説明

光変調器

【課題】
光ファイバの波長分散を補償可能であり、数10Gbpsを超える高速伝送にも適用可能な光変調器を提供すること。
【解決手段】
電気光学効果を有する材料で構成される基板1と、該基板に形成された光導波路2と、該光導波路を伝搬する光波を変調するための変調電極3とを有する光変調器において、該光導波路から出射する出射光L2を光ファイバで導波し、該光ファイバの波長分散特性と逆の特性の波形歪を有するように、該光導波路に沿って該基板を所定のパターンで分極反転10させることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光変調器に関するものであり、特に、光ファイバの波長分散を補償する光変調器に関する。
【背景技術】
【0002】
光通信分野や光計測分野において、光変調器で変調した光波を光ファイバで伝送することが行われている。光ファイバでは、光の伝搬速度や伝搬経路の長さが波長により異なるため、波長分散が発生し、光信号の波形が歪むこととなる。特に、標準シングルモードファイバであるSSMFにおいて、波形の歪みは顕著である。このため、40Gbpsを超える高速通信や波長多重の高速伝送システムなどにおいては、光ファイバの波長分散を補償する技術が不可欠となる。
【0003】
分散補償方法としては、光信号の受信器の直前に分散補償ファイバを配置したり、特許文献1のようなファイバ・ブラッグ・グレーティング(FBG)やエタロンなどの光デバイスを用いる方法、さらには、特許文献2や非特許文献1のようなデジタル信号処理回路を利用するものなどがある。デジタル信号処理回路では、波長分散に係る実部や虚部の変化に対応し、デジタルシングナルプロセッサーで補償するインパルス応答を生成している。
【0004】
分差補償ファイバでは、その補償量の最小単位によって補償精度が限られ、また、波長分割多重(WDM)光などの波長分散補償には、WDM光などを分波するため、FBG等の波長分散補償器となる光デバイスも別途必要となる。しかも、FBG等の光デバイスは、取り扱う波長帯域に制限があるだけでなく、光損失も大きい。さらに、デジタル信号処理回路では、40Gbpsを超える高速処理は技術的にも難しいという問題を生じていた。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−12714号公報
【特許文献2】特開2010−226254号公報
【非特許文献】
【0006】
【非特許文献1】Robert I.Kelley, et al.," Electronic Dispersion Compensation by Signal Predistortion Using Digital Processing and a Dual-Drive Mach-Zehnder Modulator ",IEEE Photonics Technology letters, Vol.17, No.3, pp714-716, 2005
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明が解決しようとする課題は、光ファイバの波長分散を補償可能であり、数10Gbpsを超える高速伝送にも適用可能な光変調器を提供することである。
【課題を解決するための手段】
【0008】
上記課題を解決するため、請求項1に係る発明は、電気光学効果を有する材料で構成される基板と、該基板に形成された光導波路と、該光導波路を伝搬する光波を変調するための変調電極とを有する光変調器において、該光導波路から出射する出射光を光ファイバで導波し、該光ファイバの波長分散特性と逆の特性の波形歪を有するように、該光導波路に沿って該基板を所定のパターンで分極反転させることを特徴とする。
【0009】
請求項2に係る発明は、請求項1に記載の光変調器において、該光導波路が2つの分岐導波路を持つマッハツェンダー型導波路を有し、一方の分岐導波路に形成される分極反転のパターンは、該光ファイバのインパルス応答h(t)を補償するインパルス応答1/h(t)の実部応答性に対応するパターンであり、他方の分岐導波路に形成される分極反転のパターンは、前記インパルス応答1/h(t)の虚部応答性に対応するパターンであり、前記2つの分岐導波路を通過した光波を所定の位相差で合波するよう構成されていることを特徴とする。
【0010】
請求項3に係る発明は、請求項2に記載の光変調器において、該光ファイバのインパルス応答h(t)は以下の式で与えられることを特徴とする。
ただし、H(ω)は光ファイバの伝達関数であり、H(ω)=exp(jβ(ω)L)となる。β(ω)は、光ファイバ中を伝搬する光波の位相定数であり、Lは光ファイバの長さである。
【数1】

【発明の効果】
【0011】
請求項1に係る発明により、電気光学効果を有する材料で構成される基板と、該基板に形成された光導波路と、該光導波路を伝搬する光波を変調するための変調電極とを有する光変調器において、該光導波路から出射する出射光を光ファイバで導波し、該光ファイバの波長分散特性と逆の特性の波形歪を有するように、該光導波路に沿って該基板を所定のパターンで分極反転させるため、光変調器によって電気信号を光信号に変換する際に、予め光ファイバの波長分散による波形歪の逆の特性を持たせることで、光ファイバによる波長分散が発生しても特性劣化を補償することが可能となる。しかも波長に依存せず波形劣化を補償することが可能であり、デジタル信号処理技術も使用しないため、数10Gbpsを超える高速伝送にも適用可能な光変調器を提供することができる。
【0012】
請求項2に係る発明により、光導波路が2つの分岐導波路を持つマッハツェンダー型導波路を有し、一方の分岐導波路に形成される分極反転のパターンは、光ファイバのインパルス応答h(t)を補償するインパルス応答1/h(t)の実部応答性に対応するパターンであり、他方の分岐導波路に形成される分極反転のパターンは、前記インパルス応答1/h(t)の虚部応答性に対応するパターンであり、前記2つの分岐導波路を通過した光波を所定の位相差で合波するよう構成されているため、光ファイバの波長分散を補償する光波を容易に生成することが可能となる。しかも、分極反転パターンや位相差を調整することにより、多様な光ファイバの波長分散に対して、容易に設計し、設定することができる。
【0013】
請求項3に係る発明により、前記「数1」欄で示された、光ファイバのインパルス応答h(t)を用いることで、各種の光ファイバや長さに対応した、波長分散を補償する分極反転パターンを容易に設計し、設定することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の光変調器の一例を示す図である。
【図2】光ファイバのインパルス応答を補償する実部応答性(Reh(t))と虚部応答性(Imh(t))の一例を示すグラフである。
【発明を実施するための形態】
【0015】
以下、本発明を好適例を用いて詳細に説明する。
本発明は、図1に示すように、電気光学効果を有する材料で構成される基板1と、該基板に形成された光導波路2と、該光導波路を伝搬する光波を変調するための変調電極3とを有する光変調器において、該光導波路から出射する出射光L2を光ファイバ(不図示)で導波し、該光ファイバの波長分散特性と逆の特性の波形歪を有するように、該光導波路に沿って該基板を所定のパターンで分極反転10させることを特徴とする。
【0016】
本発明の電気光学効果を有する材料を用いた基板としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及びこれらの材料を組み合わせた基板が利用可能である。特に、電気光学効果の高く、任意の分極反転構造を形成し易い材料であることが好ましい。具体的には、ニオブ酸リチウム、タンタル酸リチウム、電気光学ポリマーである。
【0017】
基板に光導波路2を形成する方法としては、Tiなどを熱拡散法やプロトン交換法などで基板表面に拡散させることにより形成することができる。また、光導波路以外の基板をエッチングしたり、光導波路の両側に溝を形成するなど、基板に光導波路に対応する部分を凸状としたリッジ形状の導波路を利用することも可能である。
【0018】
基板1上には、信号電極3や接地電極などの変調電極が形成されるが、このような電極は、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設け、バッファ層の上に変調電極を形成することも可能である。図1の符号Sは、変調信号である。
【0019】
本発明の光変調器には光ファイバが光学的に結合されている。電気光学効果を有する基板にキャピラリ等を利用して光ファイバを直接接合する方法や、電気光学効果を有する基板に、光導波路を形成した石英基板等を接合し、該石英基板等に光ファイバを接合することも可能である。さらに、電気光学効果を有する基板や石英基板等に空間光学系を介して出射光を光ファイバに導入するよう構成することも可能である。
【0020】
本発明の光変調器においては、図1のような、電気光学効果を有する材料の基板を使用し、基板の一部を分極反転10している。矢印P1,P2は基板の分極方向を示している。このような分極反転構造を進行波電極電気光学変調器に適用すると、擬似速度整合や完全ゼロチャープ強度変調、光SSB変調などの有用な特性を得ることができる。本発明者は、分極反転構造を持つ進行波電極変調器の変調周波数特性は、分極反転パターンに直接的に対応するインパルス応答のフーリエ変換で与えられることに着目し、本発明を完成するに至ったものである。
【0021】
つまり、本発明のように、この特性を利用することで、プリイコライジング機能を兼ね備えた光変調器を実現可能である。しかも、本発明の光変調器は、通常のベースバンド変調器と異なり、変調光の群速度と変調信号の位相速度を合わせる必要が無いため、断面積を大きくした超低損失な進行波型電極を用いることにより、数10GHzを超える超高速応答が可能である。また、従来のデジタル信号処理回路のように、高速A/D変換技術を用いた電気的イコライジング技術の限界を超えた動作も可能となる。本発明の光変調器では、高速なデジタル信号処理回路が不要となり、低消費電力の駆動も可能となる。さらに、ファイバーの波長分散による伝送信号の位相回転補償をはじめ種々の応用も期待できる。
【0022】
以下では、光ファイバーの分散補償を行う光変調器を中心に説明する。本発明の光変調器は、分極反転を用いた電気光学変調技術を用いることにより、電気信号を光信号に変換する際に、あらかじめ光ファイバーの波長分散による波形歪の逆の特性を持たせることで、特性劣化を補償するものである。
【0023】
本発明の光変調器は、数10Gbps以上、さらには100Gbpsを超える高速伝送の場合にも適用可能である。しかも、波長によらず波形劣化を補償することができる。このため、本発明は、従来の分散補償技術を凌駕する画期的な技術でもある。本発明が利用する分散補償技術の特徴は、以下のような点が列挙できる。
(1)デジタル信号処理技術では対応が困難な40Gbpsを超える高速電子に対応可能
(2)FBG方式のような、波長帯域の制限がない
(3)データ変調器との集積が可能
【0024】
上記(1)及び(2)を兼ね備える特徴は、これまでの分散補償技術にはないものであり、本発明の技術は、特に、波長多重の高速伝送システムにおける分散補償技術として非常に優れている。
【0025】
本発明の光変調器における分散補償技術について、詳細に説明する。
光ファイバー中を伝搬する光波の位相定数をβ(ω)とすると、長さLの光ファイバの伝達関数H(ω)は、以下の式となる。
H(ω)=exp(jβ(ω)L)
【0026】
さらに、分散補償において、β(ω)をキャリア角周波数ω=ωの周りでテーラー展開した時の2次の項を考えればよく、以下のように変形できる。
H(ω)=exp(jβωL/2)
ここで、β2は、テーラー展開の2次の項を意味し、群速度分散を表す。
【0027】
これにより、光ファイバのインパルス応答h(t)は、以下の数2に示す式で表現できる。
【数2】

【0028】
光ファイバーの分散を補償するには、光ファイバの分散補償するための伝達関数は1/H(ω)=H(ω)であるため、光変調器において、分散補償のインパルス応答であるh(t)(=1/h(t))に対応する変調を行えばよい。具体的には、図1に示すマッハツェンダー型導波路を持つ、MZ干渉型光変調器を用いる場合、一方の分岐導波路21でh(t)の実部応答性Re{h(t)}の変調を行い、他方の分岐導波路で虚部応答性Im{h(t)}の変調を行い、両者を所定の位相差で合成すればよい。位相差は、90°となるように設定することが最も好ましい。
【0029】
図2は、分散補償のためのインパルス応答h(t)の実部応答性Re{h(t)})と虚部応答性Im{h(t)}を示すグラフである。
【0030】
一般には、インパルス応答性を自在に設定することは難しいが、強誘電体材料のように一次の電気光学効果を有する材料に分極反転構造をもちいれば、このインパルス応答を容易に実現することが可能である。
【0031】
具体的には、図1のように、光導波路2が2つの分岐導波路(21,22)を持つマッハツェンダー型導波路を有し、一方の分岐導波路に形成される分極反転10のパターンは、上述した光ファイバのインパルス応答h(t)を補償するインパルス応答h(t)(=1/h(t))の実部応答性に対応するパターンとし、他方の分岐導波路に形成される分極反転のパターンは、分散補償のインパルス応答h(t)の虚部応答性に対応するパターンを施せば良い。
【0032】
2つの分岐導波路を通過した光波は、所定の位相差で合波される。この位相差を発生する方法としては、各分岐導波路の長さを調整する方法や、分岐導波路に沿って配置した信号電極又はDCバイアス電極を用いて、分岐導波路の屈折率を調整する方法などが利用可能である。
【0033】
図1のような光変調器は、プリイコライジング機能を備えた分散補償変調器として動作する。さらに、Double MZ 変調器を用いると、より高精度な分散補償が可能である。しかも、QPSK変調、デュオバイナリー変調との併用も可能である。
【産業上の利用可能性】
【0034】
以上のように、本発明に係る光変調器によれば、光ファイバの波長分散を補償可能であり、数10Gbpsを超える高速伝送にも適用可能な光変調器を提供することが可能となる。
【符号の説明】
【0035】
1 電気光学効果を有する材料を用いた基板
2 光導波路
21,22 分岐導波路
3 信号電極
10 分極反転パターン
L1 入射光
L2 出射光
S 変調信号

【特許請求の範囲】
【請求項1】
電気光学効果を有する材料で構成される基板と、該基板に形成された光導波路と、該光導波路を伝搬する光波を変調するための変調電極とを有する光変調器において、
該光導波路から出射する出射光を光ファイバで導波し、該光ファイバの波長分散特性と逆の特性の波形歪を有するように、該光導波路に沿って該基板を所定のパターンで分極反転させることを特徴とする光変調器。
【請求項2】
請求項1に記載の光変調器において、該光導波路が2つの分岐導波路を持つマッハツェンダー型導波路を有し、
一方の分岐導波路に形成される分極反転のパターンは、該光ファイバのインパルス応答h(t)を補償するインパルス応答1/h(t)の実部応答性に対応するパターンであり、
他方の分岐導波路に形成される分極反転のパターンは、前記インパルス応答1/h(t)の虚部応答性に対応するパターンであり、
前記2つの分岐導波路を通過した光波を所定の位相差で合波するよう構成されていることを特徴とする光変調器。
【請求項3】
請求項2に記載の光変調器において、該光ファイバのインパルス応答h(t)は以下の式で与えられることを特徴とする光変調器。
ただし、H(ω)は光ファイバの伝達関数であり、H(ω)=exp(jβ(ω)L)となる。β(ω)は、光ファイバ中を伝搬する光波の位相定数であり、Lは光ファイバの長さである。
【数3】


【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−189630(P2012−189630A)
【公開日】平成24年10月4日(2012.10.4)
【国際特許分類】
【出願番号】特願2011−50655(P2011−50655)
【出願日】平成23年3月8日(2011.3.8)
【出願人】(000183266)住友大阪セメント株式会社 (1,342)
【Fターム(参考)】