説明

内空変位センサ、内空変位測定システム、内空変位センサ取り付け方法

【課題】本発明の目的は、構造物内部の空間を閉塞することなく設置でき、構造物内部の空間の変位を測定できる内空変位センサを提供することである。
【解決手段】本発明の内空変位センサは、構造体内部の空間の変形によって曲げ歪を生じる変形部と、変形部の曲げ歪によって歪が加わるように変形部に接着された光ファイバと、構造物内部の空間の変位が変形部に伝わるように変形部を固定する固定部を備える。光ファイバは、同時には引張りの力と圧縮の力の両方が加わらないように変形部に接着すればよい。また、同じ光ファイバに引張りの力と圧縮の力の両方が同時に加わる場合には、その光ファイバの引張りの力が加わる部分と圧縮の力が加わる部分との間に、あらかじめ定めた長さ以上の変形部に接着していない光ファイバが存在するようにしておけばよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内部に空間を有する構造物の変形を測定するための内空変位センサ、そのセンサを用いた内空変位測定システム、内空変位センサ取り付け方法に関する。
【背景技術】
【0002】
図1および図2に、従来の内空変位センサを構造物の内部に取り付けた様子を示す。また、図3に従来の内空変位センサの構成を示す(非特許文献1)。図1と図2では、内部に空間を持つ構造物の例として、通信設備用のとう道(トンネル)を示している。なお、一般的なとう道の直径は3m程度である。
例えば、近くで地下鉄の工事があった場合に、土がとう道を押す力が変化し、とう道2000の内空間の寸法が変化することがある。このようなとう道の内空間の変化を測定する方法として、図3に示した内空変位センサが利用されている。内空変位センサ902は、変形部912、光ファイバ910、固定部933、934から構成されている。変形部912は弾性体であり、棒状またはパイプ状のものを用いることが多い。変形部912は固定部933、934によって構造物の内壁に固定される。構造物の内空間の間隔が狭くなると圧縮、広くなると引張りの力が弾性体に加わる。したがって、変形部には伸び歪が生じる。光ファイバ910は、ある程度の張力を付加した状態で変形部に接着されている。したがって、変形部912に生じる伸び歪は、光ファイバ910に加わることになる。光ファイバ910は、BOTDR(Brillouin Optical Time Domain Reflectometer)などの光ファイバの伸び歪を測定できる測定器(図示していない)に接続される。変形部912に接着された光ファイバの伸び歪をBOTDRなどで測定することにより、変形部912の伸び歪が分かり、構造物の内空間の変位を測定することができる。また、光ファイバ910は、あらかじめ張力が与えられているので、張力の増減によって、引張りの力による歪と圧縮の力による歪の両方を測定することができる。
【0003】
図1は、高さ方向と幅方向の内空間の変化を測定するために、内空変位センサを2つ用いた例を示している。図2は、3つの内空変位センサを用いた例を示している。従来の内空変位センサの場合、直線状の変形部を構造物内部に取り付けるため、構造物内部の空間を閉塞させることになってしまう。例えば、トンネルのような構造物の場合には、人や物が通る場所が狭くなってしまい、通行や運搬の支障となっていた。
【非特許文献1】藤原、宮山、栗原、市川、豊田、和内、永井、伊藤、Yingyongrattanakul、水原、“光ファイバセンサ(B-OTDR)による開削トンネル施工時の既設とう道の計測管理”、土木学会第60回年次学術講演会、pp.561-562、平成17年9月.
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明の目的は、構造物内部の空間を閉塞することなく設置でき、構造物内部の空間の変位を測定できる内空変位センサ、そのセンサを用いた内空変位測定システム、内空変位センサ取り付け方法を提供することである。
【課題を解決するための手段】
【0005】
本発明の内空変位センサは、構造体内部の空間の変形によって曲げ歪を生じる変形部と、変形部の曲げ歪によって歪が加わるように変形部に接着された光ファイバと、構造物内部の空間の変位が変形部に伝わるように変形部を固定する固定部を備える。固定部は、変形部を軸方向には移動しないように、かつ回転方向にはあらかじめ定めた範囲内で回転できるように固定すればよい。また、変形部にはリブを形成してもよい。さらに、変形部はコの字型とすればよい。光ファイバは、同時には引張りの力と圧縮の力の両方が加わらないように変形部に接着すればよい。また、同じ光ファイバに引張りの力と圧縮の力の両方が同時に加わる場合には、その光ファイバの引張りの力が加わる部分と圧縮の力が加わる部分との間に、あらかじめ定めた長さ以上の変形部に接着していない光ファイバが存在するようにしておけばよい。
【0006】
本発明の内空変位測定システムは、上述の内空変位センサと、光ファイバの伸び歪を測定するBOTDRを備える。また、同じ光ファイバに引張りの力と圧縮の力の両方が同時に加わる場合には、引張りの力が加わる部分と圧縮の力が加わる部分との間に存在する変形部に接着していない光ファイバの長さは、BOTDRの距離分解能よりも長くすればよい。さらに、光ファイバを直列に接続した複数の内空変位センサを有する場合には、各内空変位センサ間の光ファイバの長さは、BOTDRの距離分解能よりも長くすればよい。
本発明の内空変位センサ取り付け方法では、変形部を構造物の内面に沿って、接触しないように配置する。
【発明の効果】
【0007】
本発明の内空変位センサによれば、変形部の曲げ歪を測定することで、構造物内部の空間の変形を測定できる。本発明の内空変位センサの変形部の形状は、従来の内空変位センサの変形部ように直線状の形状に限定されない。したがって、構造物内部の空間を閉塞しない変形部の形状を選択できる。よって、構造物内部の空間を閉塞することなく、構造物内部の空間の変位を測定できる内空変位センサ、そのセンサを用いた内空変位測定システム、内空変位センサ取り付け方法を提供できる。
また、変形部が固定部に回転できるように固定すれば、変形部の表面へ引張りの力(または圧縮の力)が加わる範囲を広くすることができる(たわみの方向が同一となる範囲が広くなる)ので、光ファイバを接着できる範囲(長さ)を長くでき、測定精度を向上させることができる。変形部にリブを設けた場合には、変形部のねじれを防ぐことができ、変形部を細長くした場合の測定精度の劣化を防ぐことができる。
【0008】
変形部の形状としては、コの字型が最も適している。なお、コの字型とは、直線状の部材を3つ組み合わせた形状に限定されるものではない。リング状の形状の一部を切り取り、C型としたものなども含まれる。つまり、コの字型とは、ロの字型やリング型などのような閉じた形状の一部を切り取り、開放された部分がある形状のことである。このような形状の場合、変形部に曲げ歪が加わりやすい。また、変形部の表面には、引張りの力や圧縮の力のどちらか一方が広い範囲にわたって加わりやすい(たわみの方向が同一となる範囲が広くなる)。したがって、光ファイバを接着できる範囲が広くなる。なぜなら、光ファイバの伸び歪を測定する測定器(例えば、BOTDR)の距離分解能より短い範囲内に、光ファイバに対する引張りの力と圧縮の力が混在すると互いに打ち消しあい、正確に伸び歪を測定できないからである。逆に、光ファイバを接着する範囲、かつ測定器の距離分解能の範囲に引張りの力と圧縮の力が混在しないということは、伸び歪の打ち消しあいを防げるので、光ファイバを接着できる範囲を広くでき、測定精度を向上できる。
【0009】
上述のような内空変位センサを用いてBOTDRで光ファイバの伸び歪を測定することで構造物内の空間の変形を測定できる。1つの内空変位センサの変形部の何箇所かに同一の光ファイバを接着する場合には、接着された光ファイバの間の光ファイバ(変形部に接着されていない光ファイバ)の長さよりは、BOTDRの距離分解能よりも長くすることで、光ファイバに対する引張りの力と圧縮の力の打ち消しあいを回避でき、接着された光ファイバの伸び歪を正確に測定できる。内空変位センサを複数用いる場合は、各内空変位センサの光ファイバを直列につなぎ、内空変位センサ間の光ファイバの長さをBOTDRの距離分解能よりも長くすることで、1つのBOTDRで複数の地点、複数の方向の変位を測定できる。
【0010】
また、上述のように内空変位センサは、変形部の形状を選択できる。つまり、構造物の内面に沿って、接触しないように配置できる形状の変形部を選択できる。したがって、構造物内部の空間を閉塞しないように内空変位センサを設置できる。
【発明を実施するための最良の形態】
【0011】
[第1実施形態]
図4に、本発明の内空変位センサの構成例を示す。内空変位センサ100は、変形部110、光ファイバ120、固定部130から構成される。変形部110は、弾性体で形成され、構造体内部の空間の変位によって曲げ歪を生じる。光ファイバ120は、変形部110に張力を付加されながら接着される。変形部110の曲げ歪によって、光ファイバ120の張力が変化する。固定部130は、構造物内部の空間の変位が変形部110に伝わるように変形部110を固定する。リブ140は、変形部110のねじれを防ぐために、必要に応じて備えられる。
【0012】
図5は、図4のA−Aでの断面の様子を示した図である。図5Aはリブがない場合、図5Bはリブ140を備える場合を示している。リブ140は、変形部110にねじれが加わることを防ぐ為の構成部である。ねじれは、変形部110の材料や形状にも依存するし、変形部110が細長くなるに従って大きくなりやすい。したがって、変形部110を設計する際に、ねじれの程度と求められる測定精度の関係から、リブ140を必要に応じて備えればよい。
図6は、固定部の変形部を保持する構造の例を示している。図6A、Bは変形部110をはさむ構造の例であり、図6Aは図6Bを左側面から見た図である。図6C、Dはピンなどを用いる例であり、図6Cは図6Dを左側面から見た図である。構造物(ほとんどの場合が鉄筋コンクリート)の内空間の変形は、内空間の大きさに比べて非常に小さいので、変形部110が固定部130−1、130−2に対して回転する角度(図6中のθ)も非常に小さい。したがって、図6A、Bのような固定方法であっても、図6Bに示すように変形部110は少し回転できる。内空変位センサ100にとっては、この程度の回転でも十分な場合が多いと考えられる。なお、具体的なθの値は、構造物の内空間がどの程度変形することを想定しているのかによって異なるので、設計時に適宜定めればよい。
【0013】
また、回転は、変形部110に加わるたわみ(曲げ歪)が一定方向となるようにするためである。図7に変形部110のたわみの様子を示す。図7Aは内空間が狭くなった場合、図7Bは内空間が広くなった場合の様子を示している。図7Aでは、変形部110の内側の表面には圧縮の力が加わり、外側の表面には引張りの力が加わっている。したがって、光ファイバ120の変形部110の内側に接着された部分の張力は、全体的に小さくなる。また、光ファイバ120の変形部110の外側に接着された部分の張力は、全体的に大きくなる。図7Bでは、変形部110の内側の表面には引張りの力が加わり、外側の表面には圧縮の力が加わっている。したがって、光ファイバ120の変形部110の内側に接着された部分の張力は、全体的に大きくなる。また、光ファイバ120の変形部110の外側に接着された部分の張力は、全体的に小さくなる。図示していないが、この張力の変化を光ファイバの伸び歪を測定できる測定器(例えばBOTDR)で測定することで、構造物の内空間の変形を測定できる。
【0014】
仮に、固定部130−1、130−2の固定方法が、変形部110を回転させない方法とすると、次のようになる。例えば内空間が狭くなった場合(図7Aに相当)、変形部110の中央付近は、回転できる場合と同じように圧縮の力が内側の表面に加わる。しかし、回転できないために固定部130−1、130−2付近では、引張りの力が内側の表面に加わる。図4に示した範囲で光ファイバ120を変形部110に接着した場合、光ファイバ120に引張りの力と圧縮の力の両方が同時に加わる。伸び歪を測定する一般的な測定器(例えばBOTDR)の距離分解能は1m程度が最小なので、数m程度の長さの中に引張りの力と圧縮の力が混在すると打ち消しあい、正確に張力を測定できなくなる。したがって、光ファイバ120を接着する範囲を短くするか、測定器の距離分解能を1桁程度向上させる必要がある。
【0015】
図4では、変形部110の内側に光ファイバ120を接着させ、余長を確保した上で変形部110の外側にも光ファイバ120を接着させている。このとき、余長の長さを、BOTDRの距離分解能よりも十分に長くしておけば、引張りの力と圧縮の張力が混在することによる打ち消しあいを防ぐことができる。
なお、固定部130−1、130−2が変形部110を固定する方法は図6に示した方法に限る必要はない。変形部110が軸方向には移動しないように、かつ、設計上必要な角度内で回転できるように固定できればよい。また、回転のために必要な力が、変形部110をたわませるために必要な力よりも十分弱ければ、打ち消しあいは防げる。したがって、回転する構造とは、変形部に比べ曲げやすい構造であればよい。
【0016】
図8は、内空変位センサをとう道に設置した様子を示す図である。内空間の変化を測定したい範囲内(測定範囲内)での変形部のたわみでは、変形部が構造物の内面に接触しないように変形部の形状、大きさを設計すればよい。そして、構造物の内面に沿って設置すればよい。このように内空変位センサ100を設計、設置すれば、とう道2000内の人が通るスペースを確保することができる。なお、一般的なとう道の大きさは直径3m程度であるが、変形部110を大きくすれば、いろいろな大きさのトンネルに対応できる。
図9は、内空変位センサを複数個、分散して配置した例を示している。また、図10は、2つの内空変位センサを、方向を変えて取り付けた様子を示している。このように取り付ければ、図1と同じように高さ方向と幅方向の内空間の変化を測定できる。このように複数の内空変位センサ100を用いる場合には、光ファイバ120を直列に接続すればよい。ただし、引張りの力と圧縮の力の混在を避けるため、内空変位センサ間にBOTDRの距離分解能よりも十分に長い光ファイバを備えさせる必要がある。
【0017】
[実験例]
図11に、第1実施形態の内空変位センサを用いて構造物の内空間の変形を測定できることを示す実験の構成を示す。図11Aは実験の構成全体を示す図であり、図11BはA−A断面を示す図である。変形部110には、内側に2回、外側に2回、1m以上の余長を持たせて光ファイバ120を接着した。光ファイバ120の片端にはBOTDR150を接続し、他端には無発射終端160を接続した。
【0018】
この実験では、固定部130−2を固定し、固定部130−1を移動させ、光ファイバ120の張力の変化(伸び歪の変化)をBOTDR150で測定した。また、BOTDR150の距離分解能を1m(パルス幅が10ns)とし、1014回の加算処理を行った。そして、BOTDR150で測定した伸び歪の変化から変形部110のたわみ量(初期状態のたわみ量からの変化)を求めた。なお、たわみ量は、曲率半径の逆数(1/ρ)を2回積分することで求められることが知られている。また、1/ρ=−ε1/h=ε2/hである。ここで、ε1は変形部110の内側の歪量、ε2は変形部110の外側の歪量、hは変形部110の半径である。本実験のように変形部110の内側と外側に光ファイバ120を接着する場合は、1/ρ=(ε2−ε1)/2hとしてもよい。
【0019】
図12は、内空間が狭くなる方向に変位した場合の実験結果(内側に接着した光ファイバの片方の張力の変化から求められた結果)を示している。図12Aは、実験の様子を示す図である。図12Bは、BOTDRで測定した光ファイバの張力の変化(伸び歪の変化)から計算したたわみ量と、変形部110の位置との関係を、固定部130−1の変位ごとに示している。図12Cは、最もたわみ量が多い位置(変形部110の中央付近)でのたわみ量と、固定部130−1の変位との関係を示している。図13は、内空間が広がる方向に変位した場合の実験結果(外側に接着した光ファイバの片方の張力の変化から求められた結果)を示している。図13Aは、実験の様子を示す図である。図13Bは、BOTDRで測定した光ファイバの張力の変化(伸び歪の変化)から計算したたわみ量と、変形部110の位置との関係を、固定部130−1の変位ごとに示している。図13Cは、最もたわみ量が多い位置(変形部110の中央付近)でのたわみ量と、固定部130−1の変位との関係を示している。これらの実験結果は、どの光ファイバでも同等の結果を得られる。図12C、図13Cから分かるように、BOTDRで測定した光ファイバの張力(伸び歪)から計算したたわみ量の最大値(変形部110の中央付近のたわみ量)と変位には強い相関があることが分かる。したがって、本発明の内空変位センサ100で、構造物の内空間の変形を測定できることが分かる。
【0020】
[第2実施形態]
第1実施形態では、変形部110があらかじめたわんでいた。これは、円形の内空間に沿うように設置するのに適していた。しかし、内空間が四角形のトンネルの場合には、変形部として、初期状態ではほとんどたわんでいない形状を用いても良い。
【0021】
図14に、第2実施形態の内空変位センサをトンネル内に設置した様子を示す。内空変位センサ200は、ほぼ直線状の変形部212と直線状の2つの固定部230−1、230−2と光ファイバ210を備えている。固定部230−1、230−2の片端は、トンネル3000に固定され、他端は変形部212をある程度回転できるように保持している。また、固定部230−1、230−2を、変形部212に比べたわみにくい材質や形状にすれば、トンネル3000が変形した場合には変形部212がたわむ構造にできる。なお、図14では分かりにくいが、変形部212は、内空間が狭くなった場合にたわむ方向が決まるように、かつ、内空間が広がった場合に単なる引張り歪にならないように、少したわんだ状態を初期状態としておけばよい。また、曲げ歪によって変形部212がたわんだ場合にも構造物に接触しないように、構造物の内面に沿って配置すれば、内空間を閉塞することなく内空変位センサ200を設置できる。
このような内空変位センサを用いれば、構造物内部の空間が四角形の場合にも、内空間を閉塞することなく、変位を測定できる。また、この内空変位センサを用いれば、内空変位システムを提供することもできる。
【0022】
[第3実施形態]
内空間が四角形のトンネルの場合に、次のような変形部を用いる方法もある。図15に、第3実施形態の内空変位センサをトンネル内に設置した様子を示す。内空変位センサ300の変形部312は、第1実施形態と同様に、あらかじめ大きなたわみが与えられている。変形部312は、トンネルの大きさに比べ小さくし、内空間を閉塞しないようにしている。固定部330−1、330−2は、くの字型であり、変形部に比べたわみにくい材料と形状である。変形部312の大きさをトンネル3000の幅に比べ十分に小さくしていれば、内空間の閉塞を防ぐことができる。例えば、大規模なトンネルの場合には本実施形態の内空変位センサが適している。
このような内空変位センサを用いれば、構造物内部の空間が非常に大きい場合にも、内空間を閉塞することなく、変位を測定できる。
【0023】
[第4実施形態]
第1実施形態〜第3実施形態では、変形部がコの字型の例を示した。本実施形態ではリング型の変形部の例を示す。前述のように、コの字型の方が変形部の表面に引張りの力又は圧縮の力の一方が加わる範囲を広くでき、本発明の思想を効率良く利用できる。しかし、リング型やロの字型の変形部でも光ファイバを接着する範囲を限定すれば、本発明の思想を利用することはできる。
【0024】
図16に、内空間が狭くなった場合にリング型の変形部の表面に加わる力を示す。なお、内空間が広がった場合は反対の力が変形部の表面に加わる。図17は、リング型の変形部に光ファイバを接着する場合の、接着の範囲を示す図である。光ファイバ420は、引張りの力と圧縮の力が混在しないように、一方のみが加わる範囲に接着される。また、異なる力が加わる範囲に同じ光ファイバを接着する場合は、BOTDRの距離分解能よりも長い余長を確保した上で接着する。
このような構造とすることで、リング型の変形部でも本発明の思想を利用し、構造物の内空間を閉塞することなく、変位を測定できる。
【図面の簡単な説明】
【0025】
【図1】高さ方向と幅方向の内空間の変化を測定するために、従来の内空変位センサを2つ用いた例を示す図。
【図2】3つの従来の内空変位センサを用いた例を示す図。
【図3】従来の内空変位センサの構成を示す図。
【図4】第1実施形態の内空変位センサの構成を示す図。
【図5】図4のA−Aでの断面の様子を示した図。
【図6】固定部の変形部を保持する構造の例を示す図。
【図7】第1実施形態の変形部のたわみの様子を示す図。
【図8】第1実施形態の内空変位センサをとう道に設置した様子を示す図。
【図9】第1実施形態の内空変位センサを複数個、分散して配置した例を示す図。
【図10】2つの第1実施形態の内空変位センサを、方向を変えて取り付けた様子を示す図。
【図11】第1実施形態の内空変位センサを用いて構造物の内空間の変形を測定できることを示す実験の構成を示す図。
【図12】内空間が狭くなる方向に変位した場合の実験結果(内側に接着した光ファイバの片方の張力の変化から求められた結果)を示す図。
【図13】内空間が広がる方向に変位した場合の実験結果(外側に接着した光ファイバの片方の張力の変化から求められた結果)を示す図。
【図14】第2実施形態の内空変位センサをトンネル内に設置した様子を示す図。
【図15】第3実施形態の内空変位センサをトンネル内に設置した様子を示す図。
【図16】内空間が狭くなった場合にリング型の変形部の表面に加わる力を示す図。
【図17】リング型の変形部に光ファイバを接着する場合の、接着の範囲を示す図。

【特許請求の範囲】
【請求項1】
構造物内部の空間の変形を測定する内空変位センサであって、
弾性体で形成され、前記構造体内部の空間の変位によって曲げ歪を生じる変形部と、
前記変形部に張力を付加されながら接着され、前記変形部の曲げ歪によって前記張力が変化する光ファイバと、
前記構造物内部の空間の変位が前記変形部に伝わるように前記変形部を固定する固定部と、
を備える内空変位センサ。
【請求項2】
請求項1記載の内空変位センサであって、
前記固定部は、前記変形部を、前記変形部の軸方向には移動しないように、かつ、あらかじめ定めた角度内で回転できるように固定している
ことを特徴とする内空変位センサ。
【請求項3】
請求項1または2記載の内空変位センサであって、
前記変形部にリブが形成されている
ことを特徴とする内空変位センサ。
【請求項4】
請求項1から3のいずれかに記載の内空変位センサであって、
前記変形部がコの字型である
ことを特徴とする内空変位センサ。
【請求項5】
請求項1から4のいずれかに記載の内空変位センサであって、
前記光ファイバは、同時には、引張りの力と圧縮の力の両方が加わらないように、前記変形部に接着されている
ことを特徴とする内空変位センサ。
【請求項6】
請求項1から4のいずれかに記載の内空変位センサであって、
前記光ファイバに引張りの力と圧縮の力の両方が同時に加わる場合には、当該光ファイバは、引張りの力が加わる部分と圧縮の力が加わる部分との間に、あらかじめ定めた長さ以上の前記変形部に接着していない光ファイバを有する
ことを特徴とする内空変位センサ。
【請求項7】
請求項1から5のいずれかに記載の内空変位センサを有する内空変位測定システムであって、
前記光ファイバの伸び歪を測定するBOTDR
を備える内空変位測定システム。
【請求項8】
請求項6記載の内空変位センサを有する内空変位測定システムであって、
前記光ファイバの伸び歪を測定するBOTDRを備え、
前記光ファイバの引張りの力が加わる部分と圧縮の力が加わる部分との間の前記変形部に接着していない光ファイバの長さは、前記BOTDRの距離分解能よりも長い
ことを特徴とする内空変位測定システム。
【請求項9】
請求項7または8記載の内空変位測定システムであって、
前記内空変位センサを複数有し、
各内空変位センサの光ファイバを直列につなぎ、かつ
内空変位センサ間の光ファイバの長さが、前記BOTDRの距離分解能よりも長い
ことを特徴とする内空変位測定システム。
【請求項10】
請求項1から6のいずれかに記載の内空変位センサを前記構造物内面に取り付ける内空変位センサ取り付け方法であって、
前記変形部が、前記構造物の内面に沿って、測定範囲内の変形部の曲げ歪では前記構造物に接触しないように配置する
ことを特徴とする内空変位センサ取り付け方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2008−180672(P2008−180672A)
【公開日】平成20年8月7日(2008.8.7)
【国際特許分類】
【出願番号】特願2007−16036(P2007−16036)
【出願日】平成19年1月26日(2007.1.26)
【出願人】(000100942)アイレック技建株式会社 (45)
【Fターム(参考)】