説明

光学用レンズ

【課題】耐光性に優れ、且つ、安価な光学用レンズを提供すること。
【解決手段】
(A)エポキシ樹脂と、
下記一般式(1)で表されるアルコキシシラン化合物と、
を共加水分解縮合させて得られる樹脂組成物であって、
【化1】


(式(1)中、n=0〜3であり、Rは水素原子又は有機基を示す。また、複数のRは、同一又は異なっていてもよく、水素原子又は炭素数1〜8のアルキル基を示す。)
前記アルコキシシラン化合物は、
(B)n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有する、少なくとも1種のアルコキシシラン化合物と、
(C)n=1〜2であり、Rとして、少なくとも1つのアリール基を有する、少なくとも1種のアルコキシシラン化合物と、
を含み、かつ、下記式(2)で表される(B)及び(C)の混合指標αが、0.001〜19である樹脂組成物と、
混合指標α=(αc)/(αb) (2)
(式(2)中、αb:前記(B)成分の含有量(mol%)、αc:前記(C)成分の含有量(mol%))
硬化剤と、
硬化促進剤と、を硬化させて得られる光学用レンズ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エポキシ樹脂とアルコキシシラン化合物とを共加水分解縮合して得られる変性樹脂組成物を硬化させて得られる光学用レンズに関する。
【背景技術】
【0002】
近年、電子材料関連の市場が急激に拡大しており、それに伴い、デジタルカメラやビデオカメラ等の各種カメラレンズ、「CD、DVD、MO、ブルーレイディスク等のピックアップレンズ」、LED用レンズ、携帯電話やカメラのフラッシュレンズ、コピー機やプリンター等のOA機器用レンズ等の、光学用レンズの需要も高まりつつある。
従来、これらの光学用レンズには、無機ガラスが用いられていた。しかしながら、例えば、ノートパソコン、デジタルカメラ、携帯電話等、これら光学用レンズが搭載される最終製品は、軽量化や低価格化が進みつつあることから、樹脂製光学用レンズが要求されている。
樹脂製光学用レンズとしては、エポキシ樹脂やシリコーン樹脂が知られているが、エポキシ樹脂は耐光性に劣り、長期使用による黄変が激しいため、市場のニーズを満足するものではない。また、シリコーン樹脂についても検討がなされているが、シリコーン樹脂は、耐光性には優れるものの、エポキシ樹脂や無機ガラスと比較して非常に高価であるため、実用面における課題を有している(特許文献1〜3参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平10−158400号公報
【特許文献2】特開2000−17176号公報
【特許文献3】特開2000−231002号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、近年の電子材料の市場の急激な進歩に伴い、耐光性に優れ、且つ、安価な光学用レンズの開発が要求されてきており、上述した従来の光学用レンズは、未だ性能及び価格面において改良すべき点が多くある。
上記事情に鑑み、本発明は、耐光性に優れ、且つ、安価な光学用レンズを提供することを課題とする。
【課題を解決するための手段】
【0005】
本発明者らは、上記課題に対して鋭意研究を行った結果、エポキシ樹脂と特定のアルコキシシラン化合物とを、共加水分解縮合して得られる樹脂組成物を材料として用いることで、耐光性に優れ、且つ、安価な光学用レンズを提供できることを見出し、本発明を完成させた。
【0006】
即ち、本発明は以下の通りである。
[1]
(A)エポキシ樹脂と、
下記一般式(1)で表されるアルコキシシラン化合物と、
を共加水分解縮合させて得られる樹脂組成物であって、
【0007】
【化1】

【0008】
(式(1)中、n=0〜3であり、Rは水素原子又は有機基を示す。また、複数のRは、同一又は異なっていてもよく、水素原子又は炭素数1〜8のアルキル基を示す。)
前記アルコキシシラン化合物は、
(B)n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有する、少なくとも1種のアルコキシシラン化合物と、
(C)n=1〜2であり、Rとして、少なくとも1つのアリール基を有する、少なくとも1種のアルコキシシラン化合物と、
を含み、かつ、下記式(2)で表される(B)及び(C)の混合指標αが、0.001〜19である樹脂組成物と、
混合指標α=(αc)/(αb) (2)
(式(2)中、αb:前記(B)成分の含有量(mol%)、αc:前記(C)成分の含有量(mol%))
硬化剤と、
硬化促進剤と、を硬化させて得られる光学用レンズ。
[2]
前記アルコキシシラン化合物として、
(D)前記一般式(1)において、n=0である、少なくとも1種のアルコキシシラン化合物をさらに含む、上記[1]記載の光学用レンズ。
[3]
下記式(3)で表される前記アルコキシシラン化合物の混合指標βが、0.01〜1.4である、上記[1]又は[2]記載の光学用レンズ;
混合指標β={(βn2)/(βn0+βn1)} (3)
(式(3)中、
βn2:前記一般式(1)において、n=2であるアルコキシシラン化合物の含有量(mol%)、
βn0:前記一般式(1)において、n=0であるアルコキシシラン化合物の含有量(mol%)、
βn1:前記一般式(1)において、n=1であるアルコキシシラン化合物の含有量(mol%)、
ここで、0≦{(βn0)/(βn0+βn1+βn2)}≦0.1である)。
[4]
下記式(4)で表される、前記(A)エポキシ樹脂と前記アルコキシシラン化合物との混合指標γが、0.02〜15である、上記[1]〜[3]のいずれか記載の光学用レンズ;
混合指標γ=(γa)/(γs) (4)
(式(4)中、
γa:エポキシ樹脂の質量(g)、
γs:一般式(1)において、n=0〜2であるアルコキシシラン化合物の質量(g))
【発明の効果】
【0009】
本発明によれば、耐光性に優れ、且つ、安価な光学用レンズを得ることができる。
【発明を実施するための形態】
【0010】
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0011】
本実施形態の光学用レンズは、
(A)エポキシ樹脂と、
下記一般式(1)で表されるアルコキシシラン化合物と、
を共加水分解縮合させて得られる樹脂組成物であって、
【0012】
【化2】

【0013】
(式(1)中、n=0〜3であり、Rは水素原子又は有機基を示す。また、複数のRは、同一又は異なっていてもよく、水素原子又は炭素数1〜8のアルキル基を示す。)
前記アルコキシシラン化合物は、
(B)n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有する、少なくとも1種のアルコキシシラン化合物と、
(C)n=1〜2であり、Rとして、少なくとも1つのアリール基を有する、少なくとも1種のアルコキシシラン化合物と、
を含み、かつ、下記式(2)で表される(B)及び(C)の混合指標αが、0.001〜19である樹脂組成物と、
混合指標α=(αc)/(αb) (2)
(式(2)中、αb:前記(B)成分の含有量(mol%)、αc:前記(C)成分の含有量(mol%))
硬化剤と、
硬化促進剤と、を硬化させて得られる光学用レンズである。
【0014】
(樹脂組成物)
本実施形態の樹脂組成物は、
(A)エポキシ樹脂と、
上記一般式(1)で表されるアルコキシシラン化合物と、
を共加水分解縮合させて得られる樹脂組成物であって、
上記一般式(1)で示されるアルコキシシラン化合物は、(B)n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有する、少なくとも1種のアルコキシシラン化合物と、(C)n=1〜2であり、Rとして、少なくとも1つのアリール基を有する、少なくとも1種のアルコキシシラン化合物と、を含み、かつ、上記式(2)で表される(B)及び(C)の混合指標αが、0.001〜19である。
【0015】
本発明者らは、エポキシ樹脂と、特定のアルコキシシラン化合物とを、共加水分解縮合することによって得られる樹脂組成物を材料として用いることにより、耐光性に優れ、且つ、安価な光学用レンズが得られることを見出した。
【0016】
((A)エポキシ樹脂)
本実施形態の(A)エポキシ樹脂とは、後述のアルコキシシラン化合物とその縮合物を除く、分子内にオキシラン環、通常は2個以上のオキシラン環を有する化合物を指し、上述の要件を満たすものであれば、特に限定されるものではない。これらは単独で用いても、複数を組み合わせて使用してもよい。
【0017】
エポキシ樹脂のエポキシ当量(WPE)は、100〜600g/eqであることが好ましく、より好ましくは100〜500g/eq、更に好ましくは100〜300g/eqである。上記一般式(1)で示されるアルコキシシラン化合物との組成バランスによっては、エポキシ当量(WPE)が100g/eq未満であると、樹脂組成物の保存安定性が低下する場合があり、600g/eqを超えると、樹脂組成物を硬化させて得られる光学レンズに、クラックが発生するおそれがある。
【0018】
また、エポキシ樹脂は、25℃における粘度が1000Pa・s以下の液体であることが好ましく、より好ましくは500Pa・s以下、更に好ましくは100Pa・s以下の液体である。25℃における粘度が1000Pa・sを超えると、液体としての流動性を失い、後述するアルコキシシラン化合物との相溶性が悪化する傾向にある。また、25℃における粘度が500Pa・sを超え、1000Pa・s以下である場合(500Pa・s<粘度≦1000Pa・s)には、製造時の温度調整や溶媒選択等により使用可能であるが、製造条件がやや限定される傾向があるため、500Pa・s以下であることが好ましい。
【0019】
エポキシ樹脂の種類は、特に限定されるものではなく、具体例としては、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、ポリフェノール化合物のグリシジルエーテル化物である多官能エポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物である多官能エポキシ樹脂、芳香族エポキシ樹脂の核水素化物、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂等が挙げられる。上記の中でも、容易に入手可能であり、樹脂組成物を硬化させて得られる光学用レンズが良好な物性を有する傾向にあるため、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂が好ましく、脂環式エポキシ樹脂がより好ましい。またこれらのエポキシ樹脂は、単独で使用しても、複数を組み合わせて使用してもよい。
【0020】
(多官能エポキシ樹脂)
ポリフェノール化合物のグリシジルエーテル化物である多官能エポキシ樹脂としては、特に限定されるものではなく、具体的には、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’−ビフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル−4,4’−ビフェノール、ジメチル−4,4’−ビフェニルフェノール、1−(4−ヒドロキシフェニル)−2−[4−(1,1−ビス−(4−ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、4,4’−ブチリデン−ビス(3−メチル−6−t−ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、2,6−ジ(t−ブチル)ハイドロキノン、ピロガロール、ジイソプロピリデン骨格を有するフェノール類、1,1−ジ(4−ヒドロキシフェニル)フルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエンのポリフェノール化合物のグリシジルエーテル化物である多官能エポキシ樹脂等が挙げられる。上記の中でも、透明性と流動性に優れるタイプのものが多く市販され、安価に入手可能であることや、樹脂組成物を硬化させて得られる光学レンズの耐クラック性に優れる傾向にあるため、ビスフェノールA骨格を有するフェノール類のグリシジルエーテル化物である多官能エポキシ樹脂が好ましい。ビスフェノール骨格を有するフェノール類のグリシジルエーテル化物である多官能エポキシ樹脂の代表的な例を下記に示す。
【0021】
【化3】

【0022】
エポキシ樹脂として、ポリフェノール化合物のグリシジルエーテル化物である多官能エポキシ樹脂を使用する場合、これらの繰り返し単位(上記代表的な例を示す化学式中のn)は、特に限定されるものではないが、好ましくは50未満、より好ましくは0.001〜10、更に好ましくは0.01〜2である。繰り返し単位が0.001未満であると、アルコキシシラン化合物との反応性が悪化する場合があり、50を超えると流動性が低下して、実用上問題となる場合がある。上述の反応性と流動性のバランスの観点から、繰り返し単位は0.01〜2であることが特に好ましい。
【0023】
(脂環式エポキシ樹脂)
脂環式エポキシ樹脂としては、脂環式エポキシ基を有するエポキシ樹脂であれば、特に限定されるものではなく、例えば、シクロヘキセンオキサイド基、トリシクロデセンオキサイド基、シクロペンテンオキサイド基等を有するエポキシ樹脂が挙げられる。
【0024】
脂環式エポキシ樹脂の具体例としては、単官能脂環式エポキシ化合物として、4−ビニルエポキシシクロヘキサン、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ−2−エチルヘキシル、ETHB等が挙げられる。2官能脂環式エポキシ化合物としては、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルオクチル−3,4−エポキシシクロヘキサンカルボキシレート、2−(3,4−エポキシシクロヘキシル−5,5−スピロ−3,4−エポキシ)シクロヘキサン−メタ−ジオキサン、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジオキサイド、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、3,4−エポキシ−6−メチルシクロヘキシル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、メチレンビス(3,4−エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールジ(3,4−エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)、1,2,8,9−ジエポキシリモネン等が挙げられる。多官能脂環式エポキシ化合物としては、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキセン付加物等が挙げられる。また、多官能脂環式エポキシ化合物としては、エポキシ化ブタンテトラカルボン酸テトラキス−(3−シクロヘキセニルメチル)修飾ε−カプロラクトン等を用いることもできる。脂環式エポキシ樹脂の代表的な例を下記に示す。
【0025】
【化4】

【0026】
【化5】

【0027】
(脂肪族系エポキシ樹脂)
脂肪族系エポキシ樹脂としては、特に限定されるものではなく、具体的には、1,4−ブタンジオール、1,6−ヘキサンジオール、ポリエチレングリコール、ポリプロピレングリコール、ペンタエリスリトール、キシリレングリコール誘導体等の多価アルコールのグリシジルエーテル類が挙げられる。脂肪族系エポキシ樹脂の代表的な例を下記に示す。
【0028】
【化6】

【0029】
(ノボラック樹脂のグリシジルエーテル化物である多官能エポキシ樹脂)
ノボラック樹脂のグリシジルエーテル化物である多官能エポキシ樹脂としては、特に限定されるものではなく、例えば、フェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂のグリシジルエーテル化物等が挙げられる。ノボラック樹脂のグリシジルエーテル化物である多官能エポキシ樹脂の代表的な例を下記に示す。
【0030】
【化7】

【0031】
(芳香族エポキシ樹脂の核水素化物)
芳香族エポキシ樹脂の核水素化物としては、特に限定されるものではなく、例えば、フェノール化合物(ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’−ビフェノール等)のグリシジルエーテル化物又は各種フェノール(フェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフトール類等)の芳香環を核水素化したものや、ノボラック樹脂のグリシジルエーテル化物の核水素化物等が挙げられる。
【0032】
(複素環式エポキシ樹脂)
複素環式エポキシ樹脂としては、特に限定されるものではなく、例えば、イソシアヌル環、ヒダントイン環等の複素環を有する複素環式エポキシ樹脂等が挙げられる。
【0033】
(グリシジルエステル系エポキシ樹脂)
グリシジルエステル系エポキシ樹脂としては、特に限定されるものではなく、例えば、ヘキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル等のカルボン酸類からなるエポキシ樹脂等が挙げられる。
【0034】
(グリシジルアミン系エポキシ樹脂)
グリシジルアミン系エポキシ樹脂としては、特に限定されるものではなく、例えば、アニリン、トルイジン、p−フェニレンジアミン、m−フェニレンジアミン、ジアミノジフェニルメタン誘導体、ジアミノメチルベンゼン誘導体等のアミン類をグリシジル化したエポキシ樹脂等が挙げられる。
【0035】
(ハロゲン化フェノール類をグリシジル化したエポキシ樹脂)
ハロゲン化フェノール類をグリシジル化したエポキシ樹脂としては、特に限定されるものではなく、例えば、ブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のハロゲン化フェノール類をグリシジルエーテル化したエポキシ樹脂等が挙げられる。
【0036】
上述したエポキシ樹脂には、ポリオールを併用することができる。ポリオールとしては、分子中に2個以上のヒドロキシル基を有する化合物であれば、特に制限されず、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,2−ヘキサンジオール、1,6−ヘキサンジオール等が挙げられる。
【0037】
(アルコキシシラン化合物)
本実施形態におけるアルコキシシラン化合物とは、1〜4個のアルコキシル基を有するケイ素化合物のことを示し、下記一般式(1)で表される。
【0038】
【化8】

【0039】
式(1)中、n=0〜3であり、Rは、水素原子又は有機基を示す。また、複数のRは、同一又は異なって、水素原子又は炭素数1〜8のアルキル基を示す。
【0040】
一般式(1)におけるRは水素原子又は有機基を示し、特に限定されるものではないが、有機基としては、後述する環状エーテル基を有する有機基、アリール基を有する有機基の他に、例えば、アルキル基、ビニル基、メタクリル基、メルカプト基、イソシアネート基を有する有機基等が挙げられ、それらの中でも、アルキル基が好ましい。
【0041】
ここで、アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、ブチル基(n−ブチル、i−ブチル、t−ブチル、sec−ブチル)、ペンチル基(n−ペンチル、i−ペンチル、ネオペンチル等)、ヘキシル基(n−ヘキシル、i−ヘキシル等)、ヘプチル(n−ヘプチル、i−ヘプチル等)、オクチル基(n−オクチル、i−オクチル、t−オクチル等)、ノニル(n−ノニル、i−ノニル等)、デシル基(n−デシル、i−デシル等)、ドデシル基(n−ドデシル、i−ドデシル等)が挙げられ、これらは直鎖状又は分岐鎖状のアルキル基のいずれでもよい。
【0042】
それらの中でも、炭素数10以下のアルキル基が好ましく、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基がより好ましい。また、これらアルキル基の、水素原子又は主鎖骨格の一部又は全部が、エーテル基、エステル基、カルボニル基、シロキサン基、フッ素等のハロゲン原子、メタクリル基、アクリル基、メルカプト基、アミノ基、ヒドロキシル基からなる群から選択された少なくとも1種の基で置換されていてもよい。
【0043】
また、上述の一般式(1)における複数のRは、それぞれ同一又は異なって、水素原子又は炭素数1〜8のアルキル基を示す。Rとしては、上述の要件を満たすものであれば特に限定されるものではないが、好ましくは、メチル基、エチル基である。
【0044】
((B)成分)
上記一般式(1)で示されるアルコキシシラン化合物の(B)成分は、一般式(1)において、n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有する、少なくとも1種のアルコキシシラン化合物である。
【0045】
【化9】

【0046】
環状エーテル基とは、環状の炭化水素の炭素を酸素で置換したエーテルを有する有機基を指し、通常は3〜6員環の構造を持つ環状エーテル基を意味する。中でも、環歪みエネルギーが大きく、反応性の高い3員環又は4員環の環状エーテル基が好ましく、特に好ましいのは3員環のエーテル基である。
【0047】
環状エーテル基の具体例としては、例えば、β−グリシドキシエチル、γ−グリシドキシプロピル、γ−グリシドキシブチル等の炭素数4以下のオキシグリシジル基が結合したグリシドキアルキル基、グリシジル基、β−(3,4−エポキシシクロヘキシル)エチル基、γ−(3,4−エポキシシクロヘキシル)プロピル基、β−(3,4−エポキシシクロヘプチル)エチル基、β−(3,4エポキシシクロヘキシル)プロピル基、β−(3,4−エポキシシクロヘキシル)ブチル基、β−(3,4−エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5〜8のシクロアルキル基で置換されたアルキル基等が挙げられる。
【0048】
上記の中でも、β−グリシドキシエチル基、γ−グリシドキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基等のC1〜C3のアルキル基にオキシグリシジル基が結合したグリシドキシアルキル基、オキシラン基を持ったC5〜C8のシクロアルキル基で置換された炭素数3以下のアルキル基が好ましい。
【0049】
(B)成分の具体例としては、例えば、3−グリシドキシプロピル(メチル)ジメトキシシラン、3−グリシドキシプロピル(メチル)ジエトキシシラン、3−グリシドキシプロピル(メチル)ジブトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(メチル)ジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(フェニル)ジエトキシシラン、2,3−エポキシプロピル(メチル)ジメトキシシラン、2,3−エポキシプロピル(フェニル)ジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリブトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、2,3−エポキシプロピルトリメトキシシラン、2,3−エポキシプロピルトリエトキシシラン等が挙げられる。これらは単独で用いても、複数を組み合わせて使用してもよい。
【0050】
((C)成分)
上記一般式(1)で示されるアルコキシシラン化合物の(C)成分は、一般式(1)において、n=1〜2であり、Rとして、少なくとも1つのアリール基を有する、少なくとも1種のアルコキシシラン化合物である。
【0051】
【化10】

【0052】
アリール基とは、芳香族炭化水素(単純芳香環又は多環芳香族炭化水素)から誘導された官能基又は置換基を指す。アリール基としては、これに合致するものであれば、特に限定するものではないが、高次構造における立体障害を考慮すると、フェニル基やベンジル基等が好ましい。
【0053】
(C)成分の具体例としては、例えば、ジメトキシメチルフェニルシラン、ジエトキシメチルフェニルシラン、フェニルトリエトキシシラン、トリメトキシ[3−(フェニルアミノ)プロピル]シラン、ジメトキシジフェニルシラン、ジフェニルジエトキシシラン、フェニルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。これらは単独で用いても、複数を組み合わせて使用してもよい。
【0054】
上述した「(B)一般式(1)において、n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有する、少なくとも1種のアルコキシシラン化合物」と、「(C)一般式(1)において、n=1〜2であり、Rとして、少なくとも1つのアリール基を有する、少なくとも1種のアルコキシシラン化合物」の混合比率は、以下の式(2)で算出される混合指標αで表される。
混合指標α=(αc)/(αb) (2)
(式(2)中、αb:(B)成分のmol%、αc:(C)成分のmol%である。)
【0055】
本実施形態においては、混合指標αを0.001〜19の範囲とすることが重要である。混合指標αが0.001未満であると、樹脂組成物の流動性や保存安定性が低下し、19を超えると、樹脂組成物を硬化させて得られる光学用レンズの耐光性が悪化する場合がある。特に、光学用レンズを搭載する最終製品が長期間使用される場合は、より高い耐光性が要求されるため、混合指標αは、好ましくは0.2〜5、より好ましくは0.3〜2である。
【0056】
((D)成分)
本実施形態における樹脂組成物は、上述した(A)〜(C)成分に加え、(D)成分として、上記一般式(1)におけるRの個数を示すn=0、つまり(OR)を4個有するアルコキシシラン化合物を更に共加水分解縮合させてもよい。
【0057】
(D)成分としては、例えば、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。これらは単独で用いても、複数を組み合わせて使用してもよい。
【0058】
(その他のアルコキシシラン化合物)
本実施形態における樹脂組成物は、上述した(B)〜(D)成分以外の一般式(1)で表されるアルコキシシラン化合物を更に共加水分解縮合させてもよい。そのような化合物としては、例えば、ジメチルジメトキシシラン、ジメチルエトキシシラン、ヒドロキシメチルトリメチルシラン、メトキシトリメチルシラン、メチルトリメトキシシラン、メルカプトメチルトリメトキシシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、ビス(2−クロロエトキシ)メチルシラン、エトキシトリメチルシラン、ジエトキシメチルシラン、エチルトリエトキシシラン、ジメトキシメチル−3,3,3−トリフルオロプロピルシラン、エトキシジメチルビニルシラン、3−クロロプロピルジメトキシメチルシラン、クロロメチルジエトキシメチルシラン、メチルトリス(エチルメチルケトオキシム)シラン、トリメチルプロポキシシラン、トリメトキシイソプロポキシシラン、ジエトキシジメチルシラン、3−[ジメトキシ(メチル)シリル]プロパン−1−チオール、トリメトキシ(プロピル)シラン、(3−メルカプトプロピル)トリメトキシシラン、3−アミノプロピルトリメトキシシラン、ジエトキシメチルビニルシラン、ブトキシトリメチルシラン、ブチルトリメトキシシラン、メチルトリエトキシシラン、メトキシルトリエトキシシラン、トリエトキシビニルシラン、ジエトキシジエチルシラン、ジメトキシルジプロポキシシラン、エチルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、アリルトリエトキシシラン、3−ブロモプロピルトリエトキシシラン、3−アリルアミノプロピルトリメトキシシラン、ヘキシロキシトリメチルシラン、プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、3−アミノプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、イソシアン酸3−(トリエトキシシリル)プロピル、3−ウレイドプロピルトリエトキシシラン、メトキシトリプロピルシラン、ジブトキシジメチルシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、オクチルオキシトリメチルシラン、ペンチルトリエトキシシラン、3−(2−アミノエチルアミノ)プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、オクチルトリエトキシシラン、ドデシルオキシトリメチルシラン、ジエトキシドデシルメチルシラン等が挙げられる。
【0059】
本実施形態において、アルコキシシラン化合物の「n=2であるアルコキシシラン化合物」、「n=1であるアルコキシシラン化合物」及び「n=0であるアルコキシシラン化合物」の混合比率は、以下の式(3)で算出される混合指標βで表される。
混合指標β={(βn2)/(βn0+βn1)} (3)
(式(3)中、
βn2:一般式(1)において、n=2であるアルコキシシラン化合物の含有量(mol%)、
βn0:一般式(1)において、n=0であるアルコキシシラン化合物の含有量(mol%)、
βn1:一般式(1)において、n=1であるアルコキシシラン化合物の含有量(mol%)、
をそれぞれ表し、0≦{(βn0)/(βn0+βn1+βn2)}≦0.1である。)
【0060】
本実施形態の樹脂組成物において、混合指標βは、好ましくは0.01〜1.4、より好ましくは0.03〜1.2、更に好ましくは0.05〜1.0である。組成によっては、混合指標βが0.01未満であると、樹脂組成物の流動性が悪化する場合があり、1.4を超えると、光学用レンズを製造する際に樹脂組成物が正常に硬化しない場合がある。
【0061】
本実施形態における(A)エポキシ樹脂とアルコキシシラン化合物の「n=0〜2であるアルコキシシラン化合物」の混合比率は、以下の式(4)で算出される混合指標γで表される。
混合指標γ=(γa)/(γs) (4)
(式(4)中、
γa:エポキシ樹脂の質量(g)、
γs:一般式(1)において、n=0〜2であるアルコキシシラン化合物の質量(g)である。)
【0062】
本実施形態の樹脂組成物において、混合指標γは、好ましくは0.02〜15であり、より好ましくは0.04〜7、更に好ましくは0.08〜5である。組成によっては、混合指標γが0.02未満であると、光学用レンズを製造する際に樹脂組成物が正常に硬化しない場合があり、15を超えると、耐光性が悪化するおそれがある。
【0063】
(共加水分解縮合)
本実施形態においては、上述した(A)エポキシ樹脂と、式(1)で表されるアルコキシシラン化合物とを共加水分解縮合させることにより樹脂組成物を得ることができる。
【0064】
本実施形態における「共加水分解縮合」とは、エポキシ樹脂存在下で行う加水分解縮合反応を意味し、エポキシ樹脂非共存下における反応とは明確に区別される。本実施形態における「共加水分解縮合」とは、脱水を伴わない還流工程と、それに続く脱水縮合工程との、少なくとも2つの工程により構成されている。
【0065】
上述の「脱水を伴わない還流工程」とは、共加水分解のために配合した水や溶媒、及び、反応中に生じる、アルコキシシラン化合物由来の水や溶媒を、反応溶液に戻しながら反応を行う工程である。その方法は特に限定されないが、通常は、反応容器上部に冷却管を取り付け、生じた水や溶媒をリフラックスさせながら反応を行う。
【0066】
また上述の「脱水縮合工程」とは、配合した水や溶媒、及び、上記「脱水を伴わない還流工程」で生じた水や溶媒を、除去しながら縮合反応を行う工程である。その方法は特に限定されないが、通常は、ロータリーエバポレータ等を用いて減圧蒸留することで反応を行う。
【0067】
共加水分解縮合反応時の加熱温度は、好ましくは130℃以下、より好ましくは0〜120℃、更に好ましくは0〜100℃である。130℃を超えると、組成によっては樹脂組成物が変質する可能性がある。また、共加水分解縮合の反応時間は、好ましくは0.5〜24時間、より好ましくは1〜12時間である。0.5時間未満であると、組成によっては、未反応物質の残存量が多くなる場合がある。
【0068】
本実施形態の樹脂組成物は、上述した(A)エポキシ樹脂とアルコキシシラン化合物との共加水分解縮合の際、加水分解縮合触媒を加えて行ってもよい。加水分解縮合触媒とは、従来公知の加水分解縮合反応を促進させるものであれば、特に限定されるものではなく、例えば、金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、ストロンチウム、亜鉛、アルミニウム、チタン、コバルト、ゲルマニウム、錫、鉛、アンチモン、ヒ素、セリウム、ホウ素、カドミウム、マンガン、ビスマス等)、有機金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、ストロンチウム、亜鉛、アルミニウム、チタン、コバルト、ゲルマニウム、錫、鉛、アンチモン、ヒ素、セリウム、ホウ素、カドミウム、マンガン、ビスマス等の有機酸化物、有機酸塩、有機ハロゲン化物、アルコキシド等)、無機塩基(水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等)、有機塩基(アンモニア、水酸化テトラメチルアンモニウム等)等が挙げられる。
【0069】
上記有機金属の中でも、有機錫が好ましい。有機錫とは、錫原子に少なくとも一つの有機基が結合しているものを指し、構造としては、モノ有機錫、ジ有機錫、トリ有機錫、テトラ有機錫等が挙げられ、それらの中でも、ジ有機錫が好ましい。
【0070】
有機錫としては、例えば、四塩化錫、モノブチル錫トリクロライド、モノブチル錫オキサイド、モノオクチル錫トリクロライド、テトラn−オクチルチン、テトラn−ブチルチン、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジオクテート、ジブチル錫ジバーサテート、ジブチル錫ジラウレート、ジブチル錫オキシラウレート、ジブチル錫ステアレート、ジブチル錫ジオレート、ジブチル錫・ケイ素エチル反応物、ジブチル錫塩とシリケートの化合物、ジオクチル錫塩とシリケートの化合物、ジブチル錫ビス(アセチルアセトネート)、ジブチル錫ビス(エチルマレート)、ジブチル錫ビス(ブチルマレート)、ジブチル錫ビス(2−エチルヘキシルマレート)、ジブチル錫ビス(ベンジルマレート)、ジブチル錫ビス(ステアリルマレート)、ジブチル錫ビス(オレイルマレート)、ジブチル錫マレート、ジブチル錫ビス(O−フェニルフェノキサイド)、ジブチル錫ビス(2−エチルヘキシルメルカプトアセテート)、ジブチル錫ビス(2−エチルヘキシルメルカプトプロピオネート)、ジブチル錫ビス(イソノニル3−メルカプトプロピオネート)、ジブチル錫ビス(イソオクチルチオグリコレート)、ジブチル錫ビス(3−メルカプトプロピオネート)、ジオクチル錫オキサイド、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ジオクテート、ジオクチル錫ジドデシルメルカプト、ジオクチル錫バーサテート、ジオクチル錫ジステアレート、ジオクチル錫ビス(エチルマレート)、ジオクチル錫ビス(オクチルマレート)、ジオクチル錫マレート、ジオクチル錫ビス(イソオクチルチオグリコレート)、ジオクチル錫ビス(2−エチルヘキシルメルカプトアセテート)、ジブチル錫ジメトキサイド、ジブチル錫ジエトキサイド、ジブチル錫ジブトキサイド、ジオクチル錫ジメトキサイド、ジオクチル錫ジエトキサイド、ジオクチル錫ジブトキサイド、オクチル酸錫、ステアリン酸錫等が挙げられる。上記の中でも、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジブチル錫ジメトキサイド、ジブチル錫ジエトキサイド、ジブチル錫ジブトキサイド、ジオクチル錫ジメトキサイド、ジオクチル錫ジエトキサイド、ジオクチル錫ジブトキサイドが好ましい。
【0071】
これらの加水分解縮合触媒は単独で用いても、複数を組み合わせて使用してもよい。例えば、有機酸錫とアルカリ系有機錫を組み合わせて使用したり、錫等の有機酸塩で反応させた後に、無機塩基で処理することも可能である。この場合の無機塩基としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等の多価カチオンの水酸化物が好ましい。
【0072】
加水分解縮合触媒の添加量は特に限定されるものではないが、好ましい添加量は、上述の一般式(1)における(OR)に対する比率である混合指標δから求めることができる。ここで、混合指標δは、以下の式(5)で表される。
混合指標δ=(δe)/(δs) (5)
(式(5)中、
δe:加水分解縮合触媒の添加量(mol数)、
δs:一般式(1)における(OR)の量(mol数)である。)
【0073】
混合指標δは、好ましくは0.0005〜5、より好ましくは0.001〜1、更に好ましくは0.005〜0.5である。樹脂組成物の組成によっては、混合指標δが0.0005未満であると、加水分解縮合の促進効果が得られ難くなる場合があり、5を超えると、環状エーテル基の開環が促進されたり、樹脂組成物の保存安定性が低下する場合がある。
【0074】
本実施形態の樹脂組成物を共加水分解縮合により得る工程において、水の添加量は特に限定されるものではないが、好ましい添加量は、上述の一般式(1)における(OR)に対する比率である混合指標εから求めることができる。ここで、混合指標εは、以下の式(6)で表される。
混合指標ε=(εw)/(εs) (6)
(式(6)中、
εw:水の添加量(mol数)、
εs:一般式(1)における(OR)の量(mol数)である。)
【0075】
混合指標εは、好ましくは0.1〜5、より好ましくは0.2〜3、更に好ましくは0.3〜1.5である。樹脂組成物の組成によっては、混合指標εが0.1未満であると、加水分解反応が進行しない場合があり、5を超えると、樹脂組成物の保存安定性が低下する場合がある。
【0076】
上述した共加水分解縮合における水の添加は、アルコキシシラン化合物の加水分解が主たる目的であるので、「脱水を伴わない還流工程」で行う必要がある。その添加のタイミングは、特に限定されず、最初に添加してもよいし、フィードポンプ等を用いて、反応中に徐々に添加してもよい。
【0077】
本実施形態の共加水分解縮合反応は、無溶剤でも、溶剤中でも行うことができる。溶剤としては、エポキシ樹脂とアルコキシシラン化合物を溶解可能であり、これらに対して非活性である有機溶剤であれば、特に制限されず、例えば、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒を好適に用いることができる。また入手が容易であることから、メタノール、エタノール、ブタノール、イソプロパノール、n−ブタノール等のアルコール系溶剤の使用も可能であるが、これらはエポキシ基の開環を促進するため、配合や製造条件によっては使用に適さない場合もある。
【0078】
溶剤の添加量は、共加水分解縮合反応に供されるエポキシ樹脂とアルコキシシラン化合物の合計質量に対して、好ましくは0.01〜20倍量、より好ましくは0.02〜15倍量、更に好ましくは0.03〜10倍量である。溶剤の添加量を調整することにより樹脂組成物の分子量を制御することが可能であるため、上述の添加量の範囲とすることで、適正な分子量、ひいては適性粘度の樹脂組成物を得ることができる。
【0079】
本実施形態の光学用レンズは、上述した樹脂組成物と、(F)硬化剤と、(G)硬化促進剤とを硬化させて得られる。(F)硬化剤、(G)硬化促進剤について、下記に説明する。
【0080】
(硬化剤)
硬化剤とは、樹脂組成物を硬化させるために用いられる物質であり、特に限定されるものではない。硬化剤としては、例えば、酸無水物系化合物、アミン系化合物、アミド系化合物、フェノール系化合物等が使用でき、特に、芳香族酸無水物、環状脂肪族酸無水物、脂肪族酸無水物等の酸無水物系化合物が好ましく、カルボン酸無水物がより好ましい。
【0081】
また、酸無水物系化合物には脂環式酸無水物が含まれ、カルボン酸無水物の中でも脂環式カルボン酸無水物が好ましい。これらの硬化剤は、単独で使用しても、2種以上を組み合わせて使用してもよい。
【0082】
硬化剤の具体例としては、無水フタル酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、テトラエチレンペンタミン、ジメチルベンジルアミン、ケチミン化合物、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、ビスフェノール類、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類と芳香族ジメチロールとの重縮合物、又はビスメトキシメチルビフェニルとナフトール類若しくはフェノール類との縮合物等、ビフェノール類及びこれらの変性物、イミダゾール、3フッ化硼素−アミン錯体、グアニジン誘導体等が挙げられる。
【0083】
脂環式カルボン酸無水物の具体例としては、1,2,3,6−テトラヒドロ無水フタル酸、3,4,5,6−テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、「4−メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30」、4−メチルヘキサヒドロ無水フタル酸、「メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物/ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物」等が挙げられる。
【0084】
硬化剤の添加量は、上述のエポキシ樹脂、及びアルコキシシラン化合物に含まれる環状エーテル基に対する比率である混合指標ζから求められる。
混合指標ζは、下記式(7)で表される。
混合指標ζ=(ζf)/(ζk)・・・(7)
(式(7)中、
ζf:硬化剤の添加量(mol数)、
ζk:エポキシ樹脂、及びアルコキシシラン化合物に含まれる環状エーテル基の量(mol数)である。)
【0085】
混合指標ζは、0.1〜1.5が好ましく、0.2〜1.3がより好ましく、0.3〜1.5がさらに好ましい。混合指標ζが0.1未満であると、硬化速度が低下する場合があり、1.5を超えると、硬化物としての耐湿性が悪化する場合がある。
【0086】
(硬化促進剤)
硬化促進剤とは、硬化反応の促進を目的に使用される硬化触媒である。硬化促進剤としては、3級アミン類及びその塩が好ましい。硬化促進剤の具体例としては、下記(1)〜(8)に示すものが挙げられる。
(1)3級アミン類:ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、シクロヘキシルジメチルアミン、トリエタノールアミン等。
(2)イミダゾール類:2−メチルイミダゾール、2−n−ヘプチルイミダゾール、2−n−ウンデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−メチルイミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾール、1−(2−シアノエチル)−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジ(ヒドロキシメチル)イミダゾール、1−(2−シアノエチル)−2−フェニル−4,5−ジ〔(2’−シアノエトキシ)メチル〕イミダゾール、1−(2−シアノエチル)−2−n−ウンデシルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−フェニルイミダゾリウムトリメリテート、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾリウムトリメリテート、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1')〕エチル−s−トリアジン、2,4−ジアミノ−6−(2’−n−ウンデシルイミダゾリル)エチル−s−トリアジン、2,4−ジアミノ−6−〔2’−エチル−4’−メチルイミダゾリル−(1')〕エチル−s−トリアジン、2−メチルイミダゾールのイソシアヌル酸付加物、2−フェニルイミダゾールのイソシアヌル酸付加物、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1')〕エチル−s−トリアジンのイソシアヌル酸付加物等。
(3)有機リン系化合物:ジフェニルフォスフィン、トリフェニルフォスフィン、亜リン酸トリフェニル等。
(4)4級フォスフォニウム塩類:ベンジルトリフェニルフォスフォニウムクロライド、テトラ−n−ブチルフォスフォニウムブロマイド、メチルトリフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムブロマイド、n−ブチルトリフェニルフォスフォニウムブロマイド、テトラフェニルフォスフォニウムブロマイド、エチルトリフェニルフォスフォニウムヨーダイド、エチルトリフェニルフォスフォニウムアセテート、テトラ−n−ブチルフォスフォニウムo,o−ジエチルフォスフォロジチオネート、テトラ−n−ブチルフォスフォニウムベンゾトリアゾレート、テトラ−n−ブチルフォスフォニウムテトラフルオロボレート、テトラ−n−ブチルフォスフォニウムテトラフェニルボレート、テトラフェニルフォスフォニウムテトラッフェニルボレート等。
(5)ジアザビシクロアルケン類:1,8−ジアザビシクロ[5.4.0]ウンデセン−7及びその有機酸塩等。
(6)有機金属化合物:オクチル酸亜鉛、アクチル酸錫、アルミニウムアセチルアセトン錯体等。
(7)4級アンモニウム塩類:テトラエチルアンモニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド等。
(8)金属ハロゲン化合物:三フッ化ホウ素、ホウ酸トリフェニル等のホウ素化合物;塩化亜鉛、塩化第二錫等。
【0087】
硬化促進剤の添加量は、上述のエポキシ樹脂、及びアルコキシシラン化合物の質量に対する比率である、下記混合指標ηから求められる。混合指標ηは、下記式(8)で表される。
混合指標η=(ηg)/(ηk)×100・・・(8)
(式(8)中、
ηg:硬化促進剤の質量(g)、
ηk:エポキシ樹脂及びアルコキシシラン化合物の質量(g)である。)
【0088】
混合指標ηは、0.01〜5が好ましく、0.05〜3がより好ましく、0.1〜1がさらに好ましい。混合指標ηが0.01未満であると、硬化が良好に進行しない場合があり、5を超えると、樹脂組成物を硬化させて得られる光学用レンズが着色する場合がある。
【0089】
本実施形態において硬化とは、上述した樹脂組成物に対し、熱を加えることにより分子間に3次元の架橋結合を生じさせて硬化物を得ること(熱硬化)を指す。熱硬化とは、熱によって化学反応を起こさせ、分子間に3次元の架橋結合を生じさせて硬化物を得る方法である。熱硬化方法としては、樹脂組成物に硬化剤や硬化促進剤を含有させておき、これを熱処理する方法を用いる。
【0090】
(樹脂組成物の添加剤)
本実施形態の樹脂組成物には、それらの機能を損なわない範囲で、目的に応じて、各種有機樹脂、無機充填剤、着色剤、レベリング剤、滑剤、界面活性剤、シリコーン系化合物、反応性希釈剤、非反応性希釈剤、酸化防止剤、光安定剤等を適宜添加できる。また、その他、一般に樹脂用の添加剤として使用される可塑剤、難燃剤、安定剤、帯電防止剤、耐衝撃強化剤、発泡剤、抗菌・防カビ剤、導電性フィラー、防曇剤、架橋剤等を配合することができる。
【0091】
有機樹脂としては、特に限定されるものではなく、例えば、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂等が挙げられる。特に、エポキシ樹脂等の反応性の高い有機基を有するものが好ましい。
【0092】
無機充填剤としては、例えば、シリカ類(溶融破砕シリカ、結晶破砕シリカ、球状シリカ、ヒュームドシリカ、コロイダルシリカ、沈降性シリカ等)シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン等が挙げられる。特に、シリカ類、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、珪酸カルシウム等が好ましく、更に硬化物の物性を考慮すると、シリカ類がより好ましい。これらの無機充填剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0093】
着色剤としては、着色を目的に使用される物質であれば特に限定されるものではなく、例えば、フタロシアニン、アゾ、ジスアゾ、キナクリドン、アントラキノン、フラバントロン、ペリノン、ペリレン、ジオキサジン、縮合アゾ、アゾメチン系の各種有機系色素、酸化チタン、硫酸鉛、クロムエロー、ジンクエロー、クロムバーミリオン、弁殻、コバルト紫、紺青、群青、カーボンブラック、クロムグリーン、酸化クロム、コバルトグリーン等の無機顔料等が挙げられる。これらの着色剤は単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0094】
レベリング剤としては、特に限定されるものではなく、例えば、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート等のアクリレート類からなる分子量4000〜12000のオリゴマー類、エポキシ化大豆脂肪酸、エポキシ化アビエチルアルコール、水添ひまし油、チタン系カップリング剤等が挙げられる。これらのレベリング剤は単独使用してもよく、2種以上を組み合わせて使用してもよい。
【0095】
滑剤としては、特に限定されるものではなく、例えば、パラフィンワックス、マイクロワックス、ポリエチレンワックス等の炭化水素系滑剤、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸等の高級脂肪酸系滑剤、ステアリルアミド、パルミチルアミド、オレイルアミド、メチレンビスステアロアミド、エチレンビスステアロアミド等の高級脂肪酸アミド系滑剤、硬化ひまし油、ブチルステアレート、エチレングリコールモノステアレート、ペンタエリスリトール(モノ−,ジ−,トリ−,又はテトラ−)ステアレート等の高級脂肪酸エステル系滑剤、セチルアルコール、ステアリルアルコール、ポリエチレングリコール、ポリグリセロール等のアルコール系滑剤、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リシノール酸、ナフテン酸等のマグネシウム、カルシウム、カドミウム、バリウム、亜鉛、鉛等の金属塩である金属石鹸類、カルナウバロウ、カンデリラロウ、ミツロウ、モンタンロウ等の天然ワックス類等が挙げられる。これらの滑剤は単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0096】
界面活性剤とは、その分子中に溶媒に対して親和性を持たない疎水基と、溶媒に対して親和性を持つ親媒基(通常は親水基)を持つ両親媒性物質である。界面活性剤の種類については特に限定されるものではなく、例えば、シリコーン系界面活性剤、フッ素系界面活性剤等が挙げられる。界面活性剤は単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0097】
シリコーン系化合物としては、特に限定されるものではなく、例えば、シリコーン樹脂、シリコーン縮合物、シリコーン部分縮合物、シリコーンオイル、シランカップリング剤、シリコーンオイル、ポリシロキサン等が挙げられる。これらの両末端、片末端、あるいは側鎖に有機基を導入して変性したものであってもよい。その変性方法についても特に限定されるものではなく、例えば、アミノ変性、エポキシ変性、脂環式エポキシ変性、カルビノール変性、メタクリル変性、ポリエーテル変性、メルカプト変性、カルボキシル変性、フェノール変性、シラノール変性、ポリエーテル変性、ポリエーテル・メトキシ変性、ジオール変性等が挙げられる。
【0098】
反応性希釈剤としては、特に限定されるものではなく、例えば、アルキルグリシジルエーテル、アルキルフェノールのモノグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1、6―ヘキサンジオールジグリシジルエーテル、アルカン酸グリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル等が挙げられる。
【0099】
非反応性希釈剤としては、特に限定されるものではなく、例えば、ベンジルアルコール、ブチルジグリコール、プロピレングリコールモノメチルエーテル等の高沸点溶剤等が挙げられる。
【0100】
酸化防止剤としては、特に限定されるものではなく、例えば、トリフェニルホスフェート、フェニルイソデシルホスファイト等の有機リン系酸化防止剤、ジステアリル−3,3’−チオジプロピネート等の有機イオウ系酸化防止剤、2,6−ジ−tert−ブチル−p−クレゾール等のフェノール系酸化防止剤等が挙げられる。
【0101】
光安定剤としては、特に限定されず、例えば、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリルレート系、ニッケル系、トリアジン系等の紫外線吸収剤や、ヒンダードアミン系光安定剤等が挙げられる。
【0102】
本実施形態の樹脂組成物及び光学用レンズには、本発明の効果を損なわない範囲で、他の物質が更に添加されていてもよい。そのような他の物質としては、例えば、溶剤、油脂、油脂加工品、天然樹脂、合成樹脂、顔料、染料、色素、剥離剤、防腐剤、接着剤、脱臭剤、凝集剤、洗浄剤、脱臭剤、pH調整剤、感光材料、インク、電極、めっき液、触媒、樹脂改質剤、可塑剤、柔軟剤、農薬、殺虫剤、殺菌剤、医薬品原料、乳化剤・界面活性剤、防錆剤、金属化合物、フィラー、化粧品・医薬品原料、脱水剤、乾燥剤、不凍液、吸着剤、着色剤、ゴム、発泡剤、着色剤、研磨剤、離型剤、凝集剤、消泡剤、硬化剤、還元剤、フラックス剤、皮膜処理剤、鋳物原料、鉱物、酸・アルカリ、ショット剤、酸化防止剤、表面被覆剤、添加剤、酸化剤、火薬類、燃料、漂白剤、発光素子、香料、コンクリート、繊維(カーボンファイバー、アラミド繊維、ガラス繊維等)、ガラス、金属、賦形剤、崩壊剤、結合剤、流動化剤、ゲル化剤、安定剤、保存剤、緩衝剤、懸濁化剤、粘稠剤等が挙げられる。
【0103】
樹脂組成物は、光学用レンズの材料として使用するのであれば、その使用目的や使用部位は、特に限定されないが、特に後述する用途に使用することが好ましい。
【0104】
(光学用レンズの製造方法)
本実施形態の光学用レンズの製造方法は、特に限定されるものではないが、上述した樹脂組成物、硬化剤及び硬化促進剤を含む原料を混合・脱泡後、所定の温度で射出成型する方法が好ましい。
【0105】
(光学用レンズの用途)
本実施形態の光学用レンズの用途は、特に限定されるものではなく、例えば、デジタルカメラやビデオカメラ等の各種カメラレンズ、「CD、DVD、MO、ブルーレイディスク等のピックアップレンズ」、LED用レンズ、携帯電話やカメラのフラッシュレンズ、コピー機やプリンター等のOA機器用レンズ等として用いることができる。
【実施例】
【0106】
以下に本実施形態を具体的に説明した実施例を例示するが、本実施形態はその要旨を超えない限り、以下の実施例に限定されるものではない。
実施例及び比較例における物性の評価は以下の通りに行った。
<エポキシ当量(WPE)>
「JIS K 7236:2001(エポキシ樹脂のエポキシ当量の求め方)」に従って測定した。
【0107】
<粘度>
以下の条件で、測定を行った。
回転式E形粘度計:東機産業株式会社製、「TV−22形」
ローター:3°×R14(必要に応じ、他のローターを選択してもよい。)
測定温度:25℃
サンプル量:0.4mL
【0108】
<混合指標αの算出>
混合指標αは、以下の式(2)から算出した。
混合指標α=(αc)/(αb) (2)
ここで、
αb:(B)一般式(1)において、n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有するアルコキシシラン化合物の含有量(mol%)、
αc:(C)一般式(1)において、n=1〜2であり、Rとして、少なくとも1つのアリール基を有するアルコキシシラン化合物の含有量(mol%)。
【0109】
<混合指標βの算出>
混合指標βは、以下の式(3)から算出した。
混合指標β={(βn2)/(βn0+βn1)} (3)
ここで、
βn2:一般式(1)において、n=2であるアルコキシシラン化合物の含有量(mol%)、
βn0:一般式(1)において、n=0であるアルコキシシラン化合物の含有量(mol%)、
βn1:一般式(1)において、n=1であるアルコキシシラン化合物の含有量(mol%)、
なお、この時、0≦{(βn0)/(βn0+βn1+βn2)}≦0.1である。
【0110】
<混合指標γの算出>
混合指標γは、以下の式(4)から算出した。
混合指標γ=(γa)/(γs) (4)
ここで、
γa:エポキシ樹脂の質量(g)、
γs:一般式(1)において、n=0〜2であるアルコキシシラン化合物の質量(g)。
【0111】
<混合指標δの算出>
混合指標δは、以下の式(5)から算出した。
混合指標δ=(δe)/(δs) (5)
ここで、
δe:加水分解縮合触媒の添加量(mol数)、
δs:一般式(1)における(OR)の量(mol数)。
【0112】
<混合指標εの算出>
混合指標εは、以下の式(6)から算出した。
混合指標ε=(εw)/(εs) (6)
ここで、
εw:水の添加量(mol数)、
εs:一般式(1)における(OR)の量(mol数)。
【0113】
<混合指標ζの算出>
混合指標ζは、以下の式(7)から算出した。
混合指標ζ=(ζf)/(ζk) (7)
ここで、
ζf:硬化剤の添加量(mol数)、
ζk:エポキシ樹脂及びアルコキシシラン化合物に含まれる、環状エーテル基の量(mol数)。
【0114】
<混合指標ηの算出>
混合指標ηは、以下の式(8)から算出した。
混合指標η=(ηg)/(ηk)×100 (8)
ここで、
ηg:硬化促進剤の質量(g)、
ηk:エポキシ樹脂及びアルコキシシラン化合物の質量(g)。
【0115】
<保存安定性指標θの算出と、樹脂組成物の保存安定性>
樹脂組成物における保存安定性は、以下の一般式(9)で表される保存安定性指標θで評価した。
保存安定性指標θ=(保存粘度)/(開始粘度) (9)
製造直後の樹脂組成物を入れた容器を密封し、25℃で2時間、温度調整した後、25℃における粘度を測定し、これを「開始粘度」とした。
更に、樹脂組成物を入れた容器を密封し、25℃の恒温インキュベーター内で、2週間保存した。保存後、25℃における粘度を測定し、これを「保存粘度」とした。
樹脂組成物に流動性があり(粘度が1000Pa・s以下であり)、かつ、保存安定性指標θが4以下である場合に、保存安定性を有すると判断した。
【0116】
<光学用レンズ(硬化物)の耐光性試験>
光学用レンズ製造後にサンプルを切り出すことは難しいため、以下の方法で硬化物を作製し、その評価結果を光学用レンズの耐光性評価として代用した。
(1)後述の方法で準備した硬化物用溶液を硬化させ、20mm×10mm×厚み3mmの硬化物を作製した。
(2)上記硬化物を、直径5.5mmの穴を開けた25mm×15mm×厚み1.2mmの黒色マスクで覆い、耐光性試験用サンプルとした。
(3)UV照射装置(ウシオ電機株式会社製、「スポットキュアSP7−250DB」)から、光ファイバーを経由して、50℃で一定にした恒温インキュベーター中の上記サンプルにUV光を照射できるように装置を準備した。
(4)上記サンプルを、黒色マスクを上面にした状態で、50℃の恒温インキュベーター内にセットした。
(5)直径5.5mmの穴にUV光が照射できるように、黒色マスクの上部より、2W/cm2のUV光を96時間照射した。
(6)UV照射したサンプルを、積分球開口部を直径10mmに改造した分光色彩計(日本電色工業株式会社製、「SD5000」)で測定した。
(7)黄色度(YI)は、“ASTM D1925−70(1988):Test Method for Yellowness Index of Plastics”に準じて求めた。このYIが、13以下である場合に合格と判断した。
【0117】
<光学用レンズの冷熱衝撃試験>
(1)後述の方法で製造した光学用レンズ10個を、冷熱衝撃装置(エスペック株式会社製、「TSE−11−A」)にセットし、「(−40℃〜120℃)/サイクル:晒し時間14分、昇降温時間1分」の条件で、ヒートサイクルをかけた。
(2)上記サンプルを、ヒートサイクル100回経過した時点で取り出し、浸透液(株式会社コーザイ製、「ミクロチェック」)をスプレーし、拡大鏡の下で、異常(剥離やクラック)がないか目視観察し、その個数を記録した。
(3)上述の(4)で異常が確認されなかったサンプルは、再度、装置に入れて、更に、100回のヒートサイクルをかけて同様の方法で評価した。これらの操作を繰り返し、評価を行った。
(4)1個/10個中のサンプルに異常が見られた時点で評価を中断し、「耐冷熱衝撃性回数=(中断したヒートサイクル回数)−(100回)」を求めた。
この耐冷熱衝撃性回数が200回以上であった場合に、耐冷熱衝撃性が合格であると判断した。
【0118】
<光学用レンズの表面タック性試験>
後述の方法で製造した光学用レンズの表面を、ラッテックス手袋をした親指で軽く押し、べたつきが認められない場合に、表面タック性が合格であると判断した。
【0119】
<光学用レンズのボイド試験>
後述の方法で製造した光学用レンズ10個を、拡大鏡の下で目視確認し、10個全てにボイドが無かった場合に、合格であると判断した。
【0120】
上述した、耐光性試験、耐冷熱衝撃性試験、表面タック性試験、ボイド試験の全てが合格の場合、総合判定として合格であると判断した。
【0121】
実施例及び比較例で使用した原材料について、以下の(1)〜(7)に示す。
(1)エポキシ樹脂
(1−1)エポキシ樹脂A:ポリ(ビスフェノールA−2−ヒドロキシプロピルエーテル)(以下、Bis−Aエポキシ樹脂と言う)
・商品名:旭化成エポキシ株式会社製、「AER」
また、上述の方法で測定した、エポキシ当量(WPE)及び粘度は、以下の通りであった。
・エポキシ当量(WPE):187g/eq
・粘度(25℃):14.3Pa・s
(1−2)エポキシ樹脂B:3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキシルカルボキシレート
(以下、脂環式エポキシ樹脂と言う)
・商品名:ダイセル化学工業株式会社製、「セロキサイド2021P」
また、上述の方法で測定した、エポキシ当量(WPE)及び粘度は、以下の通りであった。
・エポキシ当量(WPE):131g/eq
・粘度(25℃):227mPa・s
【0122】
(2)アルコキシシラン化合物
(2−1)アルコキシシラン化合物H:3−グリシドキシプロピルトリメトキシシラン(以下、GPTMSと言う)
・商品名:信越化学工業株式会社製、「KBM−403」
(2−2)アルコキシシラン化合物I:フェニルトリメトキシシラン(以下、PTMSと言う)
・商品名:信越化学工業株式会社製、「KBM−103」
(2−3)アルコキシシラン化合物J:ジメチルジメトキシシラン(以下、DMDMSと言う)
・商品名:信越化学工業株式会社製、「KBM−22」
(2−4)アルコキシシラン化合物K:テトラエトキシシラン(以下、TEOSと言う)
・商品名:信越化学工業株式会社製、「KBE−04」
【0123】
(3)溶剤:テトラヒドロフラン(和光純薬工業株式会社製、安定剤不含タイプ)(以下、THFと言う)
【0124】
(4)加水分解縮合触媒
(4−1)ジブチル錫ジラウレート(和光純薬工業株式会社製、以下、DBTDLと言う)
(4−2)ジブチル錫ジメトキサイド(Sigma−Aldrich社製、以下、DBTDMと言う)
【0125】
(5)硬化剤:「4−メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30」
・商品名:新日本理化株式会社製、「リカシッド MH−700G」
【0126】
(6)硬化促進剤:アミン系化合物
・商品名:サンアプロ株式会社製、「U−CAT 18X」
【0127】
(7)シリコーン樹脂
・商品名:東レ・ダウコーニング株式会社製、「EG6301(A液/B液)」
【0128】
[合成例1]
樹脂組成物を、下記の工程により製造した。
(1)準備:循環恒温水槽を5℃にセットし、冷却管に還流させた。更に、マグネチックスターラーの上に、80℃のオイルバスを載せた。
(2)下記表1に示す組成比率に従って、25℃の雰囲気下で、上記Bis−A1エポキシ樹脂、アルコキシシラン化合物、及びTHFを、攪拌子を投入したフラスコに入れて混合攪拌し、その後、更に、水と加水分解縮合触媒を添加して、混合攪拌した。
(3)続いて、フラスコに冷却管をセットし、速やかに、80℃のオイルバスに浸して攪拌を開始し、リフラックスさせながら20時間反応させた(還流工程)。
(4)反応終了後、25℃まで冷却した後、フラスコから冷却管を外した。
(5)還流工程終了後の溶液を、エバポレーターを使用して、400Pa、50℃で1時間留去した後、更に、80℃で10時間留去しながら、脱水縮合反応を行った(脱水縮合工程)。
(6)前記脱水縮合反応の終了後、25℃まで冷却し、樹脂組成物を得た。
(7)得られた樹脂組成物の混合指標α1〜ε1を、それぞれ下記表3に示した。
(8)更に、上述の方法に従って、上記(6)で得た樹脂組成物の、エポキシ当量(WPE)、開始粘度及び保存粘度を測定した。更に、保存安定性指標θ1を求め、これらを表3に示した。
表3に示す通り、上記合成例1の樹脂組成物は、エポキシ当量(WPE)=230g/eqであり、適正な値を示した。また、開始粘度=33.7Pa・s<1000Pa・s、かつ、保存粘度=47.0Pa・s<1000Pa・sと、両者とも流動性のある液体であった。また、保存安定性指標θ1=1.39≦4であり、保存安定性を有する樹脂組成物であることが判明した。
【0129】
[合成例2]
還流工程の時間を25時間としたこと以外は、合成例1と同様の方法で、表1及び2に従って、樹脂組成物を製造した。合成例1と同様の方法により評価を行い、その評価結果、及び混合指標α2〜ε2、保存安定性指標θ2を、表3に示した。
表3に示す通り、合成例2の樹脂組成物は、エポキシ当量(WPE)=238g/eqであり、適正な値を示した。また、開始粘度=15.2Pa・s<1000Pa・s、かつ、保存粘度=20.3Pa・s<1000Pa・sと、両者とも流動性のある液体であった。また、保存安定性指標θ2=1.33≦4であり、保存安定性を有する樹脂組成物であることが判明した。
【0130】
[合成例3]
合成例1と同様の方法で、表1及び2に従って、樹脂組成物を製造した。合成例1と同様の方法により評価を行い、その評価結果、及び混合指標α3〜ε3、保存安定性指標θ3を、表3に示した。
表3に示す通り、合成例3の樹脂組成物は、エポキシ当量(WPE)=228g/eqであり、適正な値を示した。また、開始粘度=38.2Pa・s<1000Pa・s、かつ、保存粘度=61.1Pa・s<1000Pa・sと、両者とも流動性のある液体であった。また、保存安定性指標θ3=1.60≦4であり、保存安定性を有する樹脂組成物であることが判明した。
【0131】
[合成例4]
還流工程の時間を7時間にしたこと以外は、合成例1と同様の方法で、表1及び2に従って、樹脂組成物を製造した。合成例1と同様の方法により評価を行い、その評価結果、及び混合指標α4〜ε4、保存安定性指標θ4を、表3に示した。
表3に示す通り、合成例4の樹脂組成物は、エポキシ当量(WPE)=214g/eqであり、適正な値を示した。また、開始粘度=4.9Pa・s<1000Pa・s、かつ、保存粘度=9.4Pa・s<1000Pa・sと、両者とも流動性のある液体であった。また、保存安定性指標θ4=1.91≦4であり、保存安定性を有する樹脂組成物であることが判明した。
【0132】
[比較合成例1]
合成例1と同様の方法で、表1及び2に従って、樹脂組成物を製造した。合成例1と同様の方法により評価を行い、その評価結果、及び混合指標α4〜ε4、保存安定性指標θ4を、表3に示した。
表3に示す通り、比較合成例1の樹脂組成物は、エポキシ当量(WPE)=295g/eqであり、適正な値を示した。また、開始粘度=33.4Pa・s<1000Pa・s、かつ、保存粘度=48.2Pa・s<1000Pa・sと、両者とも流動性のある液体であった。また、保存安定性指標θ4=1.44≦4であり、保存安定性を有する樹脂組成物であることが判明した。
【0133】
[比較合成例2]
合成例1と同様の方法で、表1及び2に従って、樹脂組成物を製造した。合成例1と同様の方法により評価を行い、その評価結果、及び混合指標α5〜ε5、保存安定性指標θ5を、表3に示した。
表3に示す通り、比較合成例2の樹脂組成物は、エポキシ当量(WPE)=295g/eqであり、適正な値を示した。また、開始粘度=29.0Pa・s<1000Pa・sと、流動性のある液体であった。しかしながら、保存粘度>1000Pa・sと流動性が無く、さらに、保存安定性指標θ5>35と保存安定性が不良であり、光学用レンズ評価用サンプルの作製ができなかった。
【0134】
[実施例1]
25℃で2週間保存した上述の合成例1の樹脂組成物を使用して、下記の工程により硬化物を製造し、耐光性試験を行った。結果を表3に示す。
(1)25℃の雰囲気下で、樹脂組成物、硬化剤及び硬化促進剤を、表2の組成比率に従って混合攪拌し、真空下で脱気し、硬化物用溶液とした。
(2)厚み3mm、コの字状のシリコンゴムを、離型剤を塗ったステンレス板2枚で挟み込み、成型治具を作製した。
(3)この成型治具に、上述の硬化物用溶液を注ぎ込み、120℃で1時間、更に、150℃で1時間、硬化処理を施し、硬化物を作製した。
(4)オーブン内温が30℃以下に下がってから硬化物を取り出して、上述の方法に従って、耐光性試験用サンプルを調製した。
(5)上記サンプルを使用して、上述の方法で耐光性試験を行い、試験結果を表3に示した。この硬化物の耐光性試験の指標であるYI=10.1≦13であり、耐光性は合格と判断した。
【0135】
次に、合成例1の樹脂組成物を用い、下記の工程により光学用レンズを製造し、冷熱衝撃性試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
(6)表2の配合に従って、原料を混合し、真空中で脱泡後、射出成型機(株式会社ソディック製)にセットした。
(7)更に、140℃で15分間硬化させ、室温まで放冷して離型し、直径約1cmの光学用レンズを得た。
上述の方法により冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は400回≧200回であり、耐冷熱衝撃性は合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認められず、合格と判断した。
上述の方法によりボイド性試験を行った結果、ボイドは確認されず、合格と判断した。
以上の結果から、実施例1の光学用レンズは、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験の全てに合格しており、総合判定として合格であると判断した。
【0136】
[実施例2]
合成例1の樹脂組成物の代わりに、合成例2の樹脂組成物を使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
耐光性試験の指標であるYI=8.1≦13であり、耐光性は合格と判断した。
上述の方法により冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は300回≧200回であり、耐冷熱衝撃性は合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認められず、合格と判断した。
上述の方法によりボイド性試験を行った結果、ボイドは確認されず、合格と判断した。
以上の結果から、実施例2の光学用レンズは、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験の全てに合格しており、総合判定として合格であると判断した。
【0137】
[実施例3]
合成例1の樹脂組成物の代わりに、合成例3の樹脂組成物を使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
耐光性試験の指標であるYI=8.9≦13であり、耐光性は合格と判断した。
上記、冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は500回以上≧200回であり、耐冷熱衝撃性は合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認められず、合格と判断した。
上述の方法によりボイド性試験を行った結果、ボイドは確認されず、合格と判断した。
以上の結果から、実施例3の光学用レンズは、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験の全てに合格しており、総合判定として合格であると判断した。
【0138】
[実施例4]
合成例1の樹脂組成物の代わりに、合成例4の樹脂組成物を使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
耐光性試験の指標であるYI=8.3≦13であり、耐光性は合格と判断した。
上述の方法により冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は300回≧200回であり、耐冷熱衝撃性は合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認められず、合格と判断した。
上述の方法によりボイド性試験を行った結果、ボイドは確認されず、合格と判断した。
以上の結果から、実施例4の光学用レンズは、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験の全てに合格しており、総合判定として合格であると判断した。
【0139】
[比較例1]
合成例1の樹脂組成物の代わりに、比較合成例1の樹脂組成物を使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
耐光性試験の指標であるYI=8.4≦13であり、耐光性は合格と判断した。
上述の方法により冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は100回<200回であり、耐冷熱衝撃性は不合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認められず、合格と判断した。
上述の方法によりボイド性試験を行った結果、ボイドは確認されず、合格と判断した。
以上の結果から、比較例1の光学用レンズは、耐光性試験、表面タック性試験、ボイド試験は合格であったが、冷熱衝撃試験が不合格であったため、総合判定として不合格であると判断した。
【0140】
[比較例2]
合成例1の樹脂組成物の代わりに、比較合成例2の樹脂組成物を使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、冷熱衝撃試験、表面タック性試験、ボイド試験を実施しようと試みたが、樹脂組成物の保存安定性が不良であり、硬化物及び光学用レンズの製造が不可能であった。よって、総合判定として不合格であると判断した。
【0141】
[比較例3]
合成例1の樹脂組成物の代わりに、Bis−Aエポキシ樹脂を使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
耐光性試験の指標であるYI=17.2>13であり、耐光性は不合格と判断した。
上述の方法により冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は500回以上≧200回であり、耐冷熱衝撃性は合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認められず、合格と判断した。
上述の方法によりボイド性試験を行った結果、ボイドは確認されず、合格と判断した。
以上の結果から、比較例3の光学用レンズは、冷熱衝撃試験、表面タック性試験、ボイド試験は合格であったが、耐光性が不合格であったため、総合判定として不合格であると判断した。
【0142】
[比較例4]
合成例1の樹脂組成物の代わりに、A液とB液を1:1の質量比で混合攪拌した、上記シリコーン樹脂を使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
耐光性試験の指標であるYI=2.0≦13であり、耐光性は合格と判断した。
上述の方法により冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は100回<200回であり、耐冷熱衝撃性は不合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認められず、合格と判断した。
上述の方法によりボイド性試験を行った結果、ボイドは確認されず、合格と判断した。
以上の結果から、比較例4の光学用レンズは、耐光性試験、表面タック性試験、ボイド試験は合格であったが、冷熱衝撃試験が不合格であったため、総合判定として不合格であると判断した。
【0143】
[比較例5]
合成例1の樹脂組成物の代わりに、表1の配合に従って、Bis−Aエポキシ樹脂、GPTMS、PTMSを混合した組成物使用して、実施例1と同様の方法で、硬化物と光学用レンズを製造し、耐光性試験、表面タック性試験、ボイド試験を行った。結果を表3に示す。
耐光性試験においては、試験用サンプルにボイドが複数生じており、耐光性は測定不能であった。
上述の方法により冷熱衝撃性試験を行った結果、冷熱衝撃試験回数は200回≧200回であり、耐冷熱衝撃性は合格と判断した。
上述の方法により表面タック性試験を行った結果、べたつきは認め、不合格と判断した。
上述の方法によりボイド性試験を行った結果、8個/10個中のサンプルにボイドが認められ、不合格と判断した。
以上の結果から、比較例5の光学用レンズは、冷熱衝撃試験は合格であったが、耐光性試験、表面タック性試験、ボイド試験が不合格であったため、総合判定として不合格であると判断した。
【0144】
【表1】

【0145】
【表2】

【表3】

【産業上の利用可能性】
【0146】
本実施形態の光学用レンズは、例えば、デジタルカメラやビデオカメラ等の各種カメラレンズ、「CD、DVD、MO、ブルーレイディスク等のピックアップレンズ」、LED用レンズ、携帯電話やカメラのフラッシュレンズ、コピー機やプリンター等のOA機器用レンズ等としての産業上利用可能性を有する。

【特許請求の範囲】
【請求項1】
(A)エポキシ樹脂と、
下記一般式(1)で表されるアルコキシシラン化合物と、
を共加水分解縮合させて得られる樹脂組成物であって、
【化1】

(式(1)中、n=0〜3であり、Rは水素原子又は有機基を示す。また、複数のRは、同一又は異なっていてもよく、水素原子又は炭素数1〜8のアルキル基を示す。)
前記アルコキシシラン化合物は、
(B)n=1〜2であり、Rとして、少なくとも1つの環状エーテル基を有する、少なくとも1種のアルコキシシラン化合物と、
(C)n=1〜2であり、Rとして、少なくとも1つのアリール基を有する、少なくとも1種のアルコキシシラン化合物と、
を含み、かつ、下記式(2)で表される(B)及び(C)の混合指標αが、0.001〜19である樹脂組成物と、
混合指標α=(αc)/(αb) (2)
(式(2)中、αb:前記(B)成分の含有量(mol%)、αc:前記(C)成分の含有量(mol%))
硬化剤と、
硬化促進剤と、を硬化させて得られる光学用レンズ。
【請求項2】
前記アルコキシシラン化合物として、
(D)前記一般式(1)において、n=0である、少なくとも1種のアルコキシシラン化合物をさらに含む、請求項1記載の光学用レンズ。
【請求項3】
下記式(3)で表される前記アルコキシシラン化合物の混合指標βが、0.01〜1.4である、請求項1又は2記載の光学用レンズ;
混合指標β={(βn2)/(βn0+βn1)} (3)
(式(3)中、
βn2:前記一般式(1)において、n=2であるアルコキシシラン化合物の含有量(mol%)、
βn0:前記一般式(1)において、n=0であるアルコキシシラン化合物の含有量(mol%)、
βn1:前記一般式(1)において、n=1であるアルコキシシラン化合物の含有量(mol%)、
ここで、0≦{(βn0)/(βn0+βn1+βn2)}≦0.1である)。
【請求項4】
下記式(4)で表される、前記(A)エポキシ樹脂と前記アルコキシシラン化合物との混合指標γが、0.02〜15である、請求項1〜3のいずれか1項記載の光学用レンズ;
混合指標γ=(γa)/(γs) (4)
(式(4)中、
γa:エポキシ樹脂の質量(g)、
γs:一般式(1)において、n=0〜2であるアルコキシシラン化合物の質量(g))

【公開番号】特開2010−222411(P2010−222411A)
【公開日】平成22年10月7日(2010.10.7)
【国際特許分類】
【出願番号】特願2009−68773(P2009−68773)
【出願日】平成21年3月19日(2009.3.19)
【出願人】(303046314)旭化成ケミカルズ株式会社 (2,513)
【Fターム(参考)】