発生する。これらの回転非対称な収差を補正するためには、回転対称面である球面、非球面では補正することはできない。そこで、本発明の偏心光学系1では、回転非対称な曲面を用いることによって収差補正を行うこととしている。
【0042】
Y−Z面内における複数の光学面の偏心量は大きく、発生する偏心収差量も大きいことが想定される。したがって、複数の光学面のうち少なくとも2面は回転非対称面であることがこの偏心収差補正に良好に作用する。
【0043】
そして、Y−Z面に直交するX−Z面内において少なくとも1面は偏心した面とすることで、X−Z面内において光学系の光軸である軸上主光線が角度を持つことになる。<Br>
【0044】
上記のような偏心光学系によれば、Y−Z面内、及びX−Z面内のそれぞれにおいて、入射する軸上主光線と射出する軸上主光線は互いに角度を有する配置にすることができる。そのため、画像表示装置Pの場合にはY−Z面内においては観察者の眼球に対して偏心光学系1及び画像表示素子2などを所望の位置に配備することができ、画像表示装置Pとしてコンパクトな形状となり、装着者の違和感や煩わしさを軽減する。
【0045】
一方、X−Z面内においても同軸上に配置する必要が無いため、例えば、観察者の眼球に対して偏心光学系1と画像表示素子2はシフトした位置に配備し、偏心光学系1から射出する光線が観察者眼球に対して斜めに入射するように配備することが可能となる。そのため、観察者の装着した眼球のつる(テンプル部)の部分に、つるに対して平行に偏心光学系1と画像表示素子2を配備しても、観察者眼球には斜め下から射出して眼球中心に向けて射出する光線にすることが可能となる。したがって、このような画像表示装置Pによれば、眼鏡のつるなどの保持部の形状に依存せず、観察者は斜め下に画像表示素子2の画像を観察することができる。
【0046】
また、本発明に係る偏心光学系1を撮像装置に採用した場合には、装置全体の小型軽量化と共に、3次元的に撮像素子を自由な位置に配備することが可能となる。
【0047】
また、偏心光学系1に入射する軸上主光線と、偏心光学系1から射出する軸上主光線のX−Z面内における角度をαとした場合に、
5°≦α ≦ 45°
を満たすことが好ましい。
【0048】
このような構成により、Y−Z面に直交するX−Z面内において少なくとも1面は偏心した面とすることで、X−Z面内において光学系の光軸である軸上主光線が角度を持つことになる。その場合に、入射する光束と射出する光束の向きが変化することによって、例えば、画像表示装置Pに利用する場合には、画像表示素子2と観察者眼球の偏心光学系に対する角度を異なる配置にすることが可能になる。
【0049】
上記のような配置にすることで、観察者に対して本発明の偏心光学系1を搭載した画像表示装置Pを水平に配置しても、画像表示装置Pからは、ある角度を持って光軸(軸上主光線)が射出するようにすることができる。
【0050】
また、偏心光学系1は少なくとも5面の光学面により形成された空間を屈折率1.3以上の光学媒質で満たされていることが好ましい。
【0051】
このように偏心光学系1が少なくとも5面の光学面により形成された空間を屈折率1.3以上の光学媒質で満たすことで、偏心光学系1は1つの光学部材となるため、製造において構成する光学面は偏心光学系1の1面となり、それぞれの面の相対的な位置調整を行う必要が無くなる。さらに、偏心光学系1の内部を光が通過するため、内部における反射においては、臨界角以上の入射角とすることによって、全反射させることが可能となる。
【0052】
このような偏心光学系1によれば、少なくとも5面を有する光学系を1つのプリズムとすることが可能となり、各光学面をそれぞれの形状で形成し、それらの面を組み合わせて金型を作り、成形することで、安定した品質の光学素子を製造することが可能となる。また、全反射作用を用いるようにすることで、光学面の1面で反射と透過の2つの作用を有する面にすることが可能となり、光学系の小型化に有利になる。
【0053】
また、画像を表示する画像表示面から射出した光が偏心光学系1に入射し、その後偏心光学系1から射出し、射出瞳Sを形成して観察者眼球に投影する場合の偏心光学系1の構成は、偏心光学系1に入射し、偏心光学系1から射出するまでの光の経路に沿って順に、入射面である透過面の第1面、第1面に対向した内部反射面である第2面、第2面に対向した内部反射面かつ透過面である第3面、第3面に対向しかつ第2面に隣接した内部反射面である第4面、第4面に隣接しかつ第3面に対向した内部反射面である第5面によって構成されることが好ましい。
【0054】
上記のような光学面の構成の偏心光学系によれば、第3面は第2面と第4面と第5面に対向した面となるため、偏心光学系は左右の面内で多重反射をすることになり、非常に小さい素子でありながら実際の光路長を長くすることができる。また、偏心光学系の形状は曲面を有する略棒状になり、後述する眼鏡のガラスの外形状に沿った形状にすることが可能となる。さらに、眼鏡のガラス枠の一部として使用することも可能である。
【0055】
このように、光学素子が小さく、略棒状にしたために、画像観察装置観察者の眼球前方に配備する場合には、観察者の外界視野の妨げる面積を小さくすることができる。
【0056】
さらに、偏心光学系は第3面にて2回の内部反射を行い、その前後で、第2面、第4面、第5面で内部反射を行うようにしたため、第2面の傾きを適切な角度にすることで画像表示素子を所望の角度に配置することができる。また、第5面の傾きを適切な角度にすることによって観察者眼球の設定を所望の位置、角度にすることができる。
【0057】
このような構成の偏心光学系を利用することで、観察者に対して邪魔にならないように、ある程度自由な相対位置、相対角度で画像表示素子を設置することが可能となる。
【0058】
このような偏心光学系を利用した画像表示装置によれば、ユーザーはシースルー表示により死角をなくすことができるとともに、画像表示素子が邪魔にならない位置に配置することもできるため、より快適に装着して使用することができる。さらに、偏心光学系の形状の自由度が高いことで、偏心光学系を眼鏡のフレームの一部として用いることができ、画像表示装置を装着した人を客観的に見て違和感の無いものにすることが可能である。
【0059】
また、第3面において、少なくとも1回の内部反射は全反射作用を用いることが好ましい。
【0060】
このように第3面の内部反射を全反射面とすることで、第3面は反射コートをしなくても内部反射をすることができる。全反射する領域は透明なため、光は透過できるので、第3面を入射面または射出面として用いる場合に、ハーフミラーコーティング、HOEなど
の特殊な手段を講じる必要がない。
【0061】
さらに、全反射であるため反射率は略100%となり、金属コートに比べて反射率が高いため、全体の効率の低下を抑制することが可能となる。
【0062】
この結果、偏心光学系を製造する場合に特殊なコーティング等が必要無く、低いコストで製造することが可能となる。さらに、反射率が高いため、効率がよく、省エネルギーな装置を提供することが可能となる。
【0063】
また、偏心光学系1において、第3面は回転非対称面とすることが好ましい。
【0064】
第3面は、透過面、かつ2回の内部反射を行う面のため、透過作用、及び反射作用を受ける際にこの面による大きな収差補正効果を得ることができ、収差が良好に補正された像を得ることができる。したがって、画像表示装置Pとして用いる場合には、歪みの少なく、鮮明な映像を観察できる。撮像装置として用いる場合にも同様に、歪みが少なく、高い解像の画像を撮影できる。
【0065】
また、偏心光学系1において、第3面はY−Z面内において負のパワーを持たせることが好ましい。
【0066】
第3面は、2回の内部反射を行う面であり、その内部反射は全反射であることが望ましい。全反射条件は、反射点における入射角が臨界角以上である必要がある。プリズムの硝材の屈折率nが場合、臨界角θcは、θc=arcsin(1/n)で与えられる。例えば、n=1.5の場合には、θc=41.81°となる。
【0067】
したがって、第3面への入射角が41.81°以上の角度であれば、全反射するが、第3面が正パワーを持った面であれば、斜め上方からの入射光に対してある部分では面の法線の方向が入射光の方向に向くため、入射角は小さい傾向となり、全ての光束が臨界角以上の入射角にすることは難しい。しかしながら、入射光に対して凸面を向けた負のパワーを持たせることで、全ての光束に対して入射角は大きくなる傾向を示し、全反射条件を満たすのに有効となる。
【0068】
このような偏心光学系1の構成によれば、プリズムを製造する場合に特殊なコーティング等が必要無く、低いコストで製造できる。さらに、反射率が高いため、効率がよく、省エネルギーな装置となる。
【0069】
また、偏心光学系1において、第4面は回転非対称面とすることが好ましい。
【0070】
第4面は内部反射を行う面であり、さらに、この面は偏心光学系1の中間位置にあるため、各光束が比較的大きい断面積になる。したがって、この面を回転非対称面とすることで、反射作用を受ける際、球面収差やコマ収差の大きな補正効果を得ることができる。
【0071】
このような偏心光学系1の構成によれば、収差が良好に補正された像を得ることができる。したがって、画像表示装置Pとして用いる場合には、歪みの少なく、鮮明な映像を観察できる。撮像装置として用いる場合にも同様に、歪みが少なく、高い解像の画像を撮影できる。
【0072】
また、偏心光学系1において、第5面は回転非対称面とすることが好ましい。
【0073】
第5面は内部反射面である。画像表示装置Pの場合を考えると、この面は偏心光学系1
の射出瞳および射出面の直前に位置するため、射出角(画角)の異なる各光束の断面積は略同等で比較的大きく、この面の偏心(チルト)によるコマ収差が発生しやすい。偏心収差が発生する面でその収差補正を行うこと、つまり、偏心収差を大きく発生させないようにすることが光学系全体の性能向上に有利となる。
【0074】
このような偏心光学系1の構成によれば、収差が良好に補正された像を得ることができる。したがって、画像表示装置Pとして用いる場合には、歪みの少なく、鮮明な映像を観察できる。撮像装置として用いる場合にも同様に、歪みが少なく、高い解像の画像を撮影できる。
【0075】
また、偏心光学系1において、第5面はY−Z面内において正のパワーを持たせることが好ましい。
【0076】
第5面は内部反射を行う正のパワーを有する面であることが有効である。第3面は負のパワーを有する面とするならば、偏心光学系が結像系にするためには第1面、第2面、第4面、第5面のいずれか、または複数面を正のパワーを有する面とする必要があるが、射出瞳から略平行光を入射して像面を形成する場合で考えると、第5面を正のパワーとすることにより、光学系のパワー配置は、物体側から像面に向かって負、正、負、(正か負かゼロ)、負となり、入射光は入射後に負の後すぐに正のパワーが得られるため、光学系全体のパワーを正にする作用が得られる。
【0077】
このような偏心光学系1の構成によれば、収差が良好に補正された像を得ることができる。したがって、画像表示装置として用いる場合には、歪みの少なく、鮮明な映像を観察できる。撮像装置として用いる場合にも同様に、歪みが少なく、高い解像の画像を撮影できる。
【0078】
また、偏心光学系1において、第2面は回転非対称面とすることが好ましい。
【0079】
第2面は内部反射面であり、偏心光学系の像面近くに位置するため、光束は比較的小さくなった状態となる。この面を回転非対称面とすることで、軸外収差の補正に有効に作用する。特に、画角が大きい場合にはディストーションの補正に有効である。
【0080】
このような偏心光学系1の構成によれば、収差が良好に補正された像を得ることができる。したがって、画像表示装置として用いる場合には、歪みの少なく、鮮明な映像を観察できる。撮像装置として用いる場合にも同様に、歪みが少なく、高い解像の画像を撮影できる。
【0081】
また、偏心光学系1において、第2面はX−Z面内においてチルトまたはシフトした面とすることが好ましい。
【0082】
第2面はX−Z面内においてチルトまたはシフトした面であることによれば、画像表示装置Pとして本発明の偏心光学系を用いる場合には、画像表示素子から射出した光は透過面の第1面から光学系に入射した直後の第2面において、光束がX−Z面内において角度を有することになる。
【0083】
このような偏心光学系1の構成によれば、第2面のX−Z面内の偏心により、画像表示素子からの光束はX−Z面内の角度を有するものになり、偏心光学系から射出するときにX−Z面内の角度を有するものになる。
【0084】
また、偏心光学系1において、第5面はX−Z面内においてチルトまたはシフトした面
とすることが好ましい。
【0085】
第5面はX−Z面内においてチルトまたはシフトした面とすることで、画像表示装置Pに偏心光学系1を用いる場合には、画像表示素子2から射出した光が偏心光学系1を介して観察者眼球に向けて射出する直前の反射面である第5面において、光束がX−Z面内において角度を付与することが可能になる。
【0086】
このような偏心光学系1の構成によれば、第5面のX−Z面内の偏心により、画像表示素子2からの光束はX−Z面内の角度を有するものになり、偏心光学系1から射出するときにX−Z面内の角度を付けることが可能となり、例えば、画像表示装置Pに採用した場合には、偏心光学系1を観察者の視界の邪魔にならない位置に配置させることが可能となる。
【0087】
また、偏心光学系1において、第1面はX−Z面内においてチルトまたはシフトした面とすることが好ましい。
【0088】
第2面または第5面がX−Z面内においてチルトまたはシフトした面であることにより、画像表示装置Pとして偏心光学系1を用いる場合には、画像表示素子から射出した光が偏心光学系1を介して観察者眼球に向けて射出する光束がX−Z面内において角度を有することになるが、入射面である第1面をX−Z面内において偏心させることによって、入射光軸の調整を行うことができる。
【0089】
このような偏心光学系1の構成によれば、第1面のX−Z面内の偏心により、画像表示素子2からの光束は、第1面で屈曲して偏心光学系1に入射することになり、偏心光学系1に入射する角度を調整することになるため、微妙な角度の調整を行うことが可能となる。
【0090】
また、偏心光学系1において、第3面はX奇数次数項を有する回転非対称面とすることが好ましい。
【0091】
第3面をX奇数次数項を有する回転非対称面とすることで、第3面は透過面、かつ2回の内部反射を行う面であるため、透過作用、及び反射作用を受ける際に、X−Z面内においても、この面による大きな収差補正効果を得ることが可能となる。
【0092】
また、偏心光学系1において、第5面はX奇数次数項を有する回転非対称面とすることが好ましい。
【0093】
第5面は内部反射面である。画像表示装置Pに利用した場合を考えると、この面は偏心光学系1の射出瞳および射出面の直前に位置するため、射出角(画角)の異なる各光束の断面積は略同等で比較的大きく、この面の偏心(チルト)によるコマ収差が発生しやすい。偏心収差が発生する面でその収差補正を行うこと、つまり、偏心収差を大きく発生させないようにすることが、X−Z面内においても光学系全体の性能向上に望ましい。
【0094】
また、偏心光学系1において、第2面はX奇数次数項を有する回転非対称面とすることが好ましい。
【0095】
第2面は内部反射面であり、光学系の像面近くに位置するため、光束は比較的小さくなった状態となる。この面を回転非対称面のX奇数次数項とすることで、X−Z面内の軸外収差の補正に有効に作用する。特に、画角が大きい場合にはディストーションの補正に有効である。
【0096】
また、偏心光学系1において、第4面はX奇数次数項を有する回転非対称面とすることが好ましい。
【0097】
第4面は内部反射を行う面であり、さらに、この面は偏心光学系1の中間位置であって、各光束が比較的大きい断面積になるため、反射作用を受ける際、X奇数次数項とすることで、この面によってX−Z面内の球面収差やコマ収差の大きな補正効果が得られる。
【0098】
以上のような偏心光学系1の構成によれば、収差が良好に補正された像を得ることができる。したがって、画像表示装置として用いる場合には、歪みの少なく、鮮明な映像を観察できる。撮像装置として用いる場合にも同様に、歪みが少なく、高い解像の画像を撮影できる。
【0099】
また、本発明に係る画像形成装置は、前記偏心光学系1の第1面に対向して画像表示素子2を配備し、第3面の透過領域に対向して観察者の眼を配備することで、観察者に拡大した虚像を呈示することとしている。
【0100】
画像表示素子2から発した光は、偏心光学系1の第1面から入射し、第2面、第3面、第4面、第3面、第5面で5回の内部反射した後第3面から光は略平行光となって射出し、観察者眼球の瞳孔に入射する。このような構成の画像表示装置Pによれば、観察者は拡大された虚像を観察することができる。
【0101】
また、画像形成装置Pにおいて、偏心光学系の射出瞳は、偏心光学系の第3面の射出窓近傍または第3面と観察者眼球の間に形成されることが好ましい。
【0102】
画像表示素子2の射出瞳が、偏心光学系1の第3面の射出窓近傍または第3面と観察者眼球の間に形成されることで、観察画像周縁の光束のケラレを小さくできる。
【0103】
このような構成の画像表示装置Pによれば、観察者は画面の周辺まで鮮明な画像を観察することができる。
【0104】
また、画像表示装置Pにおいて、画像表示素子2からの画像を偏心光学系1の入射面から取り込み、偏心光学系1の射出面から略平行光として射出し、観察者眼球に投影する場合に、画像表示素子2は、軸上主光線周り(γ)に回転して配備されることが好ましい。
【0105】
Y−Z面内と共にX−Z面内において偏心する場合には、形成される像が光軸周りに回転するため、その回転に合わせて画像表示素子2を回転させることで、観察者には、画像表示素子2の画像が回転せずに、通常の縦、横の像として観察することができる。
【0106】
また、本発明に係る撮像装置は、前記偏心光学系1の第1面に対向して撮像素子を配備し、第3面の透過領域に前方近傍に開口絞りを配備することで、外界像を撮像することとしている。
【0107】
偏心光学系1の第3面の下側近傍に円形の開口を持つ開口絞りを配備し、第1面に対向してCCD等の撮像素子を配備することで、開口絞りを通過し偏心光学系の第3面から入射した光は、第5面、第3面、第4面、第3面、第2面で5回の内部反射をして第1面から射出して撮像素子に到達し、光を集光させることが可能となる。
【0108】
このような構成によれば、小型軽量化された撮像装置を実現することができる。
【0109】
また、撮像装置において、略平行光を入射瞳から偏心光学系1に入射し、偏心光学系1の外部の撮像素子によって撮像する場合に、撮像素子は軸上主光線周り(γ)に回転して配備されることが好ましい。
【0110】
Y−Z面内と共にX−Z面内において偏心する場合には、形成される像が光軸周りに回転するため、その回転に合わせて撮像素子を回転させることで、撮像素子と形成される像の方向が一致し、通常の縦、横の像として撮像することが可能となる。
【0111】
以下、実施例に基づいて本実施形態の偏心光学系1について説明する。
【0112】
具体的な構成パラメータは後記するが、プリズム光学系1の構成パラメータは、図1に示すように、観察者の観察位置、すなわち、眼球3が配置される位置付近に設定された仮想面r1を通る中心光線Aが、プリズム光学系1を経て画像表示素子2に向かう逆光線追跡の結果に基づくものである。
【0113】
図1に示すように、プリズム光学系1から射出される中心光線Aは、観察位置にて観察されることで、プリズム光学系1の右側に逆光線追跡における虚像面(逆光線追跡でいう物体面)を形成する。ここでは、虚像面から射出側に1m離れた位置に仮想面r1を設定し、仮想面r1と中心光線Aの交点を原点Oとしている。さらに、原点Oからプリズム光学系1側へ向かう中心主光線の方向をZ軸正方向とし、原点Oから画像表示素子2側でZ軸に直交する方向をY軸正方向とし、図1の紙面内をY−Z平面とする。そして、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。
【0114】
偏心面については、その面が定義される座標系の上記光学系1の原点Oの中心からの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、光学系の原点に定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。
【0115】
その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。
【0116】
また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。
【0117】
また、後記の構成パラメータ中にデータの記載されていない係数項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。
【0118】
また、本発明にかかる実施形態で用いられる自由曲面の面の形状は、以下の式(a)で定義されるものである。なお、その定義式のZ軸が自由曲面の軸とする。
Z=(r2 /R)/[1+√{1−(1+k)(r/R)2 }]

+Σ Cj m n ・・・(a)
j=1
ここで、(a)式の第1項は球面項、第2項は自由曲面項である。
【0119】
球面項中、
R:頂点の曲率半径
k:コーニック定数(円錐定数)
r=√(X2 +Y2
である。
【0120】
自由曲面項は、
66
Σ Cj m n
j=1
=C1
+C2 X+C3
+C4 2 +C5 XY+C6 2
+C7 3 +C8 2 Y+C9 XY2 +C103
+C114 +C123 Y+C132 2 +C14XY3 +C154
+C165 +C174 Y+C183 2 +C192 3 +C20XY4
+C215
+C226 +C235 Y+C244 2 +C253 3 +C262 4
+C27XY5 +C286
+C297 +C306 Y+C315 2 +C324 3 +C333 4
+C342 5 +C35XY6 +C367
・・・・・・
ただし、Cj (jは1以上の整数)は係数である。
【0121】
上記自由曲面は、一般的には、X−Z面、Y−Z面共に対称面を持つことはないが、本発明ではXの奇数次項を全て0にすることによって、Y−Z面と平行な対称面が1つだけ存在する自由曲面となる。例えば、上記定義式(a)においては、C2 、C5 、C7 、C9 、C12、C14、C16、C18、C20、C23、C25、C27、C29、C31、C33、C35・・・の各項の係数を0にすることによって可能である。
【0122】
また、Yの奇数次項を全て0にすることによって、X−Z面と平行な対称面が1つだけ存在する自由曲面となる。例えば、上記定義式においては、C3 、C5 、C8 、C10、C12、C14、C17、C19、C21、C23、C25、C27、C30、C32、C34、C36・・・の各項の係数を0にすることによって可能である。
【0123】
また、上記対称面の方向の何れか一方を対称面とし、それに対応する方向の偏心、例えば、Y−Z面と平行な対称面に対して光学系の偏心方向はY軸方向に、X−Z面と平行な対称面に対しては光学系の偏心方向はX軸方向にすることで、偏心により発生する回転非対称な収差を効果的に補正しながら同時に製作性をも向上させることが可能となる。
【0124】
また、上記定義式(a)は、前述のように1つの例として示したものであり、本発明の自由曲面は、対称面を1面のみ有する回転非対称な面を用いることで偏心により発生する回転非対称な収差を補正し、同時に製作性も向上させるということが特徴であり、他のいかなる定義式に対しても同じ効果が得られることはいうまでもない。
【0125】
図1は本発明の実施形態に係る偏心光学系1を用いた画像表示装置Pの概念図である。
【0126】
第1実施形態の偏心光学系1は、図1に示すように、少なくとも5面の光学面を有する偏心光学系であり、各光学面は、XYZ座標空間におけるY−Z面内において軸上主光線
に対して偏心しており、かつ、少なくとも1面はY−Z面と直交するX−Z面内において偏心した面であり、複数の光学面のうち少なくとも2面は回転非対称面であり、少なくとも2面の回転非対称面のうち、少なくとも1面はXの奇数次数項を有する回転非対称面としている。
【0127】
また、画像表示装置Pは、偏心光学系1に光が入射する入射面としての第1面11に対向して画像表示素子2を配置し、光が射出する面の透過領域としての第3面13に対向して観察者の眼球3を配備することで、観察者に拡大した虚像を呈示する。
【0128】
次に、本発明の偏心光学系1に係る実施例1について説明する。
【0129】
実施例1の偏心光学系1を備えた画像表示装置PのY−Z断面図を図2に、X−Z断面図を図3に、光学系全体の横収差図を図4及び図5に示す。
【0130】
実施例1の画像表示装置Pは、偏心光学系1と、画像表示素子2とを有する。
【0131】
偏心光学系1は、光学作用を有する光学面を5面を用いて形成されている。第1面11は、画像表示素子2に対向して配置され、1回の透過作用を有する。また、第2面12は、第1面11に対して画像表示素子2とは反対側に配置され、1回の内部反射作用を有する。第3面13は、第2面12、後述する第4面14及び第5面15に対向し、画像表示素子2側に配置され、2回の内部反射作用と1回の透過作用を有する。
【0132】
第4面14は、第3面13に対向し、画像表示素子2と反対側に配置され、1回の内部反射作用を有する。第5面15は、第3面13に対して画像表示素子2と反対側に配置され、1回の内部反射作用を有する。また、第3面13の透過面付近には射出瞳Sが設けられている。
【0133】
実施例1では、第3面13、第4面14及び第5面15を回転非対称面としての自由曲面としている。第3面13は、X奇数次数項を有する自由曲面、第4面14は、X偶数次数項のみの自由曲面、第5面15は、X奇数次数項を有する自由曲面である。なお、第1面11、第2面は平面にて形成されている。
【0134】
逆光線追跡において、射出瞳Sを通過した光束は、第3面13を透過して偏心光学系1に入射し、第5面15で内部反射し、第3面13で内部反射し、第4面14で内部反射し、第3面13で再び内部反射し、第2面12で内部反射し、第1面11を透過して偏心光学系1から射出される。偏心光学系1から射出された光束は、画像表示素子2に入射する。
【0135】
また、画像表示装置Pは、偏心光学系1に光が入射する入射面としての第1面11に対向して画像表示素子2を配置し、光が射出する面の透過領域としての第3面13に対向して観察者の眼を配備することで、観察者に拡大した虚像を呈示する。
【0136】
実施例2の偏心光学系1を備えた画像表示装置PのY−Z断面図を図6に、X−Z断面図を図7に、光学系全体の横収差図を図8及び図9に示す。
【0137】
実施例2の画像表示装置Pは、偏心光学系1と、画像表示素子2とを有する。
【0138】
偏心光学系1は、光学作用を有する光学面を5面を用いて形成されている。第1面11は、画像表示素子2に対向して配置され、1回の透過作用を有する。また、第2面12は、第1面11に対して画像表示素子2とは反対側に配置され、1回の内部反射作用を有す
る。第3面13は、第2面12、後述する第4面14及び第5面15に対向し、画像表示素子2側に配置され、2回の内部反射作用と1回の透過作用を有する。
【0139】
第4面14は、第3面13に対向し、画像表示素子2と反対側に配置され、1回の内部反射作用を有する。第5面15は、第3面13に対して画像表示素子2と反対側に配置され、1回の内部反射作用を有する。また、第3面13の透過面付近には射出瞳Sが設けられている。
【0140】
この実施例2では、第2面12、第3面13、第4面14及び第5面15を回転非対称面としている。第2面12、第3面13は、X奇数次数項を有する自由曲面、第4面14は、X偶数次数項のみの自由曲面、第5面15は、X奇数次数項を有する自由曲面である。なお、第1面11は平面にて形成されている。
【0141】
逆光線追跡において、射出瞳Sを通過した光束は、第3面13を透過して偏心光学系1に入射し、第5面15で内部反射し、第3面13で内部反射し、第4面14で内部反射し、第3面13で再び内部反射し、第2面12で内部反射し、第1面11を透過して偏心光学系1から射出される。偏心光学系1から射出された光束は、画像表示素子2に入射する。
【0142】
また、画像表示装置Pは、偏心光学系1に光が入射する入射面としての第1面11に対向して画像表示素子2を配置し、光が射出する面の透過領域としての第3面13に対向して観察者の眼を配備することで、観察者に拡大した虚像を呈示する。
【0143】
以下に、上記実施例1、2の構成パラメータを示す。なお、以下の表中の“FFS”は自由曲面を示す。
【0144】
実施例1
画角:水平 6.84°垂直 9.12°

面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ -1000.00
r1 ∞(ダミー面) 0.00
r2 ∞(射出瞳) 0.00 偏心(1)
r3 FFS[1] 0.00 偏心(2) 1.5254 56.2
r4 FFS[2] 0.00 偏心(3) 1.5254 56.2
r5 FFS[1] 0.00 偏心(2) 1.5254 56.2
r6 FFS[3] 0.00 偏心(4) 1.5254 56.2
r7 FFS[1] 0.00 偏心(2) 1.5254 56.2
r8 ∞ 0.00 偏心(5) 1.5254 56.2
r9 ∞ 0.00 偏心(6)
像 面 ∞ 0.00 偏心(7)

FFS[1]
C4 -2.291e-002 C5 -1.765e-003 C6 2.612e-003
C7 -3.974e-005 C8 3.471e-004 C9 5.867e-005
C10 2.178e-004 C11 -3.281e-005 C12 -1.364e-005
C13 2.202e-005 C14 1.069e-006 C15 -3.903e-005
C16 -1.009e-006 C17 4.788e-008 C18 1.970e-006
C19 -6.284e-007 C20 -1.241e-008 C21 1.527e-006
C22 2.716e-007 C23 5.949e-008 C24 7.843e-008
C25 -5.576e-008 C26 -7.025e-009 C27 -1.111e-009
C28 -2.061e-008

FFS[2]
C4 -1.197e-002 C5 -8.411e-004 C6 2.154e-003
C7 -4.091e-005 C8 3.916e-004 C9 1.137e-004
C10 -5.298e-004 C11 -6.495e-006 C12 5.546e-006
C13 -1.007e-005 C14 -5.394e-006 C15 2.234e-005

FFS[3]
C4 -2.054e-002 C6 -6.736e-003 C8 3.023e-004
C10 -3.166e-005 C11 -1.155e-005 C13 -8.948e-006
C15 -1.338e-005 C17 1.453e-006 C19 -4.042e-007
C21 2.479e-007

偏心[1]
X 0.00 Y 0.00 Z 18.00
α 0.00 β 0.00 γ 0.00

偏心[2]
X 0.00 Y -2.61 Z 18.07
α 2.01 β 0.00 γ 0.00

偏心[3]
X 0.00 Y -1.09 Z 21.72
α -25.72 β 0.00 γ 0.00

偏心[4]
X 0.00 Y 9.82 Z 24.73
α 2.02 β 0.00 γ 0.00

偏心[5]
X 0.00 Y 27.99 Z 22.00
α 17.89 β 7.50 γ 0.00

偏心[6]
X 0.00 Y 30.77 Z 15.22
α -25.91 β 8.66 γ 0.00

偏心[7]
X 3.65 Y 32.75 Z 9.59
α -19.69 β 15.00 γ 0.00
【0145】
実施例2
画角 :水平 6.84°垂直 9.12°

面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ -640.00
r1 ∞(ダミー面) 0.00
r2 ∞(射出瞳) 0.00 偏心(1)
r3 FFS[1] 0.00 偏心(2) 1.5254 56.2
r4 FFS[2] 0.00 偏心(3) 1.5254 56.2
r5 FFS[1] 0.00 偏心(2) 1.5254 56.2
r6 FFS[3] 0.00 偏心(4) 1.5254 56.2
r7 FFS[1] 0.00 偏心(2) 1.5254 56.2
r8 FFS[4] 0.00 偏心(5) 1.5254 56.2
r9 ∞ 0.00 偏心(6)
像 面 ∞ 0.00 偏心(7)

FFS[1]
C4 -4.128e-002 C5 -9.216e-004 C6 -4.297e-003
C7 1.134e-004 C8 3.066e-003 C9 2.687e-005
C10 9.480e-004 C11 5.238e-005 C12 -1.052e-005
C13 -1.010e-004 C14 3.545e-007 C15 -1.564e-004
C16 3.767e-007 C17 5.254e-006 C18 1.824e-007
C19 -6.216e-006 C20 5.878e-009 C21 7.764e-006
C22 -1.755e-006 C23 -1.766e-008 C24 3.193e-007
C25 2.088e-009 C26 2.403e-007 C27 -6.327e-010
C28 -1.274e-007
FFS[2]
C4 -8.733e-003 C5 -2.991e-004 C6 -5.071e-003
C7 1.043e-005 C8 -3.405e-004 C9 -2.968e-006
C10 -3.611e-005 C11 2.212e-005 C12 -2.694e-006
C13 -1.312e-004 C14 -1.222e-006 C15 1.223e-005
FFS[3]
C4 -3.133e-002 C6 -9.781e-003 C8 3.977e-004
C10 2.969e-004 C11 -2.128e-006 C13 -3.871e-005
C15 -4.617e-005 C17 9.071e-007 C19 2.308e-007
C21 1.099e-006
FFS[4]
C4 -6.772e-003 C5 2.483e-004 C6 -3.547e-003
C7 1.216e-004 C8 -3.862e-004 C9 -2.906e-004
C10 1.453e-004 C11 6.816e-005 C12 3.378e-005
C13 6.418e-005 C14 -5.529e-006 C15 -4.316e-005
C16 -1.295e-006 C17 2.692e-006 C18 3.029e-006
C19 1.445e-005 C20 2.068e-006 C21 -4.782e-006

偏心[1]
X 0.00 Y 0.00 Z 18.00
α 0.00 β 0.00 γ 0.00

偏心[2]
X 0.00 Y -0.71 Z 17.99
α -0.80 β 0.00 γ 0.00

偏心[3]
X 0.00 Y 4.60 Z 24.57
α -21.26 β 0.00 γ 0.00

偏心[4]
X 0.00 Y 7.45 Z 24.62
α 2.03 β 0.00 γ 0.00

偏心[5]
X 0.00 Y 27.66 Z 21.08
α 19.23 β 7.50 γ 0.00

偏心[6]
X 0.00 Y 31.72 Z 12.66
α -35.00 β 5.73 γ 0.00

偏心[7]
X 3.63 Y 32.98 Z 8.95
α -19.66 β 15.00 γ 0.00
【0146】
図10は、偏心光学系1を用いた画像表示装置Pの基本構成を示す模式図である。
【0147】
本実施形態の画像表示装置Pは、偏心光学系1と画像表示素子2とを用いることで、小型軽量、低コスト化が可能でかつ、装着した人が客観的に違和感の少ない画像表示装置Pを提供することを目的としている。
【0148】
本実施形態の画像表示装置Pは、画像表示素子2として液晶表示素子を用いている。液晶表示素子を用いる場合、光源としてのバックライトBLが必要となる。本実施形態では、バックライトBLと画像表示素子2との間に照明レンズLを有する。
【0149】
本実施形態の画像表示装置Pは、このような構成により、画像表示素子2から射出された画像光を正のパワーを持つ偏心光学系1によって眼球方向に屈曲させるとともに、観察者が虚像として画像を観察することを可能とする。
【0150】
また、射出部の近傍を開口絞りSとなるよう機能させることで、偏心光学系1自体を薄く細くしても映像を観察することができる。
【0151】
さらに、画像表示素子2が液晶表示素子である場合には、バックライトBLが必要であり、照明の効率上、光源の像を射出窓近傍に位置させることが望ましい。
【0152】
また、偏心光学系1を眼球の正面方向よりもやや外側に配置することが好ましい。これにより、視界の正面を偏心光学系1、あるいは、偏心光学系1にて投影される映像にて邪魔することがない。また、光路を短くすることができ、偏心光学系1をよりコンパクトにすることができる。
【0153】
図11は、偏心光学系1を備えた画像表示装置Pを、眼鏡Gに装着した場合の上面図を、図12は、その側面図を示している。本実施形態では、画像表示装置Pは、偏心光学系1、画像表示素子2、電装系3を主な構成要素としている。本実施形態では、観察者に対し画像表示装置Pを位置固定するため、眼鏡Gを流用することとしているが、画像表示装置Pの位置固定には、専用のものをもちいるなど適宜手段を採用することができる。
【0154】
電装系3は、画像表示素子2に対して映像を供給する。この電装系3には、バッテリーなどの電源部、映像コンテンツを記憶する記憶部、他の装置と通信するための通信部、あ
るいは、インターフェイス部などを備えて個構成される。本実施形態では、画像表示素子2と一体となって構成されており、眼鏡Gのテンプル部(つる)G1に対してネジなどで固定される。
【0155】
本実施形態では、偏心光学系1、電装系3、画像表示素子2がユニット化されており、このユニットをテンプル部G1の下側に位置するようにクリップなどで眼鏡Gに固定している。なお、ユニット化を行うことなく、偏心光学系1、電装系3、画像表示素子2の何れかを独立させ、それぞれを眼鏡Gに固定されることとしてもよい。
【0156】
また、画像表示素子2に対する偏心光学系1の配置位置を前後させることで視度調整を行うことが可能となり、観察者の視力に合わせた映像を提供することが可能となる。本実施形態では、図11に矢印Tで示すように、画像表示素子2を含む電装系3の配置位置を前後させることで、偏心光学系1との距離を変化させ視度調整することが可能となっている。
【0157】
このような眼鏡Gに装着された画像表示装置Pにおいて、正面方向を向いた画像表示素子2から射出された画像光は、偏心光学系1により瞳孔へ向けて射出される。偏心光学系1は正のパワーを持ち、画像表示素子2の画像を拡大し、装着者は虚像として観察することができる。なお、画像表示素子2の中心から射出する第1の軸上主光線B1と、偏心光学系1から射出され観察者の瞳孔中心に到達する第2の軸上主光線B2によって形成される角度αは0°〜40°であることが望ましい。
【0158】
図12は、図11に示す画像表示装置Pの装着の様子の側面図を示した図である。本実施形態では、ユニット化された画像表示装置Pは、テンプル部G1の下方にクリップなどで取り付けられている。観察者の正面方向を向いた画像表示素子2から水平に射出された軸上主光線は、偏心光学系1によって斜め上方に射出され、観察者の眼球に入射する。
【0159】
このように本実施形態の偏心光学系1では、水平方向に照射された画像光を、観察者の斜め下方方向、すなわち、図3で説明したようにX−Z面での角度を付与して観察者の眼球に入射させることが可能となり、偏心光学系1を視界の正面よりも下方に配置することが可能となる。そのため、視界を偏心光学系1、あるいは、偏心光学系1にて投影される映像にて邪魔することがない。
【0160】
なお、画像表示素子2の中心から射出する軸上主光線C1と、偏心光学系1から射出され観察者の瞳孔中心に到達する軸上主光線C2によって形成されるX−Z面の角度βは5゜〜45゜であることが望ましい。
【0161】
図13は、偏心光学系を用いた画像表示装置の側面図、図14、図15は、偏心光学系を用いた画像表示装置の側面図である。
【0162】
図13に示すように、正面から見ると、偏心光学系1が観察者の瞳Eに対向して配置され、観察者に拡大した虚像を呈示することが可能となる。また、本実施形態の偏心光学系1では、画像表示素子2から正面に向けて照射された画像光を、上方に向けて観察者の眼球に照射することができるため、偏心光学系1を下方に位置させることが可能となる。よって、偏心光学系1、あるいは、偏心光学系1にて投影される映像にて観察者の視界が邪魔されることがない。
【0163】
図14に示すように、偏心光学系1の観察者の瞳Eに対向する部分の垂直方向の幅を人間の平均的な瞳孔径である4mm未満に設定すると、偏心光学系1の上下から観察者の瞳Eに偏心光学系1の後ろの風景を見ることが可能となり、シースルー効果を出すことがで
きる。観察者は、下方、すなわち、偏心光学系1の方向に視線を向けたときにも外界の様子を観察することができる。
【0164】
また、図15に示すように、偏心光学系1の観察者の瞳Eに対向する部分の垂直方向の幅を4mm以上にすると、長い縦幅により、上下方向のズレに対して許容範囲を広くすることができる。
【0165】
本実施形態の画像表示装置Pは、外界視界を遮ることなく外界と電子画像を同時に観察すること(シースルー機能)を可能とするとともに、小型軽量・低コスト化が可能な眼鏡型画像表示装置を提案する。
【0166】
また、本実施形態のプリズム光学系1は、画像表示素子2に代えて、図示しない撮像素子とともに用いることで、小型軽量で低コスト化が可能な撮像装置を提供することが可能である。
【0167】
図16に本実施形態のプリズム光学系を撮像装置であるデジタルカメラに適用した場合の基本構成図を示す。撮像装置に本発明のプリズム光学系を適用する場合には、画像表示装置における射出瞳が入射瞳として作用し、瞳位置近傍に開口絞り46を設ける。この開口絞り46の開口を拡縮することで明るさの調整が行われる。さらに、表示素子の代わりにCCDなどの撮像素子44を配備する。
【0168】
デジタルカメラ本体には、光を取り入れ、内部の汚れを防ぐことにもなる入射窓47、スイッチ42、シャッター41、及び、操作、撮像の様子を確認するための背面表示パネル43が装備されている。スイッチ42をONにしてシャッター41を押すと、撮像素子44に付属したシャッター(図示せず)が作動し、シャッタースピードで設定された時間の静止画を撮像素子44で撮像し、画像記録メモリー45に画像データが蓄積される。動画像を撮影する場合は、シャッターを開放にして撮像素子44で取り込んだ動画像を画像記録メモリー45に蓄積する。
【0169】
以上、本発明の種々の実施形態について説明したが、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。
【符号の説明】
【0170】
1…偏心光学系
11…第1面
12…第2面
13…第3面
14…第4面
15…第5面
2…画像表示素子
3…電装系
4…デジタルカメラ(撮像装置)
41…シャッター
42…スイッチ
43…背面表示パネル
44…撮像装置(CCD)
45…画像記録メモリー
46…開口絞り
47…入射窓
P…画像表示装置
G…眼鏡
G1…テンプル部
G2…眼鏡レンズ

【特許請求の範囲】
【請求項1】
少なくとも5面の光学面を有する偏心光学系であり、
前記光学面は、XYZ座標空間におけるY−Z面内において軸上主光線に対して偏心しており、かつ、少なくとも1面は前記Y−Z面と直交するX−Z面内において偏心した面であり、
前記複数の光学面のうち少なくとも2面は回転非対称面であり、
前記少なくとも2面の回転非対称面のうち、少なくとも1面はXの奇数次数項を有する回転非対称面であることを特徴とする
偏心光学系。
【請求項2】
前記偏心光学系に入射する軸上主光線と、前記偏心光学系から射出する軸上主光線のX−Z面内における角度をαとした場合に、
5°≦α ≦ 45°
を満たすことを特徴とする
請求項1に記載の偏心光学系
【請求項3】
前記少なくとも5面の光学面により形成された空間は、屈折率1.3以上の光学媒質で満たされていることを特徴とする
請求項1または請求項2に記載の偏心光学系。
【請求項4】
画像を表示する画像表示面から射出した光が前記偏心光学系に入射し、その後前記偏心光学系から射出し、射出瞳を形成して観察者の眼球に投影するとともに、
前記偏心光学系に入射し、前記偏心光学系から射出するまでの光の経路に沿って順に、入射面である透過面の第1面、前記第1面に対向した内部反射面である第2面、前記第2面に対向した内部反射面かつ透過面である第3面、前記第3面に対向しかつ前記第2面に隣接した内部反射面である第4面、前記第4面に隣接しかつ前記第3面に対向した内部反射面である第5面によって構成されることを特徴とする
請求項1から請求項3の何れか1項に記載の偏心光学系。
【請求項5】
前記第3面において、少なくとも1回の内部反射は全反射作用を有することを特徴とする
請求項4に記載の偏心光学系。
【請求項6】
前記第3面は、回転非対称面であることを特徴とする
請求項4または請求項5に記載の偏心光学系。
【請求項7】
前記第3面は、Y−Z面内において負のパワーを有することを特徴とする
請求項4から請求項6の何れか1項に記載の偏心光学系。
【請求項8】
前記第4面は、回転非対称面であることを特徴とする
請求項4から請求項7の何れか1項に記載の偏心光学系。
【請求項9】
前記第5面は、回転非対称面であることを特徴とする
請求項4から請求項8の何れか1項に記載の偏心光学系。
【請求項10】
前記第5面は、Y−Z面内において正のパワーを有することを特徴とする
請求項4から請求項9の何れか1項に記載の偏心光学系。
【請求項11】
前記第2面は、回転非対称面であることを特徴とする
請求項4から請求項10の何れか1項に記載の偏心光学系。
【請求項12】
前記第2面は、X−Z面内においてチルトまたはシフトした面であることを特徴とする
請求項4から請求項11の何れか1項に記載の偏心光学系。
【請求項13】
前記第5面は、X−Z面内においてチルトまたはシフトした面であることを特徴とする
請求項4から請求項12の何れか1項に記載の偏心光学系。
【請求項14】
前記第1面は、X−Z面内においてチルトまたはシフトした面であることを特徴とする
請求項4から請求項13の何れか1項に記載の偏心光学系。
【請求項15】
前記第3面は、X奇数次数項を有する回転非対称面であることを特徴とする
請求項4から請求項14の何れか1項に記載の偏心光学系。
【請求項16】
前記第5面は、X奇数次数項を有する回転非対称面であることを特徴とする
請求項4から請求項15の何れか1項に記載の偏心光学系。
【請求項17】
前記第2面は、X奇数次数項を有する回転非対称面であることを特徴とする
請求項4から請求項16の何れか1項に記載の偏心光学系。
【請求項18】
第4面はX奇数次数項を有する回転非対称面であることを特徴とする
請求項4から請求項17の何れか1項に記載の偏心光学系。
【請求項19】
請求項1から請求項18の何れか1項に記載の偏心光学系を有し、
前記第1面に対向して前記画像表示素子を配備し、
前記第3面の透過領域に対向して観察者の眼球を配備させたとき、前記観察者に拡大した虚像を呈示することを特徴とする
画像表示装置。
【請求項20】
前記偏心光学系の射出瞳は、前記第3面の射出窓近傍、または、前記第3面と観察者の眼球の間に形成されることを特徴とする
請求項19に記載の画像表示装置。
【請求項21】
前記画像表示素子からの画像を前記偏心光学系の入射面から取り込み、前記偏心光学系の射出面から略平行光として射出し、観察者の眼球に投影する場合、
前記画像表示素子は、軸上主光線周り(γ)に回転して配備されることを特徴とする
請求項18または請求項19に記載の画像表示装置。
【請求項22】
請求項1から請求項18の何れか1項に記載の偏心光学系を有し、
前記第1面に対向して撮像素子を配備し、
前記第3面の透過領域の前方近傍に開口絞りを配備し、
外界像を撮像することを特徴とする
撮像装置。
【請求項23】
略平行光を入射瞳から前記偏心光学系に入射し、前記偏心光学系の外部の撮像素子によって撮像する場合、
前記撮像素子は、軸上主光線周り(γ)に回転して配備されることを特徴とする
請求項22に記載の撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2012−58301(P2012−58301A)
【公開日】平成24年3月22日(2012.3.22)
【国際特許分類】
【出願番号】特願2010−198659(P2010−198659)
【出願日】平成22年9月6日(2010.9.6)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】