説明

光アシスト磁気ヘッド及び光学的結合構造

【課題】微小な偏向ミラーのハンドリング及び位置決めが容易な光アシスト磁気ヘッド及び光学的結合構造を提供する。
【解決手段】一の面と、一の面の所定の方向の一端に設けられた端面とを備え、ディスク状の記録媒体の回転に応じて記録媒体に対して浮上して相対移動するスライダと、一の面に固定され、所定の方向に光を出射する光源と、端面との接合面とは反対側の側面と、光入射面から入射した光を導く光導波路と、を有する磁気ヘッド部と、光源及び光入射面の双方に臨み、所定の曲率を有する凹型の反射面と、反射面に対して所定の方向に延伸され、かつ側面及び一の面のいずれかからなる基準面に当接されたフランジ部とを有し、反射面により光源からの光を光入射面に向けて反射及び集光させる偏向ミラーと、を備えたことを特徴とする光アシスト磁気ヘッド。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、光アシスト磁気ヘッド及び光学的結合構造の技術に関し、特に、ハンドリングが困難な微小サイズの構造において、光源からの光をミラーにより偏向させて光導波路に導く技術に関する構成を備えた光アシスト磁気ヘッド及び光学的結合構造に関する。
【背景技術】
【0002】
ハードディスク装置(HDD:Hard Disk Drive)に用いられる磁気記録方式は、記録密度を高くしようとすると磁気ビットの間隔が狭くなり、超常磁性効果等により極性が不安定になる。このため、高い保磁力を有する記録媒体が必要になるが、そのような記録媒体を使用すると記録時に必要な磁場も大きくなる。然るに、記録ヘッドによって発生する磁場は飽和磁束密度によって上限が決まるが、その値は材料限界に近付いており飛躍的な増大が望めないという実情がある。そこで、記録時局所的に加熱して磁気軟化を生じさせて、保磁力が小さくなった状態で記録し、その後、加熱を止めて自然冷却することにより、記録された磁気ビットの安定性を保証する記録方式が提案されている。この記録方式は熱アシスト磁気記録方式と呼ばれている。
【0003】
熱アシスト磁気記録方式では、記録媒体の加熱が瞬間的に行われることが望ましい。また、加熱する機構と、高速で回転する記録媒体とが接触することは許されない。そのため、加熱はレーザー光の微小スポットを記録媒体に照射して行われることが一般的であり、この方式は光アシスト磁気記録方式と呼ばれている。光アシスト磁気記録方式で超高密度記録を行う場合には、必要なスポット径は20nm程度になるが、通常の光学系では回折限界があるため、光をそこまで集光することはできない。そのため、入射光波長以下のサイズの光学的開口から発生する近接場光(「近視野光」と称する場合がある)を利用した光アシスト磁気ヘッドが使用される場合がある。一般に光アシスト磁気ヘッドは、記録媒体上をその面に対して平行に移動するように設けられており、光アシスト磁気記録方式の磁気ヘッドの大きさは小さい。そのため、磁気ヘッドを構成する光学部品も小さいサイズのものが要求され、実際には、数十μm〜数百μmのサイズものが用いられる。
【0004】
光アシスト磁気ヘッドの例が特許文献1に開示されている。
【0005】
また、特許文献1に記載の光アシスト磁気ヘッドでは、表面反射型の偏向ミラーにより、半導体レーザー(LD:Laser Diode)から出射した光を90°偏向させて、光導波路に照射している。このような表面反射ミラーを用いることにより、LDをスライダに横置きすることが可能となり、ヘッドの薄型化が可能となっている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2011−60408号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
以上のようにスライダに光学部品が設けられる場合、その光学部品は微小であり、ハンドリングが困難である。そのため、どのように光学部品をハンドリングして位置決めし、スライダに取り付けるのかが問題となる。
【0008】
即ち、本発明の目的は、微小な偏向ミラーのハンドリング及び位置決めが容易な光アシスト磁気ヘッド及び光学的結合構造を提供することにある。
【課題を解決するための手段】
【0009】
請求項1に記載の発明は、一の面と、前記一の面の所定の方向の一端に設けられた端面とを備え、ディスク状の記録媒体の回転に応じて前記記録媒体に対して浮上して相対移動するスライダと、前記一の面に固定され、前記所定の方向に光を出射する光源と、前記端面との接合面とは反対側の側面と、光入射面から入射した光を導く光導波路と、を有する磁気ヘッド部と、前記光源及び前記光入射面の双方に臨み、所定の曲率を有する凹型の反射面と、前記反射面に対して所定の方向に延伸され、かつ前記側面及び前記一の面のいずれかからなる基準面に当接されたフランジ部とを有し、前記反射面により前記光源からの光を前記光入射面に向けて反射及び集光させる偏向ミラーと、を備えたことを特徴とする光アシスト磁気ヘッドである。
請求項2に記載の発明は、請求項1に記載の光アシスト磁気ヘッドであって、前記基準面は、前記側面であり、前記フランジ部は、前記側面に沿って延伸した板状の形状であって、前記フランジ部の一対の板面のうち前記反射面が向いている側の板面と前記側面とを付き合わせて、前記偏向ミラーが前記スライダに間接的に固定されることを特徴とする。
請求項3に記載の発明は、請求項2に記載の光アシスト磁気ヘッドであって、前記偏向ミラーは、前記側面に沿った前記偏向ミラーの固定可能範囲を広げるように、前記反射面の前記光入射面側の一部が切り欠かれていることを特徴とする。
請求項4に記載の発明は、請求項2または請求項3に記載の光アシスト磁気ヘッドであって、前記フランジ部は、前記一対の板面のうちの少なくともいずれかにマークを有し、前記基準面中の所定の位置と、前記マークとが、あらかじめ決められた位置関係となるように前記偏向ミラーが固定されることで、前記反射面が前記所定の位置に保持されることを特徴とする。
請求項5に記載の発明は、請求項1に記載の光アシスト磁気ヘッドであって、前記基準面は、前記一の面であり、前記フランジ部は、前記光源から前記反射面までの光路を挟み込むように設けられ、前記端面から反対側の端面に向かう方向に前記一の面に沿って延伸した一対の板状の形状であって、前記フランジ部の一対の板面のうち前記反射面が向いている側の板面と前記一の面とを付き合わせて、前記偏向ミラーが前記スライダに直接的に固定されることを特徴とする。
請求項6に記載の発明は、請求項5に記載の光アシスト磁気ヘッドであって、前記偏向ミラーは、前記一の面に沿った前記偏向ミラーの固定可能範囲を広げるように、前記反射面の前記光源側の一部が切り欠かれていることを特徴とする。
請求項7に記載の発明は、請求項5または請求項6に記載の光アシスト磁気ヘッドであって、前記フランジ部は、前記一対の板面のうちの少なくともいずれかにマークを有し、前記基準面中の所定の位置と、前記マークとが、あらかじめ決められた位置関係となるように前記偏向ミラーが固定されることで、前記反射面が前記所定の位置に保持されることを特徴とする。
請求項8に記載の発明は、一の面と、前記一の面の所定の方向の一端に設けられた端面とを備えた基板と、前記一の面に固定され、前記所定の方向に光を出射する光源と、前記端面との接合面とは反対側の側面と、光入射面から入射した光を導く光導波路と、を有するヘッド部と、前記光源及び前記光入射面の双方に臨み、所定の曲率を有する凹型の反射面と、前記反射面に対して所定の方向に延伸され、かつ前記側面及び前記一の面のいずれかからなる基準面に当接されたフランジ部とを有し、前記反射面により前記光源からの光を前記光入射面に向けて反射及び集光させる偏向ミラーと、を備えたことを特徴とする光学的結合構造である。
【発明の効果】
【0010】
この発明に係る光アシスト磁気ヘッド及び光学的結合構造に備えられた偏向ミラーは、フランジ部を備え、このフランジ部を基準面に当接させることで反射面を所定の位置に保持する。これにより、フランジ部を持ち手とすることで、微小な偏向ミラーのハンドリング性を確保することが可能となる。
【図面の簡単な説明】
【0011】
【図1】情報記録装置の概略構成を示す斜視図である。
【図2A】第1の実施形態に係る光アシスト磁気ヘッドの一例を示した概略断面図である。
【図2B】第1の実施形態に係る光アシスト磁気ヘッドの1次元集光光学素子周辺の拡大断面図である。
【図3】第1の実施形態に係る1次元集光光学素子の斜視図である。
【図4A】第1の実施形態に係る1次元集光光学素子をx方向から見た正面図である。
【図4B】第1の実施形態に係る1次元集光光学素子をz方向から見た平面図である。
【図4C】第1の実施形態に係る1次元集光光学素子をy方向から見た側面図である。
【図5A】第1の実施形態に係る1次元集光光学素子を使用した場合の光源部からの光の光路を説明するための図である。
【図5B】第1の実施形態に係る1次元集光光学素子の調芯方法を説明するための図である。
【図5C】第1の実施形態に係る1次元集光光学素子の調芯方法を説明するための図である。
【図6A】実施例のシミュレーション結果をまとめた表である。
【図6B】実施例のシミュレーション結果を示したグラフである。
【図7】第1の実施形態に係る1次元集光光学素子の一態様を示した斜視図である。
【図8A】第2の実施形態に係る光アシスト磁気ヘッドの一例を示した概略断面図である。
【図8B】第2の実施形態に係る光アシスト磁気ヘッドの1次元集光光学素子周辺の拡大断面図である。
【図9】第2の実施形態に係る1次元集光光学素子の斜視図である。
【図10A】第2の実施形態に係る1次元集光光学素子をx方向から見た正面図である。
【図10B】第2の実施形態に係る1次元集光光学素子をz方向から見た平面図である。
【図10C】第2の実施形態に係る1次元集光光学素子をy方向から見た側面図である。
【図11A】第2の実施形態に係る1次元集光光学素子を使用した場合の光源部からの光の光路を説明するための図である。
【図11B】第2の実施形態に係る1次元集光光学素子の調芯方法を説明するための図である。
【図11C】第2の実施形態に係る1次元集光光学素子の調芯方法を説明するための図である。
【図12】第2の実施形態に係る1次元集光光学素子の一態様を示した斜視図である。
【発明を実施するための形態】
【0012】
(第1の実施形態)
図1に、光アシスト式磁気記録ヘッドを搭載した光アシスト式磁気記録装置(例えばハードディスク装置、以下「情報記録装置」ともいう)の概略構成を示す。情報記録装置1は、例えば記録用の複数枚の回転可能なディスク(磁気記録媒体)3と、ヘッド支持部5と、トラッキング用アクチュエータ7と、光アシスト磁気ヘッド4と、図示しない駆動装置と、を筐体2内に備えている。なお、ディスク3は1枚であってもよい。ヘッド支持部5は、支軸6を支点として矢印Aの方向(トラッキング方向)に回動可能に設けられている。トラッキング用アクチュエータ7は、ヘッド支持部5に取り付けられている。光アシスト磁気ヘッド4は、ヘッド支持部5の先端に取り付けられている。図示しない駆動装置は、ディスク3を矢印Bの方向に回転させる。情報記録装置1は、光アシスト磁気ヘッド4がディスク3の上で浮上しながら相対的に移動しうるように構成されている。
【0013】
(光アシスト磁気ヘッド4)
図2Aに、光アシスト磁気ヘッド4の概略構成例を断面図で示す。光アシスト磁気ヘッド4は、ディスク3に対する情報記録に光を利用する微小光記録ヘッドである。光アシスト磁気ヘッド4は、光源部20と、スライダ10と、1次元集光光学素子30とを有する。情報記録装置1は、ディスク3を矢印C方向に移動させ、光アシスト磁気ヘッド4がディスク3上で浮上しながら相対的に移動しうるように構成されている。なお、図2Aでは、ディスク3の回転方向(矢印C方向)をy方向、光アシスト磁気ヘッド4の厚み方向をz方向、y方向及びz方向の双方に直交する方向をx方向としている。
【0014】
スライダ10は、板状の形状をしており、ディスク3と対向する下面10bと、下面10bのz方向の反対側に位置する上面10aとを有する。また、スライダ10は、y方向の端部に端面10cを有する。なお、スライダ10が「基板」に相当する。また、上面10aが「一の面」に相当し、端面10cが、「一の面の所定の方向の一端に設けられた端面」に相当する。
【0015】
光源部20は半導体レーザー(以下、単に「LD」と称する)を有する。光源部20を構成しているLDから出射される光の波長は、可視光から近赤外の波長(波長帯としては、0.6μm〜2μm程度であり、具体的な波長としては、650nm、780nm、830nm、1310nm、1550nmなどが挙げられる)などがある。図2Bに示すように、光源部20は、光出射面20aと、底面20bとを有している。光源部20は、スライダ10の上面10aに配置されている。このとき、底面20bと上面10aとが対向する。光源部20は、光出射面20aから1次元集光光学素子30の反射面31に向けて光を出射する。光源部20から出射された光は、1次元集光光学素子30の反射面31に到達する。
【0016】
1次元集光光学素子30は、光源部20からの光を偏向(反射)させて光導波路14の光導波路入射面14aに導く表面反射型の集光ミラーである。図2Bに示すように、1次元集光光学素子30は、yz平面上に曲率を有する凹面状の反射面31と、フランジ部32とを有する。1次元集光光学素子30は、光源部20からの光を反射面31で受けて、この光を反射面31で反射させることで90°偏向させて、光導波路入射面14aに導く。このとき、光源部20からの光は、反射面31の曲率により光導波路入射面14aに集光される。1次元集光光学素子30の具体的な構成については後述する。なお、本実施形態では、1次元集光光学素子30が「偏向ミラー」に相当する。また、光導波路入射面14aが「光入射面」に相当する。
【0017】
スライダ10は、端面10cに磁気ヘッド部13を有する。磁気ヘッド部13は、y方向に所定の厚みを有して形成されており、端面13aと、端面13bと、側面13cとを有している。端面13aは、端面10cの上面10a側の端部近傍に、端面10cからy方向に立ち上がるように設けられている。また、端面13bは、端面13aとはz方向の反対側に形成されている。また、側面13cは、端面10cと接合される側面とは反対側に設けられている。磁気ヘッド部13は、光導波路14と、図示しない磁気記録部と、図示しない磁気情報再生部とを有する。なお、磁気ヘッド部13が「ヘッド部」に相当する。
【0018】
光導波路14は、1次元集光光学素子30によって導かれた光を導光してディスク3に向けて射出する。光導波路14は、図示しないが、下部クラッド層、コア層、上部クラッド層を、光が伝播する方向とは直交する厚み方向(y方向)に沿って、この順番に積層させたものである。コア層は、各クラッド層(例えば、SiOで形成)よりも屈折率の高い素材(例えば、Ta)で形成されている。これにより、光導波路14に導かれた光は、コア層と、各クラッド層との間で全反射しながらディスク3に向かって伝播する。
【0019】
図2Bに示すように、光導波路14は、磁気ヘッド部13の端面13aに光導波路入射面14aを有し、端面13aとは反対側の端面13b(ディスク3に対向する面)に光導波路出射面14bを有する。光導波路14の光導波路出射面14bには、近接場光発生素子としてのプラズモンプローブ15が設けられている。1次元集光光学素子30によって偏向させられた光は、光導波路入射面14aから入射し、光導波路出射面14bに向かって光導波路14内を進む。光導波路出射面14bに設けられているプラズモンプローブ15は、1次元集光光学素子30によって導かれた光を近接場光に変換してディスク3に向けて射出する。また、図示しない磁気記録部は、ディスク3の被記録部分に対して磁気情報の書き込みを行う。図示しない磁気情報再生部は、ディスク3に記録されている磁気情報の読み取りを行う。
【0020】
(1次元集光光学素子30)
次に、1次元集光光学素子30の具体的な構成について図2B、図3、及び図4A〜図4Cを参照しながら説明する。図3は、1次元集光光学素子30の一例を示した斜視図である。また、図4Aは、1次元集光光学素子30をx方向から見た正面図である。また、図4Bは、1次元集光光学素子30をz方向から見た平面図である。また、図4Cは、1次元集光光学素子30をy方向から見た側面図である。
【0021】
1次元集光光学素子30は、円筒面状の凹面の反射面31により入射光を偏向する偏向ミラーである。図3に示すように、1次元集光光学素子30は、反射面31と、フランジ部32とを有する。反射面31は、棒状の直方体の一部を円筒状に切欠くことで、この直方体の1つの稜線に円筒状に形成される。反射面31の具体的な構成については後述する。また、前述した直方体の側面のうち、反射面31と連続する側面のいずれか1つから、その側面の垂線方向に延伸するように、板状のフランジ部32が設けられている。また、反射面31の端部のうち、フランジ部32が設けられた側の端部を切欠くことで、切欠き部33が設けられている。換言すると、図2Bに示すように、1次元集光光学素子30が磁気ヘッド13に固定されたときに、フランジ部32が設けられた側の側面のうち、端面13aと対向する部分が切欠かれることで、切欠き部33が設けられている。切欠き部33の詳細については後述する。
【0022】
図3に示すように、フランジ部32は、反射面31と連続する側面のうち、z方向を向いた側の面から、z方向(下方)に延伸するように設けられている。
【0023】
ここで、図4A〜4Cを参照する。フランジ部32は、反射面31が向いている側の板面32aと、板面32aとは反対側の板面32bとを有している。板面32aは、側面13cと突き合わされたうえで接合される。これにより、1次元集光光学素子30が、磁気ヘッド部13に固定される(即ち、スライダ10に間接的に固定される)。換言すると、板面32aは、磁気ヘッド部13に1次元集光光学素子30が固定されたときに、側面13cに沿うように設けられている。このとき、反射面31は、光出射面20a及び光導波路入射面14aの双方を臨むように、所定の位置に支持される(図2B参照)。また、このとき切欠き部33は、磁気ヘッド部13の端面13aと対向する(図2B参照)。フランジ部32を設けることにより、反射面31が非常に小さい場合であっても、このフランジ部32を持ち手とすることで、ハンドリング性を確保することができ、光アシスト磁気ヘッド4の組立も容易となる。また、磁気ヘッド部13に1次元集光光学素子30を固定するための接着箇所として、フランジ部32を利用することもできる。これにより、反射面31が非常に小さい場合であっても、広い接着箇所を確保することが可能となる。
【0024】
反射面31は、x方向を筒軸とする円筒の略4分の1の凹状の周面として形成されている。換言すると、反射面31は、yz平面上において所定の曲率を有する凹面として形成される。反射面31は、1次元集光光学素子30が磁気ヘッド部13に固定されたときに、光出射面20a及び光導波路入射面14aの双方を臨むように支持される。このように、反射面31が凹面として形成されることで、反射面31に入射した光を、反射面31の曲率により反射及び集光することが可能となる。
【0025】
反射面31は露出しており、表面反射ミラーとして機能する。反射面31には、金(Au)やアルミニウム(Al)などの金属膜、又は、誘電体多層膜の反射膜などを形成する。これにより、反射面31は、表面反射ミラーとして機能する。表面反射ミラーであるため、入射面及び出射面が無く、これらの面での表面反射が発生しないため、光量損失を低減することができる。また、反射膜を形成しなくても反射率が得られる場合には、反射膜を形成せずにそのまま反射面として使用してもよい。
【0026】
ここで、図2Bを参照しながら、理想的な状態における反射面31の保持位置、及び反射面31の曲率の決定方法の一例について具体的に説明する。図2Bにおける半径L1は、反射面31の曲率半径を示している(以降では、「曲率半径L1」と呼ぶ)。図2Bに示すように、光源部20からy方向に向かって出射された光が、z方向に90°偏向されて、光導波路入射面14aに入射するように、反射面31を保持する位置が決定される。このとき、光源部20からy方向に進む光が入射した反射面31上の点から伸ばした反射面31の法線と、光導波路入射面14aを光源部20の方向に延長した面とが交差する位置に、曲率半径L1の基点P1が位置するように反射面31を形成する。換言すると、光導波路入射面14aを光源部20の方向に延長した面上に設けられた点P1を基点として、yz平面上に曲率半径L1の曲率を有するように、反射面31が設けられている。なお、上記した反射面31の曲率の決定方法は一例であり、上記の決定方法に限定されるものではない。光学系の設計、即ち、光源部20と光導波路14との位置関係によっては、基点P1の位置は、光導波路入射面14aを光源部20の方向に延長した面上には限定されない。
【0027】
このように、反射面31は凹状の円筒面であるため曲率を持った方向のみ光を集光する集光機能(即ち、1次元集光機能)を有する。ここで、図5Aを参照する。図5Aは、本実施形態に係る1次元集光光学素子30を使用した場合の光源部20からの光の光路を示している。図5Aに示すように、反射面31は、光源部20からy方向に出射された光を受けて、この光をz方向に反射する。これにより、光源部20からy方向に向かって出射された光が、z方向に90°偏向され、光導波路入射面14aに導かれる。このとき、反射面31は、反射されてz方向に進む光をy方向に集光する。このように、反射面31の集光機能が1次元であるため、集光された光は線状となる。
【0028】
1次元集光光学素子30は、スライダ10、磁気ヘッド部13、及び光源部20が設計された寸法通りに組み立てられた場合に、図5Aに示すように、光源部20からの光が光導波路入射面14aに導かれるように設計されている。しかしながら、スライダ10と光源部20との間を接合する際に、接合に使用されるハンダ等の厚さ方向のばらつきにより、光源部20からの光の光軸の位置に関してz方向に誤差が生じる場合がある。以降では、このz方向の誤差を修正するための特徴的な構造と、調芯方法について説明する。
【0029】
まず、図5Aを参照する。図5Aに示すように、反射面31の端部のうち、フランジ部32が設けられた側(1次元集光光学素子30が固定された場合の光導波路入射面14a側)の端部を切欠くことで、切欠き部33が設けられている。切欠き部33は、端面13aと対向するように設けられている。なお、以降では、光源部20からy方向に出射される光の光軸と上面10aとの間のz方向の距離をL0としたとき、切欠き部33と端面13aとの間のz方向の距離をL2とする。切欠き部33を設けることにより、1次元集光光学素子30を固定可能なz方向の範囲が、距離L2分広がる。なお、1次元集光光学素子30を固定可能なz方向の範囲が、本実施形態における「固定可能範囲」に相当し、この固定可能範囲が切欠き部33により距離L2分広がる。切欠き部33を設けることによる具体的な効果については、1次元集光光学素子30を用いた場合の調芯方法とあわせて後述する。なお、切欠き部33を設ける替わりに、端面13aをz方向に切欠いてもよい。
【0030】
(調芯方法)
次に、1次元集光光学素子30を用いた場合の調芯方法について、図5A〜図5Cを参照しながら説明する。図5Bは、調芯方法を説明するための図であり、調芯前の状態を示している。また、図5Cは、調芯方法を説明するための図であり、調芯後の状態を示している。
【0031】
例えば、図5Bは、光源20の位置にz方向の誤差が生じた場合の状態を示している。このときの、光源部20からy方向に出射される光の光軸と上面10aとの間のz方向の距離をL0a(L0a>L0)とする。このように、光源部20がz方向にずれると、出射される光の光軸がずれる。これにより、光源部20から出射された光は、反射面31上において、図5Aの場合とは異なる位置で反射されるため、反射光が集光する位置が、図5Bに示すように光導波路入射面14aからy方向にずれる。本実施形態に係る光アシスト磁気ヘッド4では、1次元集光光学素子30を固定する際に、1次元集光光学素子30をz方向にスライドさせることで、光源部20からの光が入射する反射面31上の位置を調整する。以下に、この調芯方法について具体的に説明する。
【0032】
まず、光源部20、スライダ10、及び磁気ヘッド部13を組み立てる。このときの光源部20、スライダ10、及び磁気ヘッド部13の位置関係は、図5Bに示す通りとする。即ち、光源部20からy方向に出射される光の光軸と上面10aとの間のz方向の距離がL0aとなり、1次元集光光学素子30が設計時に特定された所定の位置(図5A参照)に配置された場合には、反射光が集光する位置が、光導波路入射面14aからy方向に沿って光源部20とは反対側にずれている。
【0033】
次に、フランジ部32の板面32aに接着剤を塗布し、板面32aを側面13cに突き当てて、板面32aと側面13cとを仮接合する。これにより、1次元集光光学素子30を、設計時に特定された所定の位置に一時的に保持する。なお、この状態では接着剤を硬化させずに、1次元集光光学素子30を、z方向にスライド可能に保持する。なお、この接着剤には、例えば、熱や紫外線により硬化するものを用いるとよい。
【0034】
次に、光源部20から光を照射し、光導波路出射面14bから出射される光の光量を測定しながら、板面32aを側面13cに突き当てた状態で、1次元集光光学素子30をz方向にスライドさせる。反射面31は、yz平面上で曲率を有する凹状の円筒面であるため、光が入射する位置により、光導波路入射面14a及び端面13a上のy方向に沿った異なる位置で反射光が集光する。そのため、1次元集光光学素子30をz方向にスライドさせることで、光源部20からの光が入射する反射面31上の位置が変更され、反射光が集光する位置をy方向にずらすことが可能となる。図5Cは、図5Bの状態から、z方向に沿って反射面31が端面13aから遠ざかるように1次元集光光学素子30をスライドさせることで、反射光が集光する位置を、y方向に沿って光源部20に近づく方向にずらした状態を示している。このときの、切欠き部33と端面13aとの間のz方向の距離はL2a(L2a>L2)となる。図5Cのように、反射光が集光する位置をy方向にずらすことにより、光源部20とスライダ10との間の位置関係に誤差が生じた場合においても、光源部20からの光を光導波路入射面14aに導くことが可能となる。
【0035】
なお、反射光が集光される位置をy方向に沿って光源部20側から遠ざかる方向にずらす場合には、z方向に沿って反射面31が端面13aに近づくように1次元集光光学素子30をスライドさせる。このとき、1次元集光光学素子30をスライドさせることが可能な範囲は、切欠き部33が設けられた位置により決定される。そのため、組立時における光源部20とスライダ10との間の位置関係について誤差の範囲をあらかじめ見積り、この見積り値を距離L2が包含可能な範囲で切欠き部33を設ける位置を決定する。
【0036】
このように、本実施形態に係る光アシスト磁気ヘッド4では、板面32aと側面13cとが突き合わされることで、反射面31が保持されるy方向の位置が決定される。また、板面32aと側面13cとが突き合わされた状態で1次元集光光学素子30をz方向にスライドさせることで、反射光の集光位置が調整される。このとき、側面13cが、1次元集光光学素子30をz方向にスライドさせるためのガイドの役割をはたす。さらに、1次元集光光学素子30をz方向にスライドさせるときに、フランジ部32を把持することによりハンドリング性を確保することが可能となり、光アシスト磁気ヘッド4の組立が容易になる。
【0037】
次に、反射光が集光する位置が光導波路入射面からずれていた場合に、集光位置を補正するための側面13cに沿った1次元集光光学素子30のスライド量と、補正された集光位置における結合効率との関係を具体的な例をあげて実施例として説明する。本実施例では、光源部20から出射される光の波長λ=830nm、この光のx方向の発散角θx=10°、y方向の発散角θy=20°とした。また、反射面31の曲率半径L1=25μm、光導波路14のx方向のモードフィールド直径MFDx=6μm、y方向のモードフィールド直径MFDy=2μmとした。
【0038】
本実施例では、この条件に基づき、1次元集光光学素子30が所定の位置に支持され、さらに、反射光の集光位置が光導波路入射面14aとのy方向のズレが無い場合(図5A参照)を基準として、1次元集光光学素子30のスライド量に対する反射光の集光位置の移動量と、その集光位置の光を光導波路14に導光させた場合の結合効率とを計算した。この計算結果を、図6Aに示す表にまとめた。図6Aにおいて、「集光位置ズレ量」は、所定の位置に1次元集光光学素子30が保持されている場合において、反射光の集光位置と、光導波路入射面14aとのy方向のズレ量を示している。即ち、1次元集光光学素子30をスライドさせることで、反射光の集光位置を、y方向にこのズレ量分だけ移動させる。「ミラーの垂直シフト量」は、「集光位置ズレ量」で示したズレ量分だけ反射光の集光位置を移動させるために、z方向に1次元集光光学素子30をスライドさせる距離を示している。また、「結合効率」は、「ミラーの垂直シフト量」に示した距離だけ1次元集光光学素子30をz方向にスライドさせて、反射光を光導波路入射面14aに集光した場合の結合効率の計算値を示している。図6Bは、図6Aに示した計算値を基に作成したグラフである。
【0039】
図6A及び図6Bにおいて、反射光の集光位置と光導波路入射面14aとの間の位置ズレが無い場合、即ち、「ミラーの垂直シフト量」が0μm、「集光位置ズレ量」が0μmのときが、1次元集光光学素子30が設計時に特定された所定の位置に保持されている状態を示している。図6A及び図6Bに示すように、このとき、1次元集光光学素子30が設計時に特定された所定の位置に保持されている状態で、反射光が光導波路入射面14aに集光するときに、結合効率が最大となる。
【0040】
ここで、「ミラーの垂直シフト量」が0μmのときを基準とした、「ミラーの垂直シフト量」それぞれにおける相対的な結合効率を、相対結合効率とする。図6A及び図6Bに示すように、本実施例において、「集光位置ズレ量」が±2μmの範囲で、約50%以上の相対結合効率を確保可能としている。このことから、図6Aに示すように、ミラーの垂直シフト量をΔzとした場合、−1.3μm≦Δz≦1.9μmの範囲で1次元集光光学素子30をスライドさせることで、約50%以上の相対結合効率を確保可能であることがわかる。即ち、このミラーの垂直シフト量Δzの範囲で、1次元集光光学素子30をスライド可能とすればよく、この結果に基づき、切欠き部33と端面13aとの間のz方向の距離L2を求めればよい。なお、本実施例の場合、ミラーの垂直シフト量Δzの結果から、L2≧1.3μmとすればよいことが分かる。
【0041】
なお、フランジ部32の板面32b上にアライメントマーク32cを設けてもよい。例えば、図7は、アライメントマーク32cを設けた場合の、1次元集光光学素子30の一態様を示した斜視図である。このような場合には、磁気ヘッド部13に対する1次元集光光学素子30の位置決めを行う際に、磁気ヘッド部13の側面13c上の所定の位置にアライメントマーク32cをあわせる。なお、位置決めの際には、アライメントマーク32c及び側面13c上の所定の位置が、視覚的に確認できればよい。例えば、フランジ部32に透過性を有する素材を用いていれば、双方の位置を視覚的に確認すればよい。また、フランジ部32に透過性を有さない素材を用いている場合においても、例えば、赤外線等の別の手段により、アライメントマーク32c及び側面13c上の所定の位置を確認すればよい。これにより、例えば、1次元集光光学素子30を、設計時に特定された所定の位置(図5A参照)に位置決めすることが可能となる。なお、側面13c上にもアライメントマークを設けてもよい。また、板面32a上にアライメントマーク32cを設けてもよい。
【0042】
なお、スライダ10、光源部20、磁気ヘッド部13、光導波路14、及び1次元集光光学素子30とで構成される光学的結合構造は、光源部20からの光を偏向させて照射する構成であれば、光アシスト磁気ヘッド4以外にも応用可能である。例えば、配線に光導波路を用いたフレキシブルプリント基板に、この光学的結合構造を応用することも可能である。この場合、フレキシブルプリント基板上に光学的結合構造を設け、光源部20から基板の盤面に沿って照射された光を偏向させて、基板内の光導波路へ導光させることが可能となる。これにより、光源部20を基板上に横向きに配置することが可能となるため、基板の厚みを薄く構成することが可能となる。
【0043】
以上のように、本実施形態に係る1次元集光光学素子30は、フランジ部32を設け、フランジ部32の板面32aと、磁気ヘッド部13の側面13cとを突き当てて接合することで、反射面31を所定の位置に保持する。さらに、1次元集光光学素子30が非常に小さなミラーであっても、このフランジ部32を持ち手とすることで、ハンドリング性を確保することができ、光アシスト磁気ヘッド4の組立も容易となる。また、フランジ部32を、磁気ヘッド部13に1次元集光光学素子30を固定するための接着箇所として利用している。これにより、非常に小さなミラーであっても、広い接着箇所を確保することが可能となる。
【0044】
(第2の実施形態)
次に、第2の実施形態に係る光アシスト磁気ヘッド4について図8Aを参照しながら説明する。図8Aは、本実施形態に係る光アシスト磁気ヘッド4の一例を示した概略断面図である。図8Aに示すように、本実施形態に係る光アシスト磁気ヘッド4は、1次元集光光学素子30に替わり、1次元集光光学素子40を用いている。以降では、図8A、図8B、図9、及び図10A〜10Cを参照しながら、1次元集光光学素子40の構成に着目して説明する。また、図8Bは、本実施形態に係る光アシスト磁気ヘッド4の1次元集光光学素子40周辺の拡大断面図である。また、図9は、1次元集光光学素子40の斜視図である。また、図10Aは、1次元集光光学素子40をx方向から見た正面図である。また、図10Bは、1次元集光光学素子40をz方向から見た平面図である。また、図10Cは、1次元集光光学素子40をy方向から見た側面図である。
【0045】
(1次元集光光学素子40)
1次元集光光学素子40は、円筒面状の凹面の反射面41により入射光を偏向する偏向ミラーである。図9に示すように、1次元集光光学素子30は、反射面41と、フランジ部42とを有する。反射面41は、1次元集光光学素子30の反射面31と同様に、棒状の直方体の一部を円筒状に切欠くことで、この直方体の1つの稜線に円筒状に形成される。反射面41の具体的な構成については後述する。また、前述した直方体の側面のうち、反射面41が設けられた側面のいずれか1つから、反射面41がその垂線方向を臨む空間を挟み込み、かつ、その側面の垂線方向に延伸するように、一対の板状のフランジ部42が設けられている。なお、1次元集光光学素子40がスライダ10に固定されたときに、この空間には、光源部20が収まる。即ち、一対のフランジ部42の間には、光源部20が収まる幅の空間が設けられている。また、反射面41の端部のうち、フランジ部42が設けられた側の端部を切欠くことで、切欠き部43が設けられている。換言すると、図8Bに示すように、1次元集光光学素子40がスライダ10に固定されたときに、フランジ部42が設けられた側の側面のうち、、光出射面20aと対向する部分が切欠かれることで、切欠き部43が設けられている切欠き部33の詳細については後述する。なお、本実施形態では、1次元集光光学素子40が「偏向ミラー」に相当する。
【0046】
図9に示すように、一対のフランジ部42は、反射面41が設けられた側面のうち、y方向を向いた側の面から、−y方向(左方)に延伸するように設けられている。
【0047】
ここで、図10A〜10Cを参照する。フランジ部42は、反射面41が向いている側の板面42aと、板面42aとは反対側の板面42bとを有している。板面42aは、スライダ10の上面10aと突き合わされたうえで接合される。これにより、1次元集光光学素子40が、スライダ10に直接的に固定される。換言すると、板面42aは、スライダ10に1次元集光光学素子40が固定されたときに、上面10aに沿うように設けられている。このとき、反射面41は、光出射面20a及び光導波路入射面14aの双方を臨むように、所定の位置に支持される(図8B参照)。また、このとき切欠き部43は、光源部20の光出射面20aと対向する(図8B参照)。フランジ部42を設けることにより、反射面41が非常に小さい場合であっても、このフランジ部42を持ち手とすることで、ハンドリング性を確保することができ、光アシスト磁気ヘッド4の組立も容易となる。また、スライダ10に1次元集光光学素子40を固定するための接着箇所として、フランジ部42を利用してもよい。これにより、反射面41が非常に小さい場合であっても、広い接着箇所を確保することが可能となる。
【0048】
反射面41は、x方向を筒軸とする円筒の略4分の1の凹状の周面として形成されている。換言すると、反射面41は、yz平面上において所定の曲率を有する凹面として形成される。反射面41は、1次元集光光学素子40がスライダ10に固定されたときに、光出射面20a及び光導波路入射面14aの双方を臨むように支持される。このように、反射面41が凹面として形成されることで、反射面41に入射した光を、反射面41の曲率により反射及び集光することが可能となる。
【0049】
反射面41は露出しており、表面反射ミラーとして機能する。反射面41には、金(Au)やアルミニウム(Al)などの金属膜、又は、誘電体多層膜の反射膜などを形成する。これにより、反射面41は、表面反射ミラーとして機能する。表面反射ミラーであるため、入射面及び出射面が無く、これらの面での表面反射が発生しないため、光量損失を低減することができる。また、反射膜を形成しなくても反射率が得られる場合には、反射膜を形成せずにそのまま反射面として使用してもよい。
【0050】
ここで、図8Bを参照しながら、理想的な状態における反射面41の保持位置、及び反射面41の曲率の決定方法について具体的に説明する。図8Bにおける半径L1は、反射面41の曲率半径を示している(以降では、「曲率半径L1」と呼ぶ)。図8Bに示すように、光源部20からy方向に向かって出射された光が、z方向に90°偏向されて、光導波路入射面14aに入射するように、反射面41を保持する位置が決定される。このとき、光源部20からy方向に進む光が入射した反射面41上の点から伸ばした反射面41の法線と、光導波路入射面14aを光源部20の方向に延長した面とが交差する位置に、曲率半径L1の基点P1が位置するように反射面41を形成する。換言すると、光導波路入射面14aを光源部20の方向に延長した面上に設けられた点P1を基点として、yz平面上に曲率半径L1の曲率を有するように、反射面41が設けられている。なお、上記した反射面41の曲率の決定方法は一例であり、上記の決定方法に限定されるものではない。光学系の設計、即ち、光源部20と光導波路14との位置関係によっては、基点P1の位置は、光導波路入射面14aを光源部20の方向に延長した面上には限定されない。
【0051】
このように、反射面41は凹状の円筒面であるため曲率を持った方向のみ光を集光する集光機能(即ち、1次元集光機能)を有する。ここで、図11Aを参照する。図11Aは、本実施形態に係る1次元集光光学素子40を使用した場合の光源部20からの光の光路を示している。図11Aに示すように、反射面41は、光源部20からy方向に出射された光を受けて、この光をz方向に反射する。これにより、光源部20からy方向に向かって出射された光が、z方向に90°偏向され、光導波路入射面14aに導かれる。このとき、反射面41は、反射されてz方向に進む光をy方向に集光する。このように、反射面41の集光機能が1次元であるため、集光された光は線状となる。
【0052】
1次元集光光学素子40は、スライダ10、磁気ヘッド部13、及び光源部20が設計された寸法通りに組み立てられた場合に、図11Aに示すように、光源部20からの光が光導波路入射面14aに導かれるように設計されている。しかしながら、スライダ10と光源部20との間を接合する際に、接合に使用されるハンダ等の厚さ方向のばらつきにより、光源部20からの光の光軸の位置に関してz方向に誤差が生じる場合がある。以降では、このz方向の誤差を修正するための特徴的な構造と、調芯方法について説明する。
【0053】
まず、図11Aを参照する。図11Aに示すように、反射面41の端部のうち、フランジ部42が設けられた側(1次元集光光学素子40が固定された場合の光出射面20a側)の端部を切欠くことで、切欠き部43が設けられている。切欠き部43は、光出射面20aと対向するように設けられている。なお、以降では、光源部20からy方向に出射される光の光軸と上面10aとの間のz方向の距離をL0としたとき、切欠き部43と光出射面20aとの間のy方向の距離をL3とする。切欠き部43を設けることにより、1次元集光光学素子40を固定可能なy方向の範囲が、距離L3分広がる。なお、1次元集光光学素子40を固定可能なy方向の範囲が、本実施形態における「固定可能範囲」に相当し、この固定可能範囲が切欠き部43により距離L3分広がる。切欠き部43を設けることによる具体的な効果については、1次元集光光学素子40を用いた場合の調芯方法とあわせて後述する。
【0054】
(調芯方法)
次に、1次元集光光学素子40を用いた場合の調芯方法について、図11A〜図11Cを参照しながら説明する。図11Bは、調芯方法を説明するための図であり、調芯前の状態を示している。また、図11Cは、調芯方法を説明するための図であり、調芯後の状態を示している。
【0055】
例えば、図11Bは、光源20の位置にz方向の誤差が生じた場合の状態を示している。このときの、光源部20からy方向に出射される光の光軸と上面10aとの間のz方向の距離をL0a(L0a>L0)とする。このように、光源部20がz方向にずれると、出射される光の光軸がずれる。これにより、光源部20から出射された光は、反射面41上において、図11Aの場合とは異なる位置で反射されるため、反射光が集光する位置が、図11Bに示すように光導波路入射面14aからy方向にずれる。本実施形態に係る光アシスト磁気ヘッド4では、1次元集光光学素子40を固定する際に、1次元集光光学素子40をy方向にスライドさせることで、反射面41で反射された光が集光する、光導波路入射面14a及び端面13a上のy方向に沿った位置を調整する。以下に、この調芯方法について具体的に説明する。
【0056】
まず、光源部20、スライダ10、及び磁気ヘッド部13を組み立てる。このときの光源部20、スライダ10、及び磁気ヘッド部13の位置関係は、図11Bに示す通りとする。即ち、光源部20からy方向に出射される光の光軸と上面10aとの間のz方向の距離がL0aとなり、1次元集光光学素子30が設計時に特定された所定の位置(図11A参照)に配置された場合には、反射光が集光する位置が、光導波路入射面14aからy方向に沿って光源部20とは反対側にずれている。
【0057】
次に、フランジ部42の板面42aに接着剤を塗布し、板面42aを上面10aに突き当てて、板面42aと上面10aとを仮接合する。これにより、1次元集光光学素子40を、設計時に特定された所定の位置に一時的に保持する。なお、この状態では接着剤を硬化させずに、1次元集光光学素子40を、y方向にスライド可能に保持する。なお、この接着剤には、例えば、熱や紫外線により硬化するものを用いるとよい。
【0058】
次に、光源部20から光を照射し、光導波路出射面14bから出射される光を測定しながら、板面42aを上面10aに突き当てた状態で、1次元集光光学素子40をy方向にスライドさせる。これにより、反射面41がy方向にスライドするため、反射光が集光する光導波路入射面14a及び端面13a上のy方向に沿った異なる位置も、このスライドにあわせて移動する。このように、1次元集光光学素子40をy方向にスライドさせることで、反射光が集光する位置をy方向にずらすことが可能となる。図11Cは、図11Bの状態から、y方向に沿って反射面41が光出射面20aに近づくように1次元集光光学素子40をスライドさせることで、反射光が集光する位置を、y方向に沿って光源部20に近づく方向にずらした状態を示している。このときの、切欠き部43と光出射面20aとの間のy方向の距離はL3a(L3a<L3)となる。図11Cのように、反射光が集光する位置をy方向にずらすことにより、光源部20とスライダ10との間の位置関係に誤差が生じた場合においても、光源部20からの光を光導波路入射面14aに導くことが可能となる。
【0059】
なお、反射光が集光される位置をy方向に沿って光源部20から遠ざける場合には、y方向に沿って反射面41が光出射面20aから遠ざかるように1次元集光光学素子40をスライドさせる。このとき、1次元集光光学素子40をスライドさせることが可能な範囲は、切欠き部43が設けられた位置により決定される。そのため、組立時における光源部20とスライダ10との間の位置関係について誤差の範囲をあらかじめ見積り、この見積り値を距離L3が包含可能な範囲で切欠き部43を設ける位置を決定する。
【0060】
このように、本実施形態に係る光アシスト磁気ヘッド4では、板面42aと上面10aとが突き合わされることで、反射面41が保持されるz方向の位置が決定される。また、板面42aと上面10aとが突き合わされた状態で1次元集光光学素子40をy方向にスライドさせることで、反射光の集光位置が調整される。このとき、上面10aが、1次元集光光学素子40をy方向にスライドさせるためのガイドの役割をはたす。さらに、1次元集光光学素子40をy方向にスライドさせるときに、フランジ部42を把持することによりハンドリング性を確保でき、光アシスト磁気ヘッド4の組立が容易になる。
【0061】
なお、フランジ部42の板面42b上にアライメントマーク42cを設けてもよい。例えば、図12は、アライメントマーク42cを設けた場合の、1次元集光光学素子40の一態様を示した斜視図である。このような場合には、スライダ10に対する1次元集光光学素子40の位置決めを行う際に、スライダ10の上面10a上の所定の位置にアライメントマーク42cをあわせる。なお、位置決めの際には、アライメントマーク42c及び上面10a上の所定の位置が、視覚的に確認できればよい。例えば、フランジ部42に透過性を有する素材を用いていれば、双方の位置を視覚的に確認すればよい。また、フランジ部42に透過性を有さない素材を用いている場合においても、例えば、赤外線等の別の手段により、アライメントマーク42c及び上面10a上の所定の位置を確認すればよい。これにより、例えば、1次元集光光学素子40を、設計時に特定された所定の位置(図11A参照)に位置決めすることが可能となる。なお、上面10a上にもアライメントマークを設けてもよい。また、板面42a上にアライメントマーク42cを設けてもよい。
【0062】
以上のように、本実施形態に係る1次元集光光学素子40は、フランジ部42を設け、フランジ部42の板面42aと、スライダ10の上面10aとを突き当てて接合することで、反射面41を所定の位置に保持する。これにより、1次元集光光学素子40が非常に小さなミラーであっても、このフランジ部42を持ち手とすることで、ハンドリング性を確保することができ、光アシスト磁気ヘッド4の組立も容易となる。また、フランジ部42を、スライダ10に1次元集光光学素子40を固定するための接着箇所として利用している。これにより、非常に小さなミラーであっても、広い接着箇所を確保することが可能となる。
【符号の説明】
【0063】
1 情報記録装置
2 筐体
3 ディスク
4 光アシスト磁気ヘッド
5 ヘッド支持部
6 支軸
7 トラッキング用アクチュエータ
10 スライダ
10a 上面
10b 下面
10c 端面
13 磁気ヘッド部
13a 端面
13b 端面
14 光導波路
14a 光導波路入射面
14b 光導波路出射面
14c 光導波路側面
15 プラズモンプローブ
20 光源部
20a 光出射面
30 1次元集光光学素子
31 反射面
32 フランジ部
32a 接合面
32b 背面
32c アライメントマーク
33 切欠き部
40 1次元集光光学素子
41 反射面
42 フランジ部
42a 接合面
42b 上面
42c アライメントマーク
43 切欠き部

【特許請求の範囲】
【請求項1】
一の面と、前記一の面の所定の方向の一端に設けられた端面とを備え、ディスク状の記録媒体の回転に応じて前記記録媒体に対して浮上して相対移動するスライダと、
前記一の面に固定され、前記所定の方向に光を出射する光源と、
前記端面との接合面とは反対側の側面と、光入射面から入射した光を導く光導波路と、を有するヘッド部と、
前記光源及び前記光入射面の双方に臨み、所定の曲率を有する凹型の反射面と、前記反射面に対して所定の方向に延伸され、かつ前記側面及び前記一の面のいずれかからなる基準面に当接されたフランジ部とを有し、前記反射面により前記光源からの光を前記光入射面に向けて反射及び集光させる偏向ミラーと、
を備えたことを特徴とする光アシスト磁気ヘッド。
【請求項2】
前記基準面は、前記側面であり、
前記フランジ部は、前記側面に沿って延伸した板状の形状であって、
前記フランジ部の一対の板面のうち前記反射面が向いている側の板面と前記側面とを付き合わせて、前記偏向ミラーが前記スライダに間接的に固定されることを特徴とする請求項1に記載の光アシスト磁気ヘッド。
【請求項3】
前記偏向ミラーは、
前記側面に沿った前記偏向ミラーの固定可能範囲を広げるように、前記反射面の前記光入射面側の一部が切り欠かれていることを特徴とする請求項2に記載の光アシスト磁気ヘッド。
【請求項4】
前記フランジ部は、前記一対の板面のうちの少なくともいずれかにマークを有し、
前記基準面中の所定の位置と、前記マークとが、あらかじめ決められた位置関係となるように前記偏向ミラーが固定されることで、前記反射面が前記所定の位置に保持されることを特徴とする請求項2または請求項3に記載の光アシスト磁気ヘッド。
【請求項5】
前記基準面は、前記一の面であり、
前記フランジ部は、前記光源から前記反射面までの光路を挟み込むように設けられ、前記端面から反対側の端面に向かう方向に前記一の面に沿って延伸した一対の板状の形状であって、
前記フランジ部の一対の板面のうち前記反射面が向いている側の板面と前記一の面とを付き合わせて、前記偏向ミラーが前記スライダに直接的に固定されることを特徴とする請求項1に記載の光アシスト磁気ヘッド。
【請求項6】
前記偏向ミラーは、
前記一の面に沿った前記偏向ミラーの固定可能範囲を広げるように、前記反射面の前記光源側の一部が切り欠かれていることを特徴とする請求項5に記載の光アシスト磁気ヘッド。
【請求項7】
前記フランジ部は、前記一対の板面のうちの少なくともいずれかにマークを有し、
前記基準面中の所定の位置と、前記マークとが、あらかじめ決められた位置関係となるように前記偏向ミラーが固定されることで、前記反射面が前記所定の位置に保持されることを特徴とする請求項5または請求項6に記載の光アシスト磁気ヘッド。
【請求項8】
一の面と、前記一の面の所定の方向の一端に設けられた端面とを備えた基板と、
前記一の面に固定され、前記所定の方向に光を出射する光源と、
前記端面との接合面とは反対側の側面と、光入射面から入射した光を導く光導波路と、を有するヘッド部と、
前記光源及び前記光入射面の双方に臨み、所定の曲率を有する凹型の反射面と、前記反射面に対して所定の方向に延伸され、かつ前記側面及び前記一の面のいずれかからなる基準面に当接されたフランジ部とを有し、前記反射面により前記光源からの光を前記光入射面に向けて反射及び集光させる偏向ミラーと、
を備えたことを特徴とする光学的結合構造。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図12】
image rotate


【公開番号】特開2013−4160(P2013−4160A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−137960(P2011−137960)
【出願日】平成23年6月22日(2011.6.22)
【出願人】(303000408)コニカミノルタアドバンストレイヤー株式会社 (3,255)
【Fターム(参考)】