説明

光記録媒体

【課題】高速記録が可能な書き換え型の光記録媒体の再生耐久性、クロスイレーズ特性及び記録感度を改善する。
【解決手段】記録層14と、記録層14から見て光入射面17a側に設けられた第1誘電体層15と、記録層14から見て支持基板11側に設けられた第2誘電体層13と、第1誘電体層15から見て光入射面17a側に設けられた放熱層16と、第2誘電体層13から見て支持基板11側に設けられた反射層12とを備える。記録層14は一般式(SbTe1−x1−y(Mはアンチモン(Sb)及びテルル(Te)を除く少なくとも1つの元素)で表される材料を含み、第1誘電体層15はZnSとSiOの混合物を含み、反射層12は銀(Ag)又はこれを主成分とする合金を含み、放熱層16は窒化アルミニウム(AlN)を主成分とする材料を含む。

【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は光記録媒体に関し、特に、高速記録が可能な書き換え型の光記録媒体に関する。
【0002】
【従来の技術】
従来より、デジタルデータを記録するための記録媒体として、CDやDVDに代表される光記録媒体が広く利用されている。これらの光記録媒体は、CD−ROMやDVD−ROMのようにデータの追記や書き換えができないタイプの光記録媒体(ROM型光記録媒体)と、CD−RやDVD−Rのようにデータの追記はできるがデータの書き換えができないタイプの光記録媒体(追記型光記録媒体)と、CD−RWやDVD−RWのようにデータの書き換えが可能なタイプの光記録媒体(書き換え型光記録媒体)とに大別することができる。
【0003】
ROM型光記録媒体においては、製造時において予め基板に形成されるピット列によりデータが記録されることが一般的であり、追記型光記録媒体においては、例えば、記録層の材料としてシアニン系色素、フタロシアニン系色素、アゾ色素等の有機色素が用いられ、その化学的変化(場合によっては化学的変化に加えて物理的変形を伴うことがある)に基づく光学特性の変化を利用してデータが記録されることが一般的である。
【0004】
これに対し、書き換え型光記録媒体においては、例えば、記録層の材料として相変化材料が用いられ、その相状態の変化に基づく光学特性の変化を利用してデータが記録されることが一般的である。つまり、相変化材料は、結晶状態である場合の反射率とアモルファス状態である場合の反射率とが異なるため、これを利用してデータの記録を行うことができる。例えば、記録層がアモルファス状態となっている領域を「記録マーク」、記録層が結晶状態となっている領域を「ブランク」とすれば、記録マークの長さ(記録マークの前縁から後縁までの長さ)及びブランクの長さ(記録マークの後縁から次の記録マークの前縁までの長さ)によってデータを表現することが可能となる。
【0005】
記録層に記録マークを形成する場合、記録層に照射するレーザビームのパワーを十分に高いレベル(記録パワーPw)に設定することによって記録層を融点を超える温度に加熱し、その後、レーザビームのパワーを十分に低いレベル(基底パワーPb)に変化させることによって記録層を急冷すればよい。これにより、相変化材料が結晶状態からアモルファス状態に変化することから、記録マークを形成することができる。一方、既に形成された記録マークを消去する場合、記録層に照射するレーザビームのパワーを記録パワーPw以下、基底パワーPb以上のレベル(消去パワーPe)に設定することによって記録層を結晶化温度以上に加熱し、徐冷すればよい。これにより、相変化材料がアモルファス状態から結晶状態に変化することから、記録マークが消去される。
【0006】
したがって、レーザビームのパワーを記録パワーPw、消去パワーPe、基底パワーPbからなる複数のレベルに変調することによって、記録層の未記録領域に記録マークを形成するだけでなく、既に記録マークが形成されている領域にこれと異なる記録マークを直接上書き(ダイレクトオーバーライト)することが可能となる。
【0007】
一方、近年、データの記録密度が高められ、且つ、非常に高いデータ転送レートを実現可能な次世代型の光記録媒体が提案されている。このような次世代型の光記録媒体においては、大容量・高データ転送レートを実現するため、必然的に、データの記録・再生に用いるレーザビームのビームスポット径を非常に小さく絞らなければならない。ここで、ビームスポット径を小さく絞るためには、レーザビームを集束するための対物レンズの開口数(NA)を0.7以上、例えば、0.85程度まで大きくするとともに、レーザビームの波長λを380nm〜450nm、例えば400nm程度まで短くする必要がある。
【0008】
しかしながら、レーザビームを集束するための対物レンズを高NA化すると、光記録媒体の反りや傾きの許容度、すなわちチルトマージンが非常に小さくなるという問題が生じる。チルトマージンTは、記録・再生に用いるレーザビームの波長をλ、レーザビームの光路となる光透過層(透明基体)の厚さをdとすると、次式によって表すことができる。
【0009】
【数1】



式(1)から明らかなように、チルトマージンは対物レンズのNAが大きいほど小さくなってしまう。また、波面収差(コマ収差)が発生する光透過層(透明基体)の屈折率をn、傾き角をθとすると、波面収差係数Wは、次式によって表すことができる。
【0010】
【数2】



式(1)及び式(2)から明らかなように、チルトマージンを大きくし、且つ、コマ収差の発生を抑えるためには、記録・再生に用いるレーザビームが入射する光透過層(透明基体)の厚さdを小さくすることが非常に有効である。
【0011】
このような理由から、次世代型の光記録媒体においては、十分なチルトマージンを確保しつつ、コマ収差の発生を抑えるために、光透過層(透明基体)の厚さを100μm程度まで薄くすることが要求される。このため、次世代型の光記録媒体においては、CDやDVD等、現行の光記録媒体のように光透過層(透明基体)上に記録層等を形成することは困難であり、基体上に形成した記録層等の上にスピンコート法等により薄い樹脂層を光透過層(透明基体)として形成する方法が検討されている。したがって、次世代型の光記録媒体の作製においては、光入射面側から順次成膜が行われる現行の光記録媒体とは異なり、光入射面とは反対側から順次成膜が行われることになる。
【0012】
【発明が解決しようとする課題】
このような次世代型の光記録媒体においては、上述の通り非常に高いデータ転送レートが要求されることから、記録層が相変化材料からなる書き換え型の光記録媒体においてこれを可能とするためには、結晶化速度の速い相変化材料を用いて記録層を構成する必要がある。
【0013】
しかしながら、記録層の結晶化速度が速いと、アモルファス部分(記録マーク)が結晶化温度以上に加熱された場合に非常に短時間で再結晶化してしまうため、再生耐久性やクロスイレーズ特性が悪化するという問題が生じる。かかる問題は、レーザビームのパワー密度が高いほど顕著となることから、CDやDVDに比べ、次世代型の光記録媒体においては特に深刻である。
【0014】
このような問題は、記録層の放熱性を高めることによって解消することが可能である。記録層の放熱性は、主にこれに隣接して設けられる誘電体層の材料やその層厚によって調整可能であるが、誘電体層の材料やその層厚の設定により記録層の放熱性が過剰となると記録感度が低下してしまう。したがって、誘電体層による放熱性の設定は、再生耐久性及びクロスイレーズ特性と記録感度の両方を考慮して最適化する必要があり、しかも、これら誘電体層の材料及び層厚の設定は、必要な光学特性を満足し、且つ、記録層に対する十分な保護特性を満足する範囲で行う必要がある。
【0015】
しかしながら、非常に高いデータ転送レートが要求される次世代型の光記録媒体おいてこのような条件を満足させることは容易でない。
【0016】
したがって本発明の目的は、相変化材料からなる記録層の放熱性が最適化され、これにより再生耐久性やクロスイレーズ特性が高く、且つ、高い記録感度を有する、高速記録が可能な書き換え型の光記録媒体を提供することである。
【0017】
【課題を解決するための手段】
本発明のかかる目的は、レーザビームを照射することによって記録マークを形成可能な記録層と、前記記録層から見て前記レーザビームの入射面側に設けられた第1の誘電体層と、前記記録層から見て前記レーザビームの入射面とは反対側に設けられた第2の誘電体層と、前記第1の誘電体層から見て前記レーザビームの入射面側に設けられた放熱層と、前記第2の誘電体層から見て前記レーザビームの入射面とは反対側に設けられた反射層とを備え、前記記録層は一般式(SbTe1−x1−y(Mはアンチモン(Sb)及びテルル(Te)を除く少なくとも1つの元素)で表される材料を含み、前記第1の誘電体層はZnSとSiOの混合物を含み、前記反射層は銀(Ag)又はこれを主成分とする合金を含み、前記放熱層は窒化アルミニウム(AlN)を主成分とする材料を含むことを特徴とする光記録媒体によって達成される。
【0018】
本発明によれば、記録層の結晶化速度が速いことから高速記録を行うことが可能である。また、反射層の材料として熱伝導率の高い銀(Ag)又はこれを主成分とする合金を用い、第1の誘電体層から見てレーザビームの入射面側にAlNを主成分とする材料を含む放熱層を設けていることから、記録層の放熱性が非常に高く、このため良好な再生耐久性やクロスイレーズ特性を得ることが可能となる。また、放熱層が記録層から見てレーザビームの入射面側に設けられていることから、過剰な放熱特性による記録感度の低下が効果的に抑制される。しかも、第1の誘電体層の材料として、記録層との密着性及び光学特性に優れたZnSとSiOとの混合物を含む材料を用いていることから、良好なオーバーライト特性及びジッタを確保することが可能となる。
【0019】
この場合、前記第1の誘電体層に含まれるZnSとSiOの混合物のモル比が70:30〜90:10であることが好ましく、約80:20であることがより好ましい。このような材料は、光学特性に特に優れていることから、より良好なオーバーライト特性及びジッタを確保することが可能となる。
【0020】
また、前記一般式におけるMは、銀(Ag),インジウム(In),ゲルマニウム(Ge)及び希土類元素からなる群より選ばれた1又は2以上の元素を含んでいることが好ましく、ゲルマニウム(Ge)とテルビウム(Tb)の両方、若しくは、ゲルマニウム(Ge)とマンガン(Mn)の両方を含んでいることがより好ましい。これによれば、結晶化速度がさらに高まるとともに、結晶化温度が高くなるので、再生耐久性やクロスイレーズ特性をさらに向上させることが可能となる。このため、さらなる高密度化のためにトラックピッチをより狭く設定することが可能となる。
【0021】
また、前記第2の誘電体層は、ZnSとSiOの混合物(モル比:40:60〜60:40)を含んでいることが好ましい。このような材料は、記録層に対する保護特性が優れているとともに熱伝導性が比較的低いため、第2の誘電体層の材料としてこれを用いれば、記録感度を高めることが可能となる。
【0022】
また、前記レーザビームの波長をλ、前記レーザビームを集束するための対物レンズの開口数をNA、トラックピッチをTPとした場合、TP/(λ/NA)<0.7が満たされていることが好ましい。本発明による光記録媒体はクロスイレーズ特性に非常に優れていることから、上記の条件下において記録を行うことが可能となる。
【0023】
また、前記放熱層から見て前記レーザビームの入射面側に設けられ、層厚が10〜300μmである光透過層をさらに備え、λ/NA≦640nmに設定してデータの記録を行うことが可能であることが好ましい。このような光記録媒体はいわゆる次世代型の光記録媒体であり、非常に高いデータ転送レートが要求されるものの、本発明によれば、記録層からみて入射面側における放熱性が大幅に改善されていることから、高速記録を行う場合であっても、高い記録感度と広いパワーマージンを確保することが可能となる。
【0024】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明の好ましい実施態様について詳細に説明する。
【0025】
図1(a)は、本発明の好ましい実施態様にかかる光記録媒体10の外観を示す切り欠き斜視図であり、図1(b)は、図1(a)に示すA部を拡大した部分断面図である。
【0026】
図1(a),(b)に示す光記録媒体10は、外径が約120mm、厚みが約1.2mmである円盤状の光記録媒体であり、図1(b)に示すように、支持基板11と、反射層12と、第2誘電体層13と、記録層14と、第1誘電体層15と、放熱層16と、光透過層17とを備えて構成されている。特に限定されるものではないが、本実施態様にかかる光記録媒体10は、波長λが380nm〜450nm、好ましくは約405nmであるレーザビームLを光透過層17の表面である光入射面17aより照射することによってデータの記録及び再生を行うことが可能な書き換え型の光記録媒体である。光記録媒体10に対するデータの記録及び再生においては、開口数が0.7以上、好ましくは0.85程度の対物レンズが用いられ、これによって、レーザビームLの波長をλ、対物レンズの開口数をNAとした場合、λ/NA≦640nmに設定される。
【0027】
支持基板11は、光記録媒体10に求められる厚み(約1.2mm)を確保するために用いられる厚さ約1.1mmの円盤状の基板であり、その一方の面には、その中心部近傍から外縁部に向けて、レーザビームLをガイドするためのグルーブ11a及びランド11bが螺旋状に形成されている。特に限定されるものではないが、グルーブ11aの深さとしては10nm〜40nmに設定することが好ましく、グルーブ11aのピッチ(トラックピッチ=TP)としては0.2μm〜0.4μmに設定することが好ましい。この場合、TP/(λ/NA)は0.7未満となる。支持基板11の材料としては種々の材料を用いることが可能であり、例えば、ガラス、セラミックス、あるいは樹脂を用いることができる。これらのうち、成形の容易性の観点から樹脂が好ましい。このような樹脂としてはポリカーボネート樹脂、オレフィン樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂等が挙げられる。中でも、加工性などの点からポリカーボネート樹脂やオレフィン樹脂が特に好ましい。但し、支持基板11は、レーザビームLの光路とはならないことから、高い光透過性を有している必要はない。
【0028】
支持基板11の作製は、スタンパを用いた射出成形法を用いることが好ましいが、2P法等、他の方法によってこれを作製することも可能である。
【0029】
反射層12は、光透過層17側から入射されるレーザビームLを反射し、再び光透過層17から出射させる役割を果たすとともに、記録層14から見て支持基板11側における放熱層としての役割を果たし、さらに、多重干渉効果により再生信号(C/N比)を高める役割を果たす。本発明では、反射層12の材料として銀(Ag)又はこれを主成分とする合金が用いられる。本明細書において、「銀(Ag)を主成分とする」とは銀(Ag)の含有率が90atm%以上であることを意味する。これにより、レーザビームLに対する高い反射率を確保することができるとともに、記録層14の放熱特性を十分に高めることが可能となる。
【0030】
反射層12の厚さとしては、5〜300nmに設定することが好ましく、20〜200nmに設定することが特に好ましい。これは、反射層12の厚さが5nm未満であると反射層12による上記効果を十分に得ることができない一方、反射層12の厚さが300nm超であると、反射層12の表面性が低くなるばかりでなく、成膜時間が長くなり生産性が低下してしまうからであり、反射層12の厚さを5〜300nm、特に20〜200nmに設定すれば、反射層12による上記効果を十分に得ることができるとともに、その表面性を高く維持することができ、さらに、生産性の低下を防止することが可能となる。
【0031】
尚、支持基板11と反射層12との間に、反射層12の腐食防止を目的として誘電体からなる防湿層を設けても構わない。防湿層を構成する誘電体としては、Al、AlN、ZnO、ZnS、GeN、GeCrN、CeO、SiO、SiO、Si、SiC、La、TaO、TiO、SiAlON(SiO,Al,Si及びAlNの混合物)及びLaSiON(La,SiO及びSiの混合物)等、アルミニウム(Al)、シリコン(Si)、セリウム(Ce)、チタン(Ti)、亜鉛(Zn)、タンタル(Ta)等の酸化物、窒化物、硫化物、炭化物あるいはそれらの混合物を用いることができるが、腐食防止効果及び成膜速度を考慮すれば、ZnSとSiOとの混合物を用いることが好ましい。
【0032】
記録層14は可逆的な記録マークが形成される層であり、相変化材料によって構成される。相変化材料は、結晶状態である場合の反射率とアモルファス状態である場合の反射率とが異なるため、これを利用してデータの記録が行われる。記録されるデータは、例えばアモルファス状態である記録マークの長さ(記録マークの前縁から後縁までの長さ)及び例えば結晶状態であるブランク領域の長さ(記録マークの後縁から次の記録マークの前縁までの長さ)によって表現される。記録マーク及びブランク領域の長さは、基準となるクロックの1周期に相当する長さをTとした場合、Tの整数倍に設定され、具体的には、1,7RLL変調方式においては、2T〜8Tの長さを持つ記録マーク及びブランク領域が使用される。
【0033】
記録層14を結晶状態からアモルファス状態に変化させるためには、光入射面17aから照射されるレーザビームLを記録パワーPwから基底パワーPbまでの振幅を有するパルス波形とすることによって記録層14を融点以上の温度に加熱し、その後、レーザビームLのパワーを基底パワーPbに設定することによって急冷する。これによって溶融した領域がアモルファス状態に変化し、これが記録マークとなる。一方、記録層14をアモルファス状態から結晶状態に変化させるためには、光入射面17aから照射されるレーザビームLのパワーを消去パワーPeに設定することによって記録層14を結晶化温度以上の温度に加熱する。結晶化温度以上の温度に加熱された領域は、レーザビームLが遠ざかることによって徐冷されることから、当該領域が結晶状態に変化する。
【0034】
ここで、記録パワーPw、消去パワーPe及び基底パワーPbの関係は、
Pw>Pe≧Pb
に設定される。したがって、レーザビームLのパワーをこのように変調すれば、記録層14の未記録領域に記録マークを形成するだけでなく、既に記録マークが形成されている領域にこれと異なる記録マークを直接上書き(ダイレクトオーバーライト)することが可能となる。
【0035】
本発明では、記録層14を構成する相変化材料として、下記一般式
(SbTe1−x1−y M:Sb及びTeを除く元素
で表される材料が用いられる。上記一般式で表される相変化材料は、アモルファス状態から結晶状態への構造変化に要する時間(結晶化時間)が短いことから、高速でダイレクトオーバーライトを行うことが可能となる。また、上記一般式中のx及びyの値としては、
0.55≦x≦0.9
0≦y≦0.25
であることが好ましく、
0.65≦x≦0.85
0≦y≦0.25
であることがより好ましい。
【0036】
元素Mの種類は特に限定されないが、短結晶化時間及び保存信頼性の観点から、インジウム(In),銀(Ag),金(Au),ビスマス(Bi),セレン(Se),アルミニウム(Al),リン(P),ゲルマニウム(Ge),水素(H),シリコン(Si),炭素(C),バナジウム(V),タングステン(W),タンタル(Ta),亜鉛(Zn),マンガン(Mn),チタン(Ti),錫(Sn),パラジウム(Pd),鉛(Pb),窒素(N),酸素(O)及び希土類元素からなる群より1又は2以上の元素を選択することが好ましい。保存信頼性の観点からは、銀(Ag),インジウム(In),ゲルマニウム(Ge)及び希土類元素からなる群より1又は2以上の元素を選択することがより好ましく、ゲルマニウム(Ge)とテルビウム(Tb)の両方、若しくは、ゲルマニウム(Ge)とマンガン(Mn)の両方を選択することが最も好ましい。このような元素を選択すれば、記録層14の結晶化速度がさらに高まるとともに、結晶化温度が高くなることから、再生耐久性やクロスイレーズ特性をさらに向上させることが可能となる。
【0037】
記録層14の層厚は、厚くなればなるほど記録感度が低下する。したがって、記録感度を高めるためには、記録層14の層厚を薄く設定することが有効であるが、薄くしすぎると記録前後における光学定数の差が少なくなり、再生時に高いレベルの再生信号(C/N比)を得ることができなくなる。また、記録層14の層厚を極端に薄く設定すると、成膜時における層厚制御が困難となる。以上を考慮すれば、記録層14の層厚としては2〜40nmに設定することが好ましく、2〜20nmに設定することがより好ましく、2〜15nmに設定することがさらに好ましい。
【0038】
放熱層16、第1誘電体層15及び第2誘電体層13は、記録層14を物理的及び/又は化学的に保護する役割を果たし、記録層14は第1誘電体層15及び第2誘電体層13に挟持されることによって、光記録後、長期間にわたって記録情報の劣化が効果的に防止される。また、放熱層16、第1誘電体層15及び第2誘電体層13は、記録の前後における光学特性の差を拡大する役割をも果たし、さらに、放熱層16は、記録層14に生じている熱を速やかに放熱するための放熱層としての役割をも果たす。
【0039】
本発明では、放熱層16を構成する材料としてAlNを主成分とする材料が用いられる。これは、AlNは熱伝導性が高く、これを放熱層16の材料として用いることにより記録層14の放熱性が効果的に高められるからである。本明細書において、「AlNを主成分とする」とはAlNの含有率が90atm%以上であることを意味する。但し、記録層14の放熱性をより効果的に高めるためには、放熱層16中のAlNの含有率が高いほど好ましく、95atm%程度であることが最も好ましい。
【0040】
放熱層16の層厚は特に限定されないが、50〜150nmに設定することが好ましく、80〜120nmに設定することが特に好ましい。これは、放熱層16の層厚が50nm未満であると十分な放熱効果が得られなくなる一方、150nmを超えると成膜時間が長くなり生産性が低下するおそれがあるとともに、放熱層16のもつ応力によってクラックが発生するおそれがあるからである。放熱層16の層厚を80〜120nmに設定すれば、生産性の低下やクラックの発生を防止しつつ、記録層14に良好な放熱特性を与えることが可能となる。
【0041】
一方、本発明では、第1誘電体層15を構成する材料としてZnSとSiOとの混合物が用いられ、そのモル比は好ましくは70:30〜90:10、より好ましくは約80:20に設定される。このような材料は、記録層14に対する保護特性や記録による熱変形を防止する効果が優れているのみならず、青色波長領域のレーザビームLに対して良好な光学特性を備えているため、記録層14からみて光入射面17aに設けられる誘電体層の材料として非常に好適である。
【0042】
尚、記録層14と第1誘電体層15との間に、記録による熱変形をより効果的に防止する界面層を設けても構わない。界面層を構成する誘電体としては、モル比が40:60〜60:40、特に、約50:50であるZnSとSiOとの混合物を用いることが好ましい。
【0043】
第1誘電体層15の層厚は特に限定されないが、10〜60nmに設定することが好ましく、10〜40nmとすることが特に好ましい。これは、第1誘電体層15の層厚が10nm未満であったり60nm超であると、光学特性を拡大する効果が十分に得られなくなるからである。さらに、第1誘電体層15の層厚が10nm未満であると、記録層14の保護効果が十分に得られなくなる一方、60nmを超えると放熱層16による放熱効果が低下するからである。第1誘電体層15の層厚を10〜40nmに設定すれば、光学特性を満足し、放熱効果を確保しつつ、上記効果をより十分に得ることが可能となる。
【0044】
また、記録層14と第1誘電体層15との間に界面層を介在させる場合には、界面層よりも第1誘電体層15の方が層厚が大きくなるように設定することが好ましい。より具体的には、界面層の材料としてモル比が50:50であるZnSとSiOの混合物を用い、第1誘電体層15の材料としてモル比が80:20であるZnSとSiOの混合物を用いる場合には、第1誘電体層の厚さが10〜40nmであれば、界面層の層厚としては2〜10nmに設定することが好ましい。これは、モル比が50:50であるZnSとSiOの混合物は比較的応力が強く、また熱伝導性が比較的低いことから、本材料からなる界面層の層厚を大きくしすぎると、クラックが生じ易くなるばかりでなく、放熱層16による放熱効果が低下するからである。
【0045】
ここで、第1誘電体層15と放熱層16とを一体化しその材料としてAlNを用いれば、記録層14の放熱特性がさらに向上するが、本発明において放熱層16とは別に第1誘電体層15を設けているのは次の理由による。すなわち、AlNは上記材料からなる記録層14との密着性が低く、このため、記録層14とAlNからなる層を直接接触させるとオーバーライト特性が低下してしまう。また、AlNはエンハンス効果が小さいことから、AlNからなる層のみでは十分な変調度が得られず、結果、ジッタが低下してしまう。以上の理由から、本発明では上記材料からなる第1誘電体層15と放熱層16とを別個に設けているのである。
【0046】
第2誘電体層13を構成する材料については、使用されるレーザビームLの波長領域において透明な誘電体であれば特に限定されないが、ZnSとSiOとの混合物を用いることが好ましく、そのモル比としては40:60〜60:40、特に50:50程度に設定することが好ましい。モル比が50:50程度であるZnSとSiOの混合物は、記録層14に対する保護特性が優れているとともに熱伝導性が比較的低いため、第2誘電体層13の材料としてこれを用いれば、記録感度を高めることが可能となる。
【0047】
ここで、第2誘電体層13の材料として比較的が熱伝導性が低い材料を用いることが可能であるのは、これに隣接して熱伝導性の非常に高い反射層12が設けられているからであり、第2誘電体層13の材料として過度に熱伝導性の高い材料(例えばAlN)を用いると、反射層12の高い熱伝導性と相まって、記録感度が大幅に低下してしまうからである。
【0048】
第2誘電体層13の層厚は特に限定されないが、8〜20nmに設定することが好ましく、10〜15nmに設定することがより好ましく、12nm程度に設定することが特に好ましい。これは、第2誘電体層13の厚さが8nm未満であると記録層14を十分に保護できないおそれが生じる一方、上記材料は比較的膜応力が強いことから、第2誘電体層13の厚さが20nm超であるとクラックが発生するおそれがあるとともに、放熱性が低下しすぎるからである。そして、第2誘電体層13の厚さを10〜15nm、特に12nm程度に設定すれば、クラックの発生を防止しつつ高い信頼性を確保することができ、さらに、記録層14に対して最適な放熱性を与えることが可能となる。
【0049】
尚、上記反射層12、第2誘電体層13、記録層14、第1誘電体層15及び放熱層16の形成方法としては、これらの構成元素を含む化学種を用いた気相成長法、例えば、スパッタリング法や真空蒸着法を用いることができ、中でも、スパッタリング法を用いることが好ましい。
【0050】
光透過層17は、レーザビームLの光路となるとともに光入射面17aを構成する層であり、その厚さとしては10〜300μmに設定することが好ましく、50〜150μmに設定することが特に好ましい。光透過層17の材料としては、使用されるレーザビームLの波長領域において光透過率が十分に高い材料である限り特に限定されないが、アクリル系又はエポキシ系の紫外線硬化性樹脂を用い、スピンコート法によってこれを放熱層16上に形成することが好ましい。また、紫外線硬化性樹脂を硬化させてなる膜のかわりに、光透過性樹脂からなる光透過性シートと各種接着剤や粘着剤を用いて光透過層17を形成してもよい。
【0051】
尚、光透過層17の表面にハードコート層を設け、これによって光透過層17の表面を保護しても構わない。この場合、ハードコート層の表面が光入射面を構成する。ハードコート層の材料としては、光透過層17の材料よりも傷のつきにくい硬い材料であれば特に限定されず、例えば、エポキシアクリレートオリゴマー(2官能オリゴマー)、多官能アクリルモノマー、単官能アクリルモノマー及び光重合開始剤を含む紫外線硬化性樹脂や、アルミニウム(Al)、シリコン(Si)、セリウム(Ce)、チタン(Ti)、亜鉛(Zn)、タンタル(Ta)等の酸化物、窒化物、硫化物、炭化物あるいはそれらの混合物を用いることができる。ハードコート層の材料として紫外線硬化性樹脂を用いる場合には、スピンコート法によってこれを光透過層17上に形成することが好ましく、上記酸化物、窒化物、硫化物、炭化物あるいはそれらの混合物を用いる場合には、これらの構成元素を含む化学種を用いた気相成長法、例えば、スパッタリング法や真空蒸着法を用いることができ、中でも、スパッタリング法を用いることが好ましい。
【0052】
また、ハードコート層は、光入射面に傷が生じるのを防止する役割を果たすものであることから、硬いだけでなく、潤滑性を有していることが好ましい。ハードコート層に潤滑性を与えるためには、ハードコート層の母体となる材料(例えば、SiO)に潤滑剤を含有させることが有効であり、潤滑剤としては、シリコーン系潤滑剤やフッ素系潤滑剤、脂肪酸エステル系潤滑剤を選択することが好ましく、その含有量としては、0.1〜5.0質量%程度とすることが好ましい。
【0053】
以上が本発明の好ましい実施態様にかかる光記録媒体10の構造である。
【0054】
このような構造を有する光記録媒体10に対してデータを記録する場合、上述の通り、光入射面17aから強度変調されたレーザビームLを照射し、記録層14の温度を融点以上の温度に加熱した後、急冷すれば当該領域はアモルファス状態となり、記録層14の温度を結晶化温度以上の温度に加熱した後、徐冷すれば当該領域は結晶状態となる。記録層14のうち、アモルファス状態となった部分(記録マークに相当)の反射率は、結晶状態となった部分(ブランク領域に相当)の反射率と異なった値となることから、これを利用してデータの記録・再生を行うことが可能となる。
【0055】
そして、本実施態様にかかる光記録媒体10においては、記録層14の材料として一般式
(SbTe1−x1−y M:Sb及びTeを除く元素
で表される結晶化速度の速い材料を用いていることから、高速記録を行うことが可能であり、反射層12の材料として熱伝導率の高い銀(Ag)又はこれを主成分とする合金を用い、第1誘電体層15と光透過層17との間にAlNからなる放熱層16を設けていることから記録層14の放熱性が非常に高く、このため再生耐久性やクロスイレーズ特性が大幅に改善されている。しかも、第1誘電体層15の材料として記録層14との密着性及び光学特性に優れたZnSとSiOとの混合物(好ましくは、モル比=70:30〜90:10)を用いていることから、良好なオーバーライト特性及びジッタを確保することが可能となる。
【0056】
さらに、第2誘電体層13の材料として、比較的熱伝導性の低いZnSとSiOとの混合物(モル比=40:60〜60:40)を用いれば、記録層14から見て支持基板11側の放熱性が過剰となることがないので、放熱性向上による記録感度の低下を効果的に抑制することが可能となる。
【0057】
さらに、上記一般式においてMで表される元素として、銀(Ag),インジウム(In),ゲルマニウム(Ge)及び希土類元素からなる群より1又は2以上の元素、特に、ゲルマニウム(Ge)とテルビウム(Tb)の両方、若しくは、ゲルマニウム(Ge)とマンガン(Mn)の両方を選択すれば、結晶化速度がさらに高まるとともに、結晶化温度が高くなるので、再生耐久性やクロスイレーズ特性をさらに向上させることが可能となる。このため、さらなる高密度化のためにトラックピッチをより狭く設定することが可能となる(TP/(λ/NA)<0.7)。
【0058】
さらに、記録層14と第1誘電体層15との間に界面層を設ければ、記録による熱変形がより効果的に防止されることから、オーバーライト特性を向上させることが可能となる。
【0059】
このように、本実施態様にかかる光記録媒体10は、記録層14の材料として結晶化速度の速い材料を用いていることから高速記録を行うことが可能であるとともに、放熱層16により記録層14の放熱性が高められていることから、遅い線速度で記録を行った場合であってもクロスイレーズが生じにくく、また、遅い線速度で再生を行った場合であっても十分な再生耐久性を確保することが可能となる。このため、本実施態様にかかる光記録媒体10は、いわゆるマルチスピード記録に好適であるとともに、記録位置によって線速度が大きく変化するCAV方式にも好適である。
【0060】
本発明は、以上の実施態様に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【0061】
【実施例】
以下、実施例を用いて本発明について更に具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
【0062】
[サンプルの作製]
以下の方法により、図1に示す構造と同じ構造を有する実施例1及び2による光記録媒体サンプルと比較例1及び2による光記録媒体サンプルを作製した。
【0063】
まず、射出成型法により、厚さ1.1mm、直径120mmであり、表面にグルーブ11a及びランド11bが形成されたポリカーボネートからなるディスク状の支持基板11を作製した。トラックピッチ(グルーブ11aのピッチ)については、0.26〜0.36μmの間で種々に設定した。また、グルーブ11aの深さについては、25nmに設定した。
【0064】
次に、この支持基板11をスパッタリング装置にセットし、グルーブ11a及びランド11bが形成されている側の表面に銀(Ag)、パラジウム(Pd)及び銅(Cu)の合金(APC合金)からなる厚さ100nmの反射層12、ZnSとSiOの混合物(モル比=50:50)からなる厚さ12nmの第2誘電体層13、Ge0.06Sb0.76Te0.18からなる厚さ12nmの記録層14、ZnSとSiOの混合物(モル比=80:20)からなる厚さ30nmの第1誘電体層15、AlNからなる厚さ100nmの放熱層16を順次スパッタ法により形成した。
【0065】
次に、放熱層16上に、アクリル系紫外線硬化性樹脂をスピンコート法によりコーティングし、これに紫外線を照射して厚さ100μmの光透過層17を形成した。これにより、実施例1による光記録媒体サンプルが完成した。
【0066】
次に、記録層14の材料としてGe0.05Tb0.02Sb0.77Te0.16を用い、その厚さを12nmに設定した他は、実施例1による光記録媒体サンプルと同様にして実施例2による光記録媒体サンプルを作製した。
【0067】
さらに、放熱層16の材料としてAlを用い、その厚さを100nmに設定した他は、実施例1による光記録媒体サンプルと同様にして比較例1による光記録媒体サンプルを作製した。
【0068】
そして、第2誘電体層13の材料としてAlNを用い、その厚さを12nmに設定した他は、比較例1による光記録媒体サンプルと同様にして比較例2による光記録媒体サンプルを作製した。
【0069】
実施例1及び2の光記録媒体サンプル並びに比較例1及び2の光記録媒体サンプルに含まれる反射層12〜放熱層16の材料を、図2にまとめて示す。
【0070】
[記録感度の比較]
各光記録媒体サンプルのうちトラックピッチが0.32μmであるサンプルを選択し、それそれ光ディスク評価装置(商品名:DDU1000、パルステック社製)にセットした。そして、10.5m/secの線速度で回転させながら、開口数が0.85である対物レンズを介して波長が405nmであるレーザビームを光入射面17aから記録層14に照射し、1,7RLL変調方式における2T信号〜8T信号からなる混合信号をそれぞれ記録した。この場合、TP/(λ/NA)の値は約0.67である。このような記録を種々の記録パワーPw及び種々の消去パワーPeを用いて行うことにより、ジッタが最も低くなる記録パワーPwを探した。基底パワーPbは0.5mWに固定した。ここでいうジッタとはクロックジッタを指し、タイムインターバルアナライザにより再生信号の「ゆらぎ(σ)」を求め、σ/Tw(Tw:クロックの1周期)により算出した。測定の結果を表1に示す。
【0071】
【表1】



表1に示すように、実施例1及び2の光記録媒体サンプルに比べ、比較例2の光記録媒体サンプルではジッタが最低となる記録パワーPwがかなり高かった。つまり記録感度が悪かった。これは、比較例2の光記録媒体サンプルでは、第2誘電体層13が熱伝導性の高いAlNからなるため、放熱性が過剰となったためであると考えられる。
【0072】
[クロスイレーズ特性の比較]
上記記録感度の比較に用いた光記録媒体サンプルに対し、それぞれジッタが最も低くなる上記条件にて、所定のトラックに8T単一信号を10回オーバーライトした後、そのキャリアレベル(C1)を測定した。さらに、上記所定のトラックの両側のトラックに7T単一信号をそれぞれ100回オーバーライトした後、上記所定のトラックに記録されている8T単一信号のキャリアレベル(C2)を測定した。そして、キャリアレベルの変化量(C2−C1)を計算し、これをクロスイレーズ量(CE=C2−C1)とした。測定の結果を表2に示す。
【0073】
【表2】



表2に示すように、実施例1及び2の光記録媒体サンプルに比べ、比較例1の光記録媒体サンプルではクロスイレーズ量が大きかった。これは、比較例1の光記録媒体サンプルでは、放熱層16がAlNよりも熱伝導性の低いAlからなるため、放熱性が不足したためであると考えられる。また、実施例1の光記録媒体サンプルでは僅かなクロスイレーズが観測されたが、実施例2の光記録媒体サンプルではクロスイレーズはほとんど観測されなかった。これは、実施例2の光記録媒体サンプルの方が記録層14の結晶化温度が高いことから、実施例1の光記録媒体サンプルよりもクロスイレーズ特性がさらに高いためであると考えられる。
【0074】
次に、種々のトラックピッチを有する実施例1及び2の光記録媒体サンプル並びに比較例1の光記録媒体サンプルに対し、上記のクロスイレーズ測定を行った。測定の結果を図3に示す。
【0075】
図3に示すように、各サンプルともTP/(λ/NA)の値が0.7以上であればクロスイレーズ量は非常に小さいものの、TP/(λ/NA)の値が小さくなるにつれてクロスイレーズ量が増大した。この場合、比較例1の光記録媒体サンプルではTP/(λ/NA)の値が小さくなるにつれてクロスイレーズ量が急激に増大したが、実施例1及び2の光記録媒体サンプル、特に、実施例2の光記録媒体サンプルでは、クロスイレーズ量の増大は緩やかであった。これにより、本発明の効果は、TP/(λ/NA)の値が0.7未満である場合において特に顕著となることが確認された。
【0076】
[パワーマージンの比較]
実施例2の光記録媒体サンプル及び比較例1の光記録媒体サンプルのうち、トラックピッチが0.32μmであるサンプルを選択し、線速度を5.3m/sec及び10.6m/secに設定した他は、上記記録感度の比較と同様、種々の記録パワーPwを用いて1,7RLL変調方式における2T信号〜8T信号からなる混合信号をそれぞれ記録した。そして、各光記録媒体サンプルに記録された混合信号を再生し、得られた再生信号のジッタを測定した。
【0077】
線速度を5.3m/secに設定した場合の測定結果を図4に、線速度を10.6m/secに設定した場合の測定結果を図5に示す。図4及び図5においては、両隣のトラックが未記録状態である場合のジッタ(シングルジッタ)と、両隣のトラックが記録状態である場合のジッタ(クロスジッタ)の両方が示されている。クロスジッタの測定は、所定のトラックに混合信号を記録し、さらに両隣のトラックに混合信号を10回オーバーライトした後、上記所定のトラックに記録された混合信号のジッタを測定することにより行った。
【0078】
図4及び図5に示すように、シングルジッタ及びクロスジッタとも、実施例2の光記録媒体サンプルの方がジッタの最低値(ボトム)がより低く、パワーマージンも広かった。これは、比較例1の光記録媒体サンプルでは放熱層16がAlからなり、実施例2の光記録媒体サンプルの放熱層16よりも熱伝導性が低いことから光入射面17a側における記録層14の放熱性が不足したのに対し、実施例2の光記録媒体サンプルでは放熱層16が十分な熱伝導性を有しているため、光入射面17a側における記録層14の放熱性が良好であるためと考えられる。
【0079】
【発明の効果】
以上説明したように、本発明にかかる光記録媒体は、記録層が結晶化速度の速い材料からなるとともに、AlNを主成分とする放熱層等によりその放熱特性が最適化されていることから、高い記録感度を確保しつつ、高い再生耐久性やクロスイレーズ特性を得ることが可能となる。
【図面の簡単な説明】
【図1】(a)は、本発明の好ましい実施態様にかかる光記録媒体10の外観を示す切り欠き斜視図であり、(b)は(a)に示すA部を拡大した部分断面図である。
【図2】実施例1及び2の光記録媒体サンプル並びに比較例1及び2の光記録媒体サンプルに含まれる反射層12〜放熱層16の材料を示す図である。
【図3】TP/(λ/NA)の値とクロスイレーズ量との関係を示すグラフである。
【図4】線速度を5.3m/secに設定した場合におけるパワーマージンの測定結果を示すグラフである。
【図5】線速度を10.6m/secに設定した場合におけるパワーマージンの測定結果を示すグラフである。
【符号の説明】
10 光記録媒体
11 支持基板
11a グルーブ
11b ランド
12 反射層
13 第2誘電体層
14 記録層
15 第1誘電体層
16 放熱層
17 光透過層
17a 光入射面
L レーザビーム

【特許請求の範囲】
【請求項1】
レーザビームを照射することによって記録マークを形成可能な記録層と、前記記録層から見て前記レーザビームの入射面側に設けられた第1の誘電体層と、前記記録層から見て前記レーザビームの入射面とは反対側に設けられた第2の誘電体層と、前記第1の誘電体層から見て前記レーザビームの入射面側に設けられた放熱層と、前記第2の誘電体層から見て前記レーザビームの入射面とは反対側に設けられた反射層とを備え、前記記録層は一般式(SbTe1−x1−y(Mはアンチモン(Sb)及びテルル(Te)を除く少なくとも1つの元素)で表される材料を含み、前記第1の誘電体層はZnSとSiOの混合物を含み、前記反射層は銀(Ag)又はこれを主成分とする合金を含み、前記放熱層は窒化アルミニウム(AlN)を主成分とする材料を含むことを特徴とする光記録媒体。
【請求項2】
前記第1の誘電体層に含まれるZnSとSiOの混合物のモル比が約80:20であることを特徴とする請求項1に記載の光記録媒体。
【請求項3】
前記一般式におけるMは、銀(Ag),インジウム(In),ゲルマニウム(Ge)及び希土類元素からなる群より選ばれた1又は2以上の元素を含んでいることを特徴とする請求項1又は2に記載の光記録媒体。
【請求項4】
前記一般式におけるMは、ゲルマニウム(Ge)とテルビウム(Tb)の両方、若しくは、ゲルマニウム(Ge)とマンガン(Mn)の両方を含んでいることを特徴とする請求項3に記載の光記録媒体。
【請求項5】
前記第2の誘電体層は、ZnSとSiOの混合物(モル比:40:60〜60:40)を含んでいることを特徴とする請求項1乃至4のいずれか1項に記載の光記録媒体。
【請求項6】
前記レーザビームの波長をλ、前記レーザビームを集束するための対物レンズの開口数をNA、トラックピッチをTPとした場合、TP/(λ/NA)<0.7が満たされていることを特徴とする請求項1乃至5のいずれか1項に記載の光記録媒体。
【請求項7】
前記放熱層から見て前記レーザビームの入射面側に設けられ、層厚が10〜300μmである光透過層をさらに備え、λ/NA≦640nmに設定してデータの記録を行うことが可能であることを特徴とする請求項6に記載の光記録媒体。

【図1】
image rotate



【図2】
image rotate



【図3】
image rotate



【図4】
image rotate



【図5】
image rotate


【公開番号】特開2004−220699(P2004−220699A)
【公開日】平成16年8月5日(2004.8.5)
【国際特許分類】
【出願番号】特願2003−6949(P2003−6949)
【出願日】平成15年1月15日(2003.1.15)
【出願人】(000003067)TDK株式会社 (7,238)
【Fターム(参考)】