説明

光学素子の製造方法

【課題】急激な硬化収縮による内部歪みを防止しつつ、樹脂製の成形型を用いてもレンズ部のピッチずれを防ぐことができる光学素子の製造方法を提供すること。
【解決手段】光硬化性樹脂であるウェハーレンズ100の樹脂102bを光硬化工程(ステップS14)と熱硬化工程(ステップS15)の2段階に分けて硬化させることにより、樹脂102bの反応速度をコントロールすることができる。これにより、樹脂102bの速い硬化による急激な収縮が発生することを防止することができる。また、サブマスター型40のサブマスター成形部41の樹脂材料41bと樹脂102bの線膨張割合を略等しくすることにより、ウェハーレンズ100のような大きな面積の光学素子を製造する場合でも、第1レンズ本体11aのピッチずれを防ぐことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば撮像装置等に組み込まれる光学素子の製造方法に関し、特に、基板上に複数のレンズ部を形成してなるウェハーレンズ等から個片化され、電子部品とともにリフロー処理によって基板に実装される光学素子の製造方法に関する。
【背景技術】
【0002】
撮影用レンズ等の光学素子の製造方法として、ガラス基板と成形型との間に満たした光硬化性樹脂を硬化し成形物を離型することで得られたウェハーレンズをダイシングして個片化することにより個々の光学素子を製造する方法が知られている(例えば、特許文献1参照)。特許文献1の製造方法は、具体的には、マスター型から樹脂製のサブマスター型を形成し、このサブマスター型からウェハーレンズを成形する。ここで、特許文献1の製造方法では、サブマスター型からウェハーレンズを形成する工程において、光硬化性樹脂を光硬化させた後に、離型前にプレ加熱を行っている。これにより、ウェハーレンズのレンズ部の面形状の転写精度を良好にしつつ、離型時におけるガラス基板の反りを発生しにくくすることができる。樹脂型を用いることにより、金属等で構成されるマスター型の寿命を長くすることができる。
【0003】
近年、光学素子にはますます小型で安価であることが求められるようになっており、小型化のためにレンズ部を小径化したり、一度に成形できるレンズの数を多くするために基板のサイズを大きくしたりすることが求められている。しかしながら、特許文献1の方法では、レンズ部を小径化したり基板のサイズを大きくしたりすることに十分に応えられないおそれがある。つまり、サブマスター型が樹脂製であるため、加熱すると膨張し、レンズ部が小径化したり基板サイズが大きくなったりすると、レンズ部のピッチずれが生じやすいという問題がある。
【0004】
ところで、上述の光硬化性樹脂には、ラジカル重合によって反応硬化させるものと、カチオン重合又はアニオン重合によって反応硬化させるものとがある。ラジカル重合系樹脂は、カチオン重合系樹脂又はアニオン重合系樹脂と比較して硬化が比較的速く、樹脂が肉厚になるほど硬化収縮率が大きくなる。レンズのように樹脂が厚肉である場合、ラジカル重合系樹脂を用いると、急激な硬化収縮により樹脂が光学面から引けてしまい、レンズ部の面精度が悪くなるという問題が生じる。また、所望の面精度が得られたとしても、リフロー工程においてレンズが高温にさらされると、レンズの内部歪みが緩和されることによりレンズ面の形状が崩れるという問題が生じる。
【0005】
ここで、エネルギー硬化性樹脂に2種類の開始剤を添加することにより、エネルギー硬化性樹脂の状態を2段階で変化させる方法がある(例えば、特許文献2、3参照)。特許文献2の方法では、ラジカルの発生により重合して硬化するエネルギー硬化性樹脂に適当量の熱重合開始剤と光重合開始剤とを添加し、成形型に充填後、熱硬化させ、離型後に光硬化させる。これは、成形型の材料に制限されず、2段階の硬化工程で短時間にエネルギー硬化性樹脂の内部まで硬化させることを目的としている。また、特許文献3の方法では、光重合開始剤よりも熱重合開始剤の添加量を多くしたエネルギー硬化性樹脂を用いて、このエネルギー硬化性樹脂を光重合開始剤による重合反応によって所定の粘度に増粘した後に成形型に充填し、熱重合開始剤による重合反応によって当該エネルギー硬化性樹脂を硬化させる。これは、増粘剤を使用せずにエネルギー硬化性樹脂を適度な粘度にした状態で成形型に充填させることを目的としている。
【0006】
特許文献2、3に記載される方法では、離型前の成形時において樹脂材料硬化の主たる反応は熱による重合反応で進行する一方、熱重合反応中における樹脂製の成形型の線膨張が考慮されていないため、特に、レンズ部が小径化したり基板サイズが大きくなったりした場合に、急激な硬化収縮による樹脂製の成形型からのヒケの問題が十分に改善できないという課題がある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】国際公開WO/2010/032511号公報
【特許文献2】特開2009−42448号公報
【特許文献3】特開2009−126011号公報
【発明の概要】
【0008】
本発明は、急激な硬化収縮による内部歪みを防止しつつ、樹脂製の成形型を用いてもレンズ部のピッチずれを防ぐことができる光学素子の製造方法を提供することを目的とする。
【0009】
上記課題を解決するため、本発明に係る光学素子の製造方法は、樹脂型に、光重合開始剤と熱重合開始剤とを含有するエネルギー硬化性樹脂を充填し、光照射を行う光硬化工程と、光硬化工程後、エネルギー硬化性樹脂を樹脂型に残した状態で加熱を行う熱硬化工程と、熱硬化工程後、樹脂型からエネルギー硬化性樹脂を離型する離型工程と、を備え、熱硬化工程中において、樹脂型の樹脂材料の線膨張割合と、エネルギー硬化性樹脂の線膨張割合とが略等しい。ここで、線膨張割合とは、基準温度(例えば、20℃)における長さに対する所定温度における長さの割合を意味する。
【0010】
上記光学素子の製造方法によれば、エネルギー硬化性樹脂を光重合開始剤及び熱重合開始剤の重合によって硬化させることにより、光重合開始剤の重合のみによって硬化させる場合よりも緩やかに硬化させることができる。つまり、エネルギー硬化性樹脂を光硬化工程と熱硬化工程の2段階に分けて硬化させることにより、エネルギー硬化性樹脂の反応速度をコントロールすることができる。これにより、エネルギー硬化性樹脂の急激な硬化収縮が発生することを防止することができる。また、熱硬化工程中における樹脂型の樹脂材料の線膨張割合とエネルギー硬化性樹脂の線膨張割合とを略等しくすることにより、大きな面積の光学素子を製造する場合や小径のレンズ部を形成する場合でも、レンズ部のピッチずれを防ぐことができる。
【0011】
本発明の具体的な態様又は観点では、上記光学素子の製造方法において、熱硬化工程中において、樹脂型の樹脂材料の線膨張割合と、エネルギー硬化性樹脂の線膨張割合との差が±0.05%以内である。
【0012】
本発明の別の観点では、熱硬化工程の最高加熱温度において、樹脂型の樹脂材料の線膨張割合と、エネルギー硬化性樹脂の線膨張割合との差が±0.05%以内である。
【0013】
本発明のさらに別の観点では、熱硬化工程において、熱重合開始剤の1時間半減期の分解温度以下の温度で加熱を行う。この場合、加熱温度を熱重合開始剤の1時間半減期の分解温度以下にすることにより、比較的線膨張係数が大きい光硬化性樹脂でも線膨張割合を小さくすることができる。
【0014】
本発明のさらに別の観点では、エネルギー硬化性樹脂は、ラジカルの発生により重合して硬化する。この場合、エネルギー硬化性樹脂として反応速度が比較的速いラジカル重合系の樹脂を用いても、急激な硬化収縮による内部歪みを防止することができる。
【0015】
本発明のさらに別の観点では、光学素子の複数の光学面に対応する複数の光学転写面を有する。この場合、例えばウェハーレンズ等の複数の光学面を有する光学素子は、比較的大きな面積を有するものの、上述の製造方法を用いることにより、レンズ部のピッチずれを防ぐことができる。
【図面の簡単な説明】
【0016】
【図1】(A)は、ウェハーレンズの平面図であり、(B)は、(A)に示すウェハーレンズのAA矢視断面図であり、(C)は、(A)に示すウェハーレンズの斜視図である。
【図2】(A)は、第1実施形態のウェハーレンズの製造のために用いるマスター型の斜視図であり、(B)は、サブマスター型の斜視図である。
【図3】サブマスター型の樹脂材料の線膨張割合及びウェハーレンズの光硬化性樹脂の線膨張割合と、温度との関係を示す概念図である。
【図4】(A)〜(D)は、ウェハーレンズの製造工程を説明するための図である。
【図5】ウェハーレンズの製造工程を説明するためのフローチャートである。
【発明を実施するための形態】
【0017】
A)ウェハーレンズ
A−1)ウェハーレンズの構造
図面を参照して、本発明の一実施形態に係る光学素子の製造方法によって製造されるウェハーレンズについて説明する。
図1(A)〜1(C)に示すように、ウェハーレンズ100は、円盤状であり、基板101と、第1樹脂層102と、第2樹脂層103とを有する。
【0018】
ウェハーレンズ100のうち基板101は、円形の平板であり、ガラスで形成されている。基板101の外径は、第1及び第2樹脂層102,103の外径と略同じである。基板101の厚さは、基本的には光学的仕様によって決定されるが、ウェハーレンズ100の離型時において破損しない程度の厚さとなっている。
【0019】
第1樹脂層102は、樹脂製であり、基板101の一方の面101a上に形成されている。第1樹脂層102は、平面視において円形の外形を有する。具体的には、第1樹脂層102は、第1レンズ本体11aと第1フランジ部11bとを一組とする多数の第1レンズ要素11をXY面内で2次元的に配列している。これらの第1レンズ要素11は、平坦な連結部11cを介して一体に成形されている。各第1レンズ要素11と連結部11cとを合わせた表面は、転写によって一括成形される第1成形面102aとなっている。第1レンズ本体11aは、例えば凸形状の非球面型のレンズ部であり、第1光学面11dを有している。周囲の第1フランジ部11bは、第1光学面11dの周囲に広がる平坦な第1フランジ面11gを有し、第1フランジ部11bの外周は、連結部11cともなっている。第1フランジ面11gは、光軸OAに垂直なXY面に対して平行に配置されている。
【0020】
第1樹脂層102は、エネルギー硬化性樹脂である光硬化性樹脂で形成されている。光硬化性樹脂には、光硬化性樹脂の重合を開始させる光重合開始剤と熱重合開始剤とが含まれている。光硬化性樹脂としては、アクリル樹脂、アリルエステル樹脂、ビニル系樹脂、エポキシ系樹脂等を使用することができる。アクリル樹脂、アリルエステル樹脂、ビニル系樹脂を使用する場合、光重合開始剤や熱重合開始剤のラジカル重合により反応硬化させることができる。また、エポキシ系樹脂を使用する場合、光重合開始剤や熱重合開始剤のカチオン重合又はアニオン重合により反応硬化させることができる。
【0021】
第2樹脂層103は、第1樹脂層102と同様に、樹脂製であり、基板101の他方の面101b上に形成されている。第2樹脂層103は、平面視において円形の外形を有する。具体的には、第2樹脂層103は、第2レンズ本体12aと第2フランジ部12bとを一組とする多数の第2レンズ要素12をXY面内で2次元的に配列している。これらの第2レンズ要素12は、平坦な連結部12cを介して一体に成形されている。各第2レンズ要素12と連結部12cとを合わせた表面は、転写によって一括成形される第2成形面103aとなっている。第2レンズ本体12aは、例えば凹形状の非球面型のレンズ部であり、第2光学面12dを有している。周囲の第2フランジ部12bは、第2光学面12dの周囲に広がる平坦な第2フランジ面12gを有し、第2フランジ部12bの外周は、連結部12cともなっている。第2フランジ面12gは、光軸OAに垂直なXY面に対して平行に配置されている。
【0022】
第2樹脂層103に用いられる光硬化性樹脂は、第1樹脂層102の光硬化性樹脂と同様のものである。ただし、両樹脂層102,103を同一の光硬化性樹脂で形成する必要はなく、別の光硬化性樹脂で形成することができる。
【0023】
なお、ウェハーレンズ100において、基板101と第1又は第2樹脂層102,103との間に絞りを設けてもよい。また、基板101の一方の面101a又は他方の面101bにのみ樹脂層を設けてもよい。
【0024】
A−2)光硬化性樹脂
以下、第1及び第2樹脂層102,103の形成に用いられる光硬化性樹脂の詳細について説明する。既に説明したように、光硬化性樹脂には、ラジカル重合によって反応硬化させるものと、カチオン重合又はアニオン重合によって反応硬化させるものがある。ラジカル重合系樹脂には、例えばアクリル樹脂、アリルエステル樹脂、ビニル系樹脂等がある。カチオン重合系樹脂又はアニオン重合系樹脂には、例えばエポキシ系樹脂がある。
【0025】
(1)アクリル樹脂
アクリル樹脂の重合反応に用いられる(メタ)アクリレートは特に制限はなく、一般的な製造方法により製造された下記の(メタ)アクリレートを使用することができる。例えば、エステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、エーテル(メタ)アクリレート、アルキル(メタ)アクリレート、アルキレン(メタ)アクリレート、芳香環を有する(メタ)アクリレート、多官能(メタ)アクリレート、脂環式構造を有する(メタ)アクリレートが挙げられる。これらを1種類又は2種類以上を用いることができる。
【0026】
特に、脂環式構造を持つ(メタ)アクリレートが好ましく、酸素原子や窒素原子を含む脂環構造であってもよい。例えば、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、ビシクロヘプチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートや、イソボロニル(メタ)アクリレート、水添ビスフェノール類のジ(メタ)アクリレート等が挙げられる。また、特にアダマンタン骨格を持つと好ましい。例えば、2−アルキル−2−アダマンチル(メタ)アクリレート(特開2002−193883号公報参照)、アダマンチルジ(メタ)アクリレート(特開昭57−500785)、アダマンチルジカルボン酸ジアリル(特開昭60―100537)、パーフルオロアダマンチルアクリル酸エステル(特開2004−123687)、2−メチル−2−アダマンチルメタクリレート(新中村化学製)、1,3−アダマンタンジオールジアクリレート、1,3,5−アダマンタントリオールトリアクリレート、不飽和カルボン酸アダマンチルエステル(特開2000−119220)、3,3'−ジアルコキシカルボニル−1,1'ビアダマンタン(特開2001−253835号公報参照)、1,1'−ビアダマンタン化合物(米国特許第3342880号明細書参照)、テトラアダマンタン(特開2006−169177号公報参照)、2−アルキル−2−ヒドロキシアダマンタン、2−アルキレンアダマンタン、1,3−アダマンタンジカルボン酸ジ−tert−ブチル等の芳香環を有しないアダマンタン骨格を有する硬化性樹脂(特開2001−322950号公報参照)、ビス(ヒドロキシフェニル)アダマンタン類やビス(グリシジルオキシフェニル)アダマンタン(特開平11−35522号公報、特開平10−130371号公報参照)等が挙げられる。
【0027】
また、その他反応性単量体を含有することも可能である。(メタ)アクリレートであれば、例えば、メチルアクリレート、メチルメタアクリレート、n−ブチルアクリレート、n−ブチルメタアクリレート、2−エチルヘキシルアクリレート、2−エチルヘキシルメタアクリレート、イソブチルアクリレート、イソブチルメタアクリレート、tert−ブチルアクリレート、tert−ブチルメタアクリレート、フェニルアクリレート、フェニルメタアクリレート、ベンジルアクリレート、ベンジルメタアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタアクリレート等が挙げられる。
【0028】
多官能(メタ)アクリレートとして、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールセプタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールテトラ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。
【0029】
(2)アリルエステル樹脂
アリルエステル樹脂は、アリル基を持ちラジカル重合によって硬化する樹脂で、例えば次のものが挙げられるが、特に以下のものに限定されるわけではない。
【0030】
芳香環を含まない臭素含有(メタ)アリルエステル樹脂(特開2003−66201号公報参照)、アリル(メタ)アクリレート樹脂(特開平5−286896号公報参照)、アリルエステル樹脂(特開平5−286896号公報、特開2003−66201号公報参照)等が挙げられる。
【0031】
(3)ビニル系樹脂
ビニル系樹脂は、硬化させることによって透明な樹脂組成物を形成する物であれば特に制限はなく、一般的な製造方法により製造されたビニル系樹脂を使用することができる。
【0032】
ビニル系樹脂は、ビニル基(CH=CH−)が架橋反応に寄与するものであればいずれでも良い。
【0033】
ポリビニル系樹脂のモノマーは、一般式CH=CH−Rで表される。ポリビニル系樹脂の例として、ポリ塩化ビニル、ポリスチレン等が挙げられ、特にRに芳香族を含む芳香族系ビニル樹脂が好ましい。特に1分子中に2つ以上ビニル基をもつ、ジビニル系樹脂がより好ましい。これらのビニル系樹脂は、1種を単独で用いたり、或いは2種以上を併用したりすることもできる。
【0034】
(4)エポキシ系樹脂
エポキシ系樹脂としては、エポキシ基を持ち光及び熱により重合硬化するものであれば特に限定されず、硬化開始剤としても酸無水物、カチオン発生剤、アニオン発生剤等を用いることができる。エポキシ系樹脂は、硬化収縮率が低いため、成形精度の優れたレンズとすることができる点で好ましい。
【0035】
エポキシ系樹脂の種類としては、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂が挙げられる。その一例として、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2'−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキシド、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル等を重合したものを挙げることができる。
【0036】
A−3)光重合開始剤
以下、第1及び第2樹脂層102,103に用いられる光重合開始剤(UV開始剤)の詳細について説明する。光重合開始剤は、基本的には光硬化性樹脂との組み合わせで選択する。光重合開始剤としては、紫外域(400nm以下)の波長に吸収極大を持ち、当該紫外域の波長でラジカル発生、カチオン発生、又はアニオン発生するものであれば、いずれも用いることができる。なお、光重合開始剤の選択にあたっては、ウェハーレンズ100の使用波長域での透過率を低下させないように配慮し、硬化光に対する吸光度が適度となるように考慮する。
【0037】
ラジカル発生する光重合開始として、分子内開裂型開始剤及び水素引き抜き型開始剤のいずれも用いることができる。分子内開裂型開始剤には、例えば、ベンゾインエーテル誘導タイプ、アセトフェノンタイプ、アシルフォスフィンオキサイドタイプ等がある。アセトフェノンタイプには、例えば、ベンジルケタール、α−ヒドロキシアセトフェノン、α−アミノアセトフェトン等がある。アシルフォスフィンオキサイドタイプには、ビスアシルフォスフィンオキサイド(BAPO)、モノアシルフォスフィンオキサイド(MAPO)等がある。水素引き抜き型開始剤には、例えば、ベンゾフェノン、アミン、チオキサントンタイプ等がある。
【0038】
ここで、レンズに用いるために樹脂が黄変しないこと等を考慮すると、α−ヒドロキシアセトフェノンとして、DAROCURE 1173、IRGACURE 184、IRGACURE 127(いずれもチバジャパン社製)等が挙げられる。また、α−アミノアセトフェトンとして、IRGACURE 907、IRGACURE 369(いずれもチバジャパン社製)等が挙げられる。
【0039】
また、UV照射後に光退色(フォトブリーチング)する効果がある、例えば、アシルフォスフィンオキサイド等の使用も望ましい。光退色硬化を有する光重合開始剤を用いると、光反応に伴い開始剤の吸収帯が消失(光退色)することによって、光がより樹脂の深部まで到達できるようになり、樹脂の内部硬化が促進される。アシルフォスフィンオキサイドとして、具体的には、MAPOの2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(DAROCUR TPO)や、BAPOのビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(IRGACURE 819)や、チタノセン化合物のIRGACURE 784(いずれもチバジャパン社製)等が挙げられる。特に、DAROCURE TPO、IRGACURE 819等が光反応に伴い無色となるため、レンズ用途としてより好ましい。
【0040】
カチオン発生する光重合開始剤には、スルフォニウム塩、ヨードニウム塩、ジアゾニウム塩、フェロセニウム塩等がある。スルフォニウム塩には、例えば、CYRACURE UVI−6976、UVI−6992(いずれもダウ・ケミカル製)、サンエイドSI−60L、SI−80L(三新化学製)、アデカオプトマーSP−150、SP−170(ADEKA製)、Uvacure1590(ダイセルUCB製)等がある。ヨードニウム塩タイプでは、UV9380C(モメンティブパフォーマンスマテリアルズジャパン製)、IRGACURE 250(チバジャパン製)等がある。
【0041】
アニオン発生する光重合開始剤には、アルキルリチウム、カルバメート誘導体、オキシムエステル誘導体、光アミン発生剤等がある。
【0042】
光重合開始剤の添加量は、光硬化性樹脂に対して、0.001質量%〜5質量%、好ましくは0.01質量%〜3質量%、さらに好ましくは0.05質量%〜1質量%である。後述する熱重合開始剤の添加量と同じかそれ以上とすることが好ましい。
【0043】
A−4)熱重合開始剤
以下、第1及び第2樹脂層102,103に用いられる熱重合開始剤の詳細について説明する。熱重合開始剤は、光重合開始剤と同様に、光硬化性樹脂との組み合わせで選択する。熱重合開始剤としては、加熱によりラジカル発生、カチオン発生、又はアニオン発生するものであれば、いずれも用いることができる。なお、熱重合開始剤の選択にあたっては、ウェハーレンズ100の使用波長域での透過率を低下させないように配慮する。
【0044】
ラジカル発生する熱重合開始剤は、加熱により分解してラジカルを発生する性質の強い物質である。ラジカル発生する熱重合開始剤として、例えば有機過酸化物等を用いることができる。有機過酸化物には、例えば過酸化物やアゾ化合物等がある。具体的には、例えば、α,α'−アゾビスイソブチロニトリル(AIBN)が好適に用いられる。
【0045】
ここで、熱重合開始剤は、例えば室温(例えば、20℃)より高温で、かつ60℃以下の温度で分解する低温タイプの熱重合開始剤と、60℃より高い温度で分解する高温タイプの熱重合開始剤とに分類することができる。
【0046】
このうち、低温タイプの熱重合開始剤として、例えばDiisobutyryl peroxide、Cumyl peroxyneodecanoate、Di−n−propyl peroxydicarbonate、Diisopropyl peroxydicarbonate、Di−sec−butyl peroxydicarbonate、1,1,3,3−Tetramethylbutyl peroxyneodecanoate、Bis(4−tert−butylcyclohexyl) peroxydicarbonate、Di−2−ethylhexyl peroxydicarbonate等が挙げられる。具体的には、パーロイルIB、パークミルND、パーロイルNPP、パーロイルIPP、パーロイルSBP、パーオクタND、パーロイルTCP、パーロイルOPP(いずれも日本油脂株式会社製)等がある。なお、これらの低温タイプの熱重合開始剤で1時間半減期を得るための分解温度は、パーロイルIBでは49.7℃、パークミルNDでは55.0℃、パーロイルNPPでは57.7℃、パーロイルIPPでは56.2℃、パーロイルSBPでは57.4℃、パーオクタNDでは57.5℃、パーロイルTCPでは57.5℃、パーロイルOPPでは59.1℃となっている。なお、1時間半減期を得るための分解温度とは、熱重合開始剤の濃度が半分になるために要する時間が1時間になる温度のことであり、以下、1時間半減期温度という。
【0047】
また、高温タイプの熱重合開始剤として、例えばDilauroyl peroxide、1,1,3,3−Tetramethylbutyl peroxy−2−ethylhexanoate、Disuccinic acid peroxide、t−Hexyl peroxy−2−ethylhexanoate、t−Butyl peroxy−2−ethylhexanoate、1,1−Di(t−butylperoxy)−2−methylcyclohexane、1,1−Di(t−hexylperoxy)−3,3,5−trimethylcyclohexane等が挙げられる。具体的には、パーロイルL、パーオクタO、パーロイルSA、パーヘキシルO、パーブチルO、パーヘキサMC、パーヘキサTMH(いずれも日本油脂株式会社製)等がある。なお、これらの高温タイプの熱重合開始剤で1時間半減期を得るための分解温度は、パーロイルLでは79.5℃、パーオクタOでは84.4℃、パーロイルSAでは87.0℃、パーヘキシルOでは90.1℃、パーブチルOでは92.1℃、パーヘキサMCでは102.4℃、パーヘキサTMHでは106.4℃となっている。
【0048】
なお、詳細は後述するが、低温で熱硬化させることにより、比較的線膨張係数が大きい光硬化性樹脂でも線膨張割合を小さくすることができるため、低温タイプの熱重合開始剤を用いることが望ましい。なお、線膨張係数とは、温度を1℃上げたときの長さの変化の割合を意味する。
【0049】
カチオン発生する熱重合開始剤は、例えば、四級アンモニウム塩型化合物、スルフォニウム塩型化合物、ホスフォニウム塩型化合物、ヨードニウム塩型化合物、ジアゾニウム塩型化合物、フェロセニウム型化合物等がある。
【0050】
アニオン発生する熱重合開始剤は、例えば、脂肪族アミン、芳香族アミン、変性アミン等がある。
【0051】
熱重合開始剤の添加量は、光硬化性樹脂に対して、0.001質量%〜5質量%、好ましくは0.01質量%〜3質量%、さらに好ましくは0.1質量%〜1質量%である。光重合開始剤の添加量と同じかそれ以下とすることが好ましい。
【0052】
B)成形型
B−1)マスター型
以下、図2(A)、2(B)を参照しつつ、図1(A)等に示すウェハーレンズ100を製造するための成形型の一例について説明する。ウェハーレンズ100の成形には、成形型として、マスター型30と、サブマスター型40とが用いられる。
【0053】
図2(A)に示すように、マスター型30は、直方体状であり、その端面30a上に、後述するサブマスター型40の第2転写面43を形成するための第1転写面31を有する。この第1転写面31は、最終的に得られるウェハーレンズ100の第1樹脂層102の第1成形面102aのポジ型に対応する。第1転写面31は、第1成形面102aのうち第1光学面11dを形成するための第1光学転写面31aと、第1フランジ面11gを形成するための第1フランジ転写面31bとを含む。第1光学転写面31aは、アレイ状に複数個配置されており、略半球の凸形状に形成されている。
【0054】
マスター型30は、一般に金属材料で形成されている。金属材料としては、例えば鉄系材料や鉄系合金、非鉄系合金等が挙げられる。鉄系材料としては、例えば熱間金型、冷間金型、プラスチック金型、高速度工具鋼、一般構造用圧延鋼材、機械構造用炭素鋼、クロム・モリブデン鋼、ステンレス鋼が挙げられる。そのうち、プラスチック金型としては、例えばプリハードン鋼、焼入れ焼戻し鋼、時効処理鋼がある。プリハードン鋼としては、例えばSC系、SCM系、SUS系が挙げられる。SC系には例えばPXZが挙げられる。SCM系としては例えばHPM2、HPM7、PX5、IMPAXが挙げられる。SUS系としては、例えばHPM38、HPM77、S−STAR、G−STAR、STAVAX、RAMAX−S、PSLが挙げられる。鉄系合金としては、例えば特開2005−113161や特開2005−206913に示されている合金が挙げられる。非鉄系合金としては主に、銅合金、アルミ合金、亜鉛合金がよく知られており、例えば特開平10−219373、特開2000−176970に示されている合金が挙げられる。なお、マスター型30は金属ガラスやアモルファス合金から構成されてもよい。金属ガラスとしては、例えばPdCuSiやPdCuSiNi等が挙げられる。金属ガラスはダイヤモンド切削における被削性が高く、工具の磨耗が少ない。アモルファス合金としては、例えば無電解又は電解のニッケルリンメッキ等があり、ダイヤモンド切削における被削性がよい。これらの高被削性材料は、マスター型30全体を構成してもよいし、メッキやスパッタ等の方法によって特に光学転写面の表面だけを覆ってもよい。
【0055】
B−2)サブマスター型
図2(B)に示すように、樹脂型であるサブマスター型40は、四角板状であり、樹脂部であるサブマスター成形部41と光透過性のサブマスター基板42とを有する。サブマスター成形部41とサブマスター基板42とは、積層構造となっている。サブマスター成形部41は、その端面41a上に、ウェハーレンズ100の第1成形面102aを形成する第2転写面43を有する。この第2転写面43は、ウェハーレンズ100の第1成形面102aのネガ型に対応する。第2転写面43は、第1成形面102aのうち第1光学面11dを形成するための第2光学転写面43aと、第1フランジ面11gを形成するための第2フランジ転写面43bとを含む。第2光学転写面43aは、第1光学転写面31aによって転写され、アレイ状に複数個配置されており、略半球の凹形状に形成されている。
【0056】
サブマスター成形部41は、樹脂材料41bによって形成されている。樹脂材料41bとしては、光硬化性樹脂が挙げられ、上記ウェハーレンズ100の第1樹脂層102と同様のアクリル樹脂、アリルエステル樹脂、ビニル系樹脂、エポキシ系樹脂等が使用可能である。また、樹脂材料41bとしては、離型性の良好な樹脂、特に透明樹脂が好ましく、離型剤を塗布しなくても離型できる樹脂がよい。サブマスター成形部41の樹脂材料41bの線膨張割合は、後述する熱硬化工程中において、ウェハーレンズ100の光硬化性樹脂(後述する図4(C)等の樹脂102b)の線膨張割合に略等しくなっている。具体的には、両樹脂の線膨張割合の差が±0.05%以内になっている。なお、例示した両樹脂の線膨張割合の差は、光学素子の用途によって異なり、光学面の形状等に影響を及ぼさない程度であればよい。
【0057】
以下、図3を参照しつつ、サブマスター型40のサブマスター成形部41の樹脂材料41bの線膨張割合及びウェハーレンズ100の樹脂102bの線膨張割合と、温度との関係について説明する。図3中の実線L1は、線膨張係数が例えば70ppm/℃であるサブマスター成形部41の樹脂材料41bの線膨張割合の変化を示す。一点鎖線L2は、樹脂材料41bとの線膨張係数の差が例えば+20ppm/℃である光硬化性樹脂の線膨張割合の変化を示す。一点鎖線L3は、樹脂材料41bとの線膨張係数の差が例えば−20ppm/℃である光硬化性樹脂の線膨張割合の変化を示す。二点鎖線L4は、樹脂材料41bとの線膨張係数の差が例えば+10ppm/℃である光硬化性樹脂の線膨張割合の変化を示す。二点鎖線L5は、樹脂材料41bとの線膨張係数の差が例えば−10ppm/℃である光硬化性樹脂の線膨張割合の変化を示す。太線の破線L6は、樹脂材料41bの線膨張割合との差が+500ppm(+0.05%)である線膨張割合を示す。太線の破線L7は、樹脂材料41bの線膨張割合との差が−500ppm(−0.05%)である線膨張割合を示す。なお、図3中の各線L1〜L5の傾きは、線膨張係数を表し、線膨張係数は樹脂の種類によって変動するものである。また、図3中の原点は、基準温度T0(例えば、熱硬化工程前後の温度、具体的には、室温20℃)を示す。
【0058】
図3の任意の温度において光硬化性樹脂の線膨張割合が破線L6,L7に挟まれた範囲内にあれば、加熱後の両樹脂の収縮具合が略同じになる。よって、両樹脂の線膨張係数が厳密には異なっていてもよい。なお、両樹脂の線膨張係数が略同じであればより好ましい。ここで、本実施形態では、光硬化性樹脂の加熱温度を熱重合開始剤の1時間半減期の分解温度以下とし、光硬化性樹脂を比較的緩やかに熱硬化させる。そのため、熱重合開始剤として、この光硬化性樹脂の線膨張割合が上記樹脂材料41bとの線膨張割合の差の範囲(図3中の二点鎖線L4,L5で挟まれた範囲)に入るときの最大の温度付近に1時間半減期の分解温度を有するものを選択することが望ましい。具体的には、図3において、樹脂材料41bとの線膨張係数差が±20ppm/℃の光硬化性樹脂の場合、一点鎖線L2,L3と破線L6,L7とが交差する低温側の温度T1に1時間半減期の分解温度を有する低温タイプの熱重合開始剤が選択され、この温度T1で熱硬化工程が行われる。また、樹脂材料41bとの線膨張係数が差±10ppm/℃の光硬化性樹脂の場合、二点鎖線L4,L5と破線L6,L7とが交差する高温側の温度T2に1時間半減期の分解温度を有する高温タイプの熱重合開始剤が選択され、この温度T2で熱硬化工程が行われる。
【0059】
図3の一点鎖線L2,L3(樹脂材料41bとの線膨張係数差が±20ppm/℃の光硬化性樹脂)と二点鎖線L4,L5(樹脂材料41bとの線膨張係数が差±10ppm/℃の光硬化性樹脂)とを比較してわかるように、所定の線膨張係数を有するサブマスター成形部41の樹脂材料41bに対して使用できるウェハーレンズ100の光硬化性樹脂の線膨張係数の許容範囲は、温度が高くなるほど狭くなる。つまり、温度が低い場合、比較的線膨張係数が大きい光硬化性樹脂でも線膨張割合を小さくすることができるため、樹脂材料41bと線膨張割合が略等しい光硬化性樹脂の種類は、温度が高い場合よりも多くなる。
【0060】
サブマスター基板42は例えば石英、ガラス、シリコンウェハー、金属、樹脂等の平滑性を有する材料で形成されている。透明性又は光透過性の観点(サブマスター型40の上からでも下からでも光照射できるという点)を考慮すると、サブマスター基板42は、好ましくは石英やガラス等から構成される。
【0061】
以上、ウェハーレンズ100のうち第1樹脂層102を成形するために用いるマスター型30及びサブマスター型40ついて説明したが、第2樹脂層103を成形する際にも同様の型を用いる。この場合、例えばマスター型30については凹形状の第1転写面31を有するものを用い、サブマスター型40については凸形状の第2転写面43を有するものを用いる。これにより、第2樹脂層103の第2成形面103aは、サブマスター型40によって形成される。
【0062】
C)ウェハーレンズの製造方法
図4(A)〜4(D)、図5を参照しつつ、上述のマスター型30及びサブマスター型40を使用して行われるウェハーレンズ100の製造工程について説明する。なお、以下では第1樹脂層102の成形について説明するが、第2樹脂層103の成形についても同様の工程を行う。
【0063】
まず、研削加工等によって第1樹脂層102の最終形状に対応するマスター型30を作製する(図5のステップS11)。次に、図4(A)に示すように、マスター型30上に樹脂材料41bを塗布し、マスター型30の上方からサブマスター基板42を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂材料41bを光硬化させる(図5のステップS12)。この際、樹脂材料41bにマスター型30の第1転写面31が転写され、樹脂材料41bに第2転写面43(第2光学転写面43a及び第2フランジ転写面43b)が形成される。これにより、サブマスター成形部41が形成される。UV発生装置で用いる光源の例としては、キセノンアークランプ、高圧水銀ランプ、メタルハライドランプ、UVレーザー、キセノンフラッシュランプ、LED等が挙げられる。
【0064】
次に、図4(B)に示すように、マスター型30からサブマスター成形部41とサブマスター基板42とを一体として離型し、サブマスター型40が作製される(図5のステップS13)。
【0065】
次に、ウェハーレンズ100を作製する。図4(C)に示すように、サブマスター型40上に樹脂102b(第1樹脂層102を形成する光硬化性樹脂)を塗布し、サブマスター型40の上方から基板101を押圧しながら不図示のUV発生装置により紫外線を照射させ、間に挟まれた樹脂102bを光硬化させる(図5のステップS14)。この際、樹脂102bにサブマスター型40の第2転写面43が転写され、樹脂102bに第1成形面102a(第1光学面11d及び第1フランジ面11g)が形成される。これにより、第1樹脂層102が形成される。ここで、樹脂102bは上述の光重合開始剤と熱重合開始剤とを含有しており、光硬化工程において、樹脂102bは完全に硬化せず、仮硬化状態となっている。これにより、光硬化工程において樹脂102bの硬化反応が一気に進まないため、樹脂102bの急激な収縮を防ぐことができる。なお、続けて上述と同様の工程で基板101の他方の面101bに第2樹脂層103を形成してもよい。
【0066】
次に、樹脂102bをサブマスター型40型に残した状態、すなわち離型しない状態で加熱し、樹脂102bを熱硬化させる(図5のステップS15)。加熱は例えばオーブンを用いて樹脂102bが実質的に完全に硬化するまで行う。熱硬化工程における最大温度は、サブマスター成形部41の樹脂材料41bの線膨張割合と、ウェハーレンズ100の樹脂102bの線膨張割合との差が±0.05%以内になるような温度となっている。
【0067】
この熱硬化工程(図5のステップS15)において、サブマスター成形部41が膨張する。この際、光硬化工程(図5のステップS14)において仮硬化されたウェハーレンズ100の樹脂102bも膨張する。つまり、熱硬化工程において、樹脂102bは、両樹脂41b,102bがともに膨張した状態で形状固定されて熱硬化される。その後、室温に戻ると、線膨張により両樹脂41b,102bが収縮する。この際、サブマスター成形部41の樹脂材料41bの線膨張割合と、ウェハーレンズ100の樹脂102bの線膨張割合との差が±0.05%以内であるため、室温に戻した後の両樹脂41b,102bの収縮具合が極端に乖離しない。そのため、ウェハーレンズ100の所望の位置に第1レンズ本体11aが成形されない、いわゆる「ピッチずれ」が発生しない。
【0068】
その後、図4(D)に示すように、サブマスター型40から第1樹脂層102と基板101とを一体として離型する(図5のステップS16)。第1樹脂層102が形成されていない場合、同様の工程を行うことで第2樹脂層103が形成され、サブマスター型40の離型によってウェハーレンズ100が完成する。なお、第1及び第2樹脂層102,103を形成した後にウェハーレンズ100を一括離型することもできる。
【0069】
なお、上記方法によって製造されたウェハーレンズ100は、積層され、第1レンズ本体11a等を中心として四角柱状にダイシングによって切り出され、複合レンズとなる。複数のウェハーレンズ100を積層する場合、ウェハーレンズ100間に絞りを設けてもよい。この場合、絞りの開口部が各第1レンズ本体11a等にアライメントして配置される。
【0070】
以上説明した光学素子の製造方法によれば、エネルギー硬化性樹脂である光硬化性樹脂(ウェハーレンズ100の樹脂102b)を光重合開始剤及び熱重合開始剤の重合によって硬化させることにより、光重合開始剤の重合のみによって硬化させる場合よりも緩やかに硬化させることができる。つまり、樹脂102bを光硬化工程(図5のステップS14)と熱硬化工程(図5のステップS15)の2段階に分けて硬化させることにより、樹脂102bの反応速度をコントロールすることができる。これにより、樹脂102bの速い硬化による急激な収縮が発生することを防止することができる。また、樹脂型であるサブマスター型40のサブマスター成形部41の樹脂材料41bと樹脂102bの線膨張割合を略等しく(例えば、両樹脂41b,102bの線膨張割合差が±0.05%以内)することにより、ウェハーレンズ100のような大きな面積の光学素子を製造する場合でも、第1レンズ本体11aのピッチずれを防ぐことができる。
【0071】
〔実施例1〕
以下、熱硬化工程(図5のステップS15)における温度と、サブマスター成形部41の樹脂材料41b及びウェハーレンズ100の樹脂102bの線膨張割合との関係について具体的な実施例について説明する。
【0072】
例えば、線膨張係数が70ppm/℃である樹脂材料41bを室温20℃の状態から60℃まで加熱した場合、樹脂材料41bは室温のときよりも約0.28%膨張する。また、線膨張係数が58ppm/℃〜82ppm/℃である低温タイプの熱重合開始剤を添加した樹脂102bを室温20℃の状態から60℃まで加熱した場合、樹脂102bは室温のときよりも約0.23%〜0.33%膨張する。ここで、この樹脂102bに添加された熱重合開始剤は、低温タイプであり、1時間半減期の分解温度が約60℃となっている。低温側で熱硬化させるため、両樹脂41b,102bの線膨張係数の差が比較的大きい±12ppm/℃であっても、両樹脂41b,102bの線膨張割合の差が±0.05%以内となる。この場合、室温に戻した後の両樹脂41b,102bの収縮具合が極端に乖離せず、ウェハーレンズ100の第1レンズ本体11aにピッチずれが発生しない。このように、上述した例においては、熱硬化工程において、最も高い加熱温度を60℃とし、それ以下の温度で加熱処理を行う。なお、加熱温度を60℃より低くすると、両樹脂41b,102bの線膨張割合の差は±0.05%以内であるものの、硬化に時間がかかるため、60℃に近い温度で処理を行うことが好ましい。
【0073】
一方、例えば、線膨張係数が70ppm/℃である樹脂材料41bを室温20℃の状態から100℃まで加熱した場合、樹脂材料41bは室温のときよりも約0.56%膨張する。また、線膨張係数が64ppm/℃〜76ppm/℃である高温タイプの熱重合開始剤を添加した樹脂102bを室温20℃の状態から100℃まで加熱した場合、樹脂102bは室温のときよりも約0.51%〜0.61%膨張する。このように、両樹脂41b,102bの線膨張係数の差が±6ppm/℃である場合、高温タイプの熱重合開始剤の1時間半減期の分解温度で加熱しても、両樹脂41b,102bの線膨張割合の差を±0.05%以内にすることができる。従って、比較的高い温度で熱硬化工程を行うことができる。よって、上述した例においては、熱硬化工程において、最も高い加熱温度を100℃とし、それ以下の温度で加熱処理を行う。なお、線膨張割合の差が±0.05%を超えると、上述の場合と同様に、両樹脂41b,102bの収縮具合が極端に乖離し、ウェハーレンズ100の第1レンズ本体11aにピッチずれが発生することとなる。
【0074】
〔実施例2〕
以下、本発明の製造方法によって製造されたウェハーレンズ100の評価試験の結果について説明する。
【0075】
本実施例では、第1樹脂層102を形成するための樹脂102bとして、アクリル樹脂を用いた。具体的には、2−アルキル−2−アダマンチル−(メタ)アクリレートを用いた。この樹脂の線膨張係数をTMA装置を用いてJIS K7197に準拠して測定したところ、64ppm/℃である。また、光重合開始剤としてラジカル系光重合開始剤であるIRGACURE 907(チバジャパン社製)を用いた。また、サンプル1、2、3については、熱重合開始剤としてラジカル系熱重合開始剤であるパーロイヤルOPP(1時間半減期59.1℃、日本油脂株式会社製)を用い、使用量を変えて樹脂組成物に添加した。この熱重合開始剤は、既に図3で説明したように、樹脂102bの線膨張割合が樹脂材料41bとの線膨張割合と略等しいときの最大の温度付近(約60℃)に1時間半減期の分解温度を有する。また、サブマスター型40のサブマスター成形部41の樹脂材料41bは、線膨張係数が70ppm/℃のエポキシ系樹脂からなるものを用いた。光硬化工程(図5のステップS14)は、紫外線照射量1500mJ/cmで照射した。熱硬化工程(図5のステップS15)は、60℃で1時間行った。サンプル4、5、6については、熱重合開始剤としてラジカル系熱重合開始剤であるパーロイルL(1時間半減期79.5℃、日本油脂株式会社製)を用い、80℃で熱硬化工程を行う以外はサンプル1〜3と同様の手順で実験を行った。また、サンプル7、8、9については、熱重合開始剤としてラジカル系熱重合開始剤であるパーヘキサMC(1時間半減期102.4℃、日本油脂株式会社製)を用い、100℃で熱硬化工程を行う以外はサンプル1〜3と同様の手順で実験を行った。
【0076】
表1は、第1樹脂層102の第1レンズ本体11aの第1光学面11dと、比較例のレンズ本体の光学面とを評価試験した結果を示したものである。評価試験は、ピッチずれ評価、リフロー工程前の面形状評価、リフロー工程後の面形状評価によって行った。ここで、リフロー工程とは、ウェハーレンズ100又はウェハーレンズ100から切り出した複合レンズに電子部品等を実装するために高温加熱する工程である。リフロー工程は、最高温度260℃の熱風炉に3回通した。
【0077】
ピッチずれ評価は、8インチのウェハーレンズ100の、中心から最も離れた第1レンズ本体11aレンズまでの距離(100mm)を設計値とした。この設計値から±0.01%(±10μm)以内の場合に◎とし、設計値から±0.05%(±50μm)以内の場合に○とし、設計値から±0.1%(±100μm)以内の場合に△とした。
【0078】
リフロー工程前の面形状評価は、超高精度3次元測定機UA3P(パナソニック製)を用いて行った。面形状の精度は、第1光学転写面31aのレンズ設計値からの形状誤差の最も大きい部分(Peak)と最も小さい部分(Valley)との差(以下、PV値と呼ぶ)で評価した。このPV値が、100nm未満の場合に◎とし、100nm以上500nm未満の場合に○とし、500nm以上3μm未満の場合に△とし、3μm以上の場合に×とした。
【0079】
リフロー工程後の面形状評価は、同上の超高精度3次元測定機UA3P装置を用いて行った。面形状の精度は、リフロー工程前の測定値からの形状誤差のPeakとValleyとの差をPV値とした。このPV値が、500nm未満の場合に◎とし、500nm以上1μm未満の場合に○とし、1μm以上3μm未満の場合に△とし、3μm以上の場合に×とした。
【表1】

【0080】
表1に示すように、樹脂材料41b及び樹脂102bの線膨張割合を考慮して適切に選択された熱重合開始剤を樹脂102bに添加し、熱硬化工程において熱重合開始剤の1時間半減期の分解温度に対応する温度で加熱した場合、ピッチずれ評価、リフロー工程前の面形状評価、リフロー工程後の面形状評価のいずれも良好な評価結果(評価◎及び○)又は許容範囲を満たす評価結果(評価△)となった(サンプル2、3、5、6、8、9)。一方、熱重合開始剤を樹脂102bに添加しない場合、リフロー工程前の面形状評価、リフロー工程後の面形状評価が悪いものとなった。
【0081】
以上、本実施形態に係る光学素子の製造方法について説明したが、本発明に係る光学素子の製造方法は上記のものには限られない。例えば、上記実施形態において、第1及び第2光学面11d,12dの形状、大きさは、用途や機能に応じて適宜変更することができる。
【0082】
また、上記実施形態において、第1及び第2樹脂層102,103を基板101の全面に形成したが、第1及び第2樹脂層102,103を基板101の全面に形成せずに、各第1及び第2レンズ要素11,12を基板101上に互いに独立して形成してもよい。
【0083】
また、上記実施形態において、ウェハーレンズ100は、円盤状である必要はなく、楕円形等の各種輪郭を有するものとできる。例えばウェハーレンズ100を当初から四角板状に成形することで、ダイシング工程を簡略化することができる。
【0084】
また、上記実施形態において、ウェハーレンズ100内に形成される第1及び第2レンズ要素11,12の数も、図示の4つに限らず、2つ以上の複数とすることができる。この際、第1及び第2レンズ要素11,12の配置は、ダイシングの都合から格子点上が望ましい。さらに、隣接するレンズ要素11,12の間隔も、図示のものに限らず、加工性等を考慮して適宜設定することができる。
【0085】
また、上記実施形態において、サブマスター型40の第2転写面43に樹脂を塗布したが、基板101の一方の面101a及び他方の面101bに樹脂を塗布してもよい。
【0086】
また、上記実施形態において、基板101の一方の面101a及び他方の面101bに予め密着性付与のためにシランカップリング剤等を塗布してもよい。また、各型30,40の各転写面31,43に予め離型剤を塗布してもよい。
【0087】
また、上記実施形態において、マスター型30として直方体状のものを用いたが、これに限らず、円柱状のものであってもよい。サブマスター型40についても、四角板状に限らず、円柱状でもよい。
【0088】
また、上記実施形態において、サブマスター型40を用いて、レンズ部(第1及び第2レンズ本体11a,12a)を有する第1及び第2樹脂層102,103を成形しているが、これに限らず、サブマスター型40を用いて作製したサブサブマスター型を用いてレンズ部を有する樹脂層を成形するようにしてもよい。
【符号の説明】
【0089】
11,12…レンズ要素、 11a,12a…レンズ本体、 11b,12b…フランジ部、 11d,12d…光学面、 11g,12g…フランジ面、 30…マスター型、 31a,43a…光学転写面、 31b,43b…フランジ転写面、 40…サブマスター型、 41…サブマスター成形部、 41b…樹脂材料、 42…サブマスター基板、 100…ウェハーレンズ、 101…基板、 102,103…樹脂層、 102b…樹脂、 OA…光軸

【特許請求の範囲】
【請求項1】
樹脂型に、光重合開始剤と熱重合開始剤とを含有するエネルギー硬化性樹脂を充填し、光照射を行う光硬化工程と、
前記光硬化工程後、前記エネルギー硬化性樹脂を前記樹脂型に残した状態で加熱を行う熱硬化工程と、
前記熱硬化工程後、前記樹脂型から前記エネルギー硬化性樹脂を離型する離型工程と、
を備え、
前記熱硬化工程中において、前記樹脂型の樹脂材料の線膨張割合と、前記エネルギー硬化性樹脂の線膨張割合とが略等しいことを特徴とする光学素子の製造方法。
【請求項2】
前記熱硬化工程中において、前記樹脂型の樹脂材料の線膨張割合と、前記エネルギー硬化性樹脂の線膨張割合との差が±0.05%以内であることを特徴とする請求項1に記載の光学素子の製造方法。
【請求項3】
前記熱硬化工程の最高加熱温度において、前記樹脂型の樹脂材料の線膨張割合と、前記エネルギー硬化性樹脂の線膨張割合との差が±0.05%以内であることを特徴とする請求項1及び2のいずれか一項に記載の光学素子の製造方法。
【請求項4】
前記熱硬化工程において、前記熱重合開始剤の1時間半減期の分解温度以下の温度で加熱を行うことを特徴とする請求項1から3までのいずれか一項に記載の光学素子の製造方法。
【請求項5】
前記エネルギー硬化性樹脂は、ラジカルの発生により重合して硬化することを特徴とする請求項1から4までのいずれか一項に記載の光学素子の製造方法。
【請求項6】
前記樹脂型は、光学素子の複数の光学面に対応する複数の光学転写面を有することを特徴とする請求項1から5までのいずれか一項に記載の光学素子の製造方法。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−1091(P2013−1091A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−137874(P2011−137874)
【出願日】平成23年6月21日(2011.6.21)
【出願人】(303000408)コニカミノルタアドバンストレイヤー株式会社 (3,255)
【Fターム(参考)】