説明

内蔵型携帯用多モード水処理システムおよび方法

飲料水を生産するように原水を処理するための自動水処理システムおよび方法を開示する。システムは、いくつかの選択可能な処理サブシステムと、過渡、通常、または逆洗モードから動作モードを自動的に選択して制御し、選択された動作モードおよび選択された場所での測定された水質特性に基づいて、処理経路を通る水流を自動的に制御し、選択された動作モードおよび水質パラメータ測定値に基づいて、出力時に飲料水を生産するために複数の選択可能なサブシステムのうちのどれが必要とされるかを決定し、飲料水を生産するために必要とされない水処理サブシステムおよび要素を迂回するように、システムを通る処理経路を通して水流を自動的に方向付ける、コントローラとを有する、内蔵型携帯用水処理システムである。システムは、輸送のため、および動作中に、標準サイズの商用運送用コンテナの内側に納まるように構成される。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の引用)
本願は、米国仮特許出願第61/216,165号(2009年5月14日出願、名称「Self−Contained Portable Water Treatment Apparatus and Methods with Automatic Selection and Control of Treatment Path」)に基づく、米国特許法第119条による優先権を主張する。該出願は、参照により本明細書に引用される。
【0002】
(発明の分野)
本発明は、水処理の分野に関し、その好ましい実施形態において、より具体的には、種々の種類の汚染物質を除去して飲料水を生産するように、水を処理するための内蔵型の携帯用自動装置および方法に関する。
【背景技術】
【0003】
(関連技術の記載)
世界の大部分では、清潔で安全な飲用水の不足が主要な問題であり、飲料水の確実な供給源の必要性が、人口全体の生存において最も重要な要因のうちの1つである。水が利用可能である時でさえも、それは汚染されており、使用するために安全ではない可能性が高い。一般的な汚染物質は、混入大型破片、混入粒子破片、懸濁固形物、塩、油、揮発性有機化合物(VOC)、および他の化学物質、ならびに生命体および他の病原体を含む。安全に使用できる前に処理を必要とする異なる水源は、これらの一般的な汚染物質のうちの種々のものを含み得るか、またはそれらの全てを含む場合がある。異なる水源の中で見出される汚染物質の大幅な変動は、従来技術で公知であり、使用されている処理システムの設計を、ケースバイケースの過程または万能の過程にしてきた。予測された原水源を反映する選択された汚染物質のみを除去するように、いくつかの処理モジュールを伴って設計および構築された処理システムは、源水中の汚染物質を変化させる自然または人為的災害が発生した時等の、さらなる汚染物質が永久的または断続的に源水に導入された場合に、効果的に水を処理することができない。実際に存在するか否かにかかわらず、全てのあり得る汚染物質の除去のために源水を処理するように設計されている万能処理システムは、実際に存在する汚染物質のみを処理するシステムよりも、構築、操作、および維持することが相当高価となり得る。
【0004】
処理システム装置の携帯性および互換性も、安全な飲用水をより容易に入手可能にするという目標にとって不利な問題である。携帯用水処理システムは、源水が未知または可変の質である場合、多種多様な異なるシナリオおよび地理的な場所のために必要とされる。携帯用水処理システムは、一般的に、災害救助対応の一部として配備される必要がある。例えば、ミシシッピ川または現地の湖からの淡水を処理することを目的とした、ニューオリンズ地域に位置する従来の水処理システムは、ハリケーンカトリーナ直後に源水供給の中の淡水および塩水、破片、油、および化学物質の汚染混合物を処理することが可能ではなかった。国内淡水源を汚染する化学または生物学的テロリスト攻撃に対応すること等の、十分な国土安全保障対応を提供するために、他の種類の携帯用処理システムが必要とされる。軍隊、鉱業会社、ならびに石油探鉱および生産会社も、その人材のための飲料水を提供するために、既存の水処理基盤インフラストラクチャが欠如している遠隔地域に配備する時に、携帯用処理システムを必要とする。携帯用処理システムはまた、国民のための十分な水処理基盤インフラストラクチャが欠如している発展途上国で、効果的な飲料水源を提供することもできる。
【0005】
特に、発展途上国および遠隔地域ではどこでも、従来の水処理機器および設備を輸送し、設定し、操作し、維持することは困難であり、時には不可能となり得る。従来の機器およびシステムの操作および維持はしばしば、訓練を受けた人員を必要とするが、それは利用可能ではない場合があるか、または頼りにできない場合がある。
【0006】
水処理機器が配置されるか、または必要とされる、環境要因も、機器動作パラメータと、機器の維持および保護との両方に関して、有意な困難を提示し得る。例えば、高温の場所では、周囲温度が高すぎて、機器が損傷を伴わずに短期間以上動作できない場合がある。非常に湿度の高い場所では、凝縮が、電気および制御デバイスを含むがそれらに限定されない、機器構成要素を損傷し得る。潮風は、処理機器の動作に干渉し、耐用期間を短縮する、腐食の問題を生じて加速し得る。
【0007】
特定のシナリオおよび地理的な場所について、過去には、飲料水を生産するように携帯用内蔵型浄水システムを開発する多数の試行があった。そのような以前の携帯用システムの成功は限定されていた。米軍は、配備された部隊で使用するための移動水処理システムを開発しようと努めてきたが、そのような部隊は、動作および多種多様な汚染物質をうまく除去できることの不足に遭遇してきた。他者は、全ての処理過程ステップに対し、必要性にかかわらず動作中のままである種々の異なるインライン処理過程を使用して、事実上あらゆる原水源から飲料水を生産する、浄水システムを開発しようと努めてきた。今のところ、上記で説明される問題は、従来技術では完全に対処されておらず、容易に携帯可能であり、過酷な環境から保護され、汚染物質除去において極めて効果的であり、動作が完全に自動であり、源水に存在する汚染物質を除去するために適切な処理ステップに源水を自動的に受けさせ、清潔で安全な飲料水の生産のために不必要な処理ステップを自動的に迂回する、装置および操作方法を含む、水処理システムの満たされていない必要性が依然として残っている。
【0008】
上で概説される必要性に対処し、必要性を満足し、従来技術の不足を克服する本発明を、添付図面および説明図を参照して以下で説明する。
【発明の概要】
【課題を解決するための手段】
【0009】
簡潔には、本発明は、飲料水を生産するように原水源からの水を処理するための新規のシステムおよび方法を提供する。飲料水を生産するように水を処理するためのシステムは、原水源から水を受け取るための入口と、それを通って水が入口から出口へ流れることが可能である飲料水用の出口とを有する、導管サブシステムと、導管システムに接続された複数のポンプであって、ポンプは、導管システムを通して水流を駆動することが可能である、ポンプと、導管システムに接続された複数の水処理サブシステムとを含む。水処理サブシステムは、水処理システムを潜在的に妨害し得るサイズの粒子状物質を除去するためのストレーナサブシステムと、裏漉しされた水の一次処理のための、ストレーナサブシステムの下流にある一次酸化サブシステムと、裏漉しされた水の中の汚染物質の酸化のために、一次酸化サブシステムにオゾンを注入するための、一次酸化サブシステムに連結されたオゾン注入器と、水からより小さい粒子状物質を除去するための少なくとも1つの濾過サブシステムであって、少なくとも1つの濾過サブシステムは、混合媒体濾過要素、精密濾過膜要素、限外濾過膜要素、および活性炭フィルタ要素から成る群より選択される、濾過サブシステムと、水から少なくとも溶解汚染物質を除去するための逆浸透サブシステムと、その上流にあるサブシステムから受け取られる水をさらに酸化し、消毒するための最終酸化サブシステムであって、オゾンを注入することができ、次いで、消毒および高度酸化をさらに強化するように、紫外線放射を酸化サブシステムに付与することが可能である、最終酸化サブシステムとを含む。
【0010】
システムはさらに、複数のセンサを含み、センサのそれぞれは、その位置における水の一式の特性のうちの少なくとも1つを測定することが可能であるように、水処理システムの中に位置付けられ、水の一式の特性は、流速、水圧、水位、および水質パラメータを含む。各センサは、測定された特性を表す信号を出力する。システムはまた、処理システムの中の複数の場所において複数のセンサから出力信号を受信するためのコントローラも含み、コントローラは、複数のモードでの処理システムの動作を制御し、複数の動作モードのうちの1つを選択し、複数のセンサから受信される水の測定された特性を監視し、処理システムの全体を通した複数の場所での水質を決定するために、複数のセンサから受信される測定された特性を使用し、選択された動作モードおよび複数のセンサからの測定された特性の出力信号に基づいて、導管サブシステムを通る水流を自動的に制御し、選択された動作モードおよび水質パラメータ測定値に基づいて、出力時に飲料水を生産するために複数のサブシステムのうちのどれが必要とされるかを自動的に決定し、飲料水を生産するために必要とされない水処理サブシステムおよび要素を迂回するように、導管サブシステムを通る水流を自動的に方向付けることが可能である。コントローラが操作され得るモードは、過渡動作モードおよび通常処理動作モードを含み得る。
【0011】
飲料水を生産するように原水を処理する方法であって、原水源から、複数の水処理過程を提供するための複数の処理サブシステムを有する水処理システムの導管サブシステムの入口の中へ、水を受け取るステップであって、導管サブシステムはまた、それを通って水が入口から出口へ流れることが可能である、飲料水用の出口も有する、ステップと、複数のセンサを用いて、水処理システムの中の複数の場所における水の複数の特性を感知するステップであって、水の一式の特性は、水の流速、水圧、水位、および水質パラメータを含む、ステップと、そのようなセンサによって測定される水の特性を表す信号を、複数のセンサのそれぞれから出力するステップとを含む。方法はさらに、水処理システムの動作を制御するコントローラにおいて、複数の場所に位置する複数のセンサから、出力信号を受信するステップを含み、コントローラは、複数のセンサから受信される水の測定された特性を監視し、水源からの水の水圧が低すぎて水処理システムを操作できない場合、原水源から導管サブシステムを通して水を送出し、測定された水の特性に基づいて、水処理システムを操作する複数のモードのうちの1つを選択し、水処理システムの全体を通した複数の場所における水質を決定するために、複数のセンサから受信される測定された特性の出力信号を使用し、選択された動作モードおよび複数のセンサからの測定された特性の出力信号に基づいて、導管サブシステムを通る水流を自動的に制御し、選択された動作モードおよび複数のセンサ場所における水質パラメータ測定値に基づいて、出力時に飲料水を生産するために複数の処理ステップのうちのどれが必要とされるかを自動的に決定し、飲料水を生産するために必要とされない処理過程のための水処理サブシステムを迂回するように、導管サブシステムを通る水流を自動的に方向付ける。コントローラによって選択可能な複数の水処理過程は、水処理システムを潜在的に妨害し得るサイズの粒子状物質を水から裏漉しするステップと、裏漉しされた水の中の汚染物質の酸化のために、一次酸化処理サブシステムにオゾンを注入することによって、一次酸化処理サブシステムにおいて裏漉しされた水を一次処理するステップと、少なくとも1つの濾過処理サブシステムを使用して、水からより小さい粒子状物質を濾過するステップであって、少なくとも1つの濾過処理サブシステムは、混合媒体濾過要素、精密濾過膜要素、限外濾過膜要素、および活性炭フィルタ要素から成る群より選択される、ステップと、逆浸透処理サブシステムを使用して、水から溶解固形物を除去するステップと、最終酸化処理サブシステムにおいて、オゾンを水に注入することによって水をさらに消毒するステップと、ヒドロキシルラジカルを作成して、あらゆる残留汚染物質を酸化するように(およびあらゆる残留注入オゾンの実質的に全てを破壊するように)、最終酸化処理サブシステムにおいて、紫外線光を水に付与するステップとを含む。
【0012】
本発明およびその利点をより完全に理解するために、ここで、添付図面と併せて解釈される以下の説明を参照する。
【図面の簡単な説明】
【0013】
【図1】図1は、通常フロー動作条件下の内蔵型携帯用水処理システムの実施形態の説明図である。
【図2】図2は、過渡動作中の内蔵型携帯用水処理システムの実施形態の説明図である。
【図3】図3は、逆洗動作条件中の内蔵型携帯用水処理システムの実施形態の説明図である。
【図4A】図4Aは、内蔵型携帯用水処理システムの実施形態の一式の5つの関連詳細概略図のうちの第1の図である。
【図4B】図4Bは、内蔵型携帯用水処理システムの実施形態の一式の5つの関連詳細概略図のうちの第2の図である。
【図4C】図4Cは、内蔵型携帯用水処理システムの実施形態の一式の5つの関連詳細概略図のうちの第3の図である。
【図4D】図4Dは、内蔵型携帯用水処理システムの実施形態の一式の5つの関連詳細概略図のうちの第4の図である。
【図4E】図4Eは、内蔵型携帯用水処理システムの実施形態の一式の5つの関連詳細概略図のうちの第5の図である。
【図5】図5は、標準サイズの国際運送用コンテナの床境界内の内蔵型携帯用水処理システム装置の実施形態の平面図である。
【図6A】図6Aおよび6Bは、種々の処理加工条件下のセンサ入力および制御出力信号と、センサ入力データとを示す、本発明のセンサおよび制御サブシステムの実施形態の決定図である。
【図6B】図6Aおよび6Bは、種々の処理加工条件下のセンサ入力および制御出力信号と、センサ入力データとを示す、本発明のセンサおよび制御サブシステムの実施形態の決定図である。
【図7A】図7Aは、内蔵型携帯用水処理システムにおいて水を処理する方法の実施形態を図示する、一式の2つのフロー図のうちの第1の図である。
【図7B】図7Bは、内蔵型携帯用水処理システムにおいて水を処理する方法の実施形態を図示する、一式の2つのフロー図のうちの第2の図である。
【発明を実施するための形態】
【0014】
前述の概要ならびに本発明の好ましい実施形態の以下の詳細な説明は、添付図面と併せて読むと、より良く理解されるであろう。しかしながら、本発明は、本明細書で示される正確な配設および手段に限定されないことを理解されたい。図面中の構成要素は、必ずしも一定の縮尺ではなく、代わりに、本発明の原則を明確に図示することが重視されている。また、図中、類似数字は、いくつかの図の全体を通して対応する部品を指定する。
【0015】
本発明のシステムおよび方法の提示された実施形態の原理、およびそれらの利点は、図1−7Bを参照することによって最も良く理解される。
【0016】
以下の説明および実施例では、提示された実施形態の徹底的な理解を提供するように、具体的な数量、サイズ等の具体的詳細が記載され得る。しかしながら、実施形態は、そのような具体的詳細を伴わずに実践され得ることが、当業者に明白となるであろう。多くの場合、そのような考慮事項および同等物に関する詳細は、ありとあらゆる実施形態の完全な理解を得るために詳細が必要ではなく、当業者の技能および創造性の範囲内であるために省略されている。
【0017】
例示的実施形態では、種々の選択可能な水処理過程を使用して、種々の原水源からの汚染水を自動的に処理し、浄化することが可能である携帯用で内蔵型の多モード自動水処理システム、およびシステムを操作するための方法が描写される。水源は、タンクまたは容器であり得るが、「水源」という用語は、湖、小川、池、海、および他の過程からの排水を含むが、それらに必ずしも限定されない多種多様な水源のうちのいずれかであり得ることを理解されたい。
【0018】
システムは、システム全体の種々の場所における水質パラメータを含む水の特性を測定するセンサを含む。センサは、コントローラに信号を出力する。コントローラは、システムの全体を通した種々の場所における測定された水の特性に基づいて、種々の動作モードのうちの1つを自動的に選択することができる。例示的実施形態では、システムの動作モードは、「通常動作」、「過渡動作」、および「逆洗動作」を含む。「過渡動作」は、定常状態条件に達するまでのシステムの起動中の動作、または「不調」条件中の動作として、本明細書における目的に対して定義される。「通常動作」は、処理システムの起動の完了および定常状態条件の発生後、または「不調」条件が解決された後の処理システムの動作モードとして、本明細書における目的に対して定義される。「逆洗動作」は、逆洗方法または「クリーンインプレース」方法を採用することによって、システムまたはサブシステムのサブシステムまたは要素が清掃されている時として定義される。
【0019】
コントローラは、処理システム全体の種々の場所において水質を決定し、次いで、選択された動作モードおよび測定された水質パラメータに基づいて飲料水を生産するために、処理過程のうちのどれが必要とされるかを自動的に選択し、制御するために、測定された水の特性を自動的に使用することができる。そのような決定に応じて、次いで、コントローラは、任意の不必要な処理サブシステムおよび過程を回避するように、水流を自動的に方向付けることができる。したがって、コントローラは、システム全体に位置する種々のセンサからの出力信号に基づいて、処理システムを通る水処理経路を自動的に選択し、制御する。水処理システムは、好ましくは、標準サイズの商用運送用コンテナの中に嵌合するように構成され、設定時間および付加的な操作者の技能の必要を節約する動作構成において運送され、配備されることを可能にする。
【0020】
図1は、水処理システム10の一実施形態の主要構成要素および通常動作中の処理システム10を通る主要な水流経路の簡略化した説明図を提供する。処理システム10は、システム10専用に開発されたアプリケーションソフトウェアを操作する、従来のプログラム可能なコントローラ12の制御下にある。典型的には、原水源からの水は、処理システム10の導管サブシステム16の入口14の中へ受け取られる。導管サブシステム16は、処理システム10を通って飲料水用の出口18までの水流経路を提供する。処理システム10は、随意的な破片ストレーナ20、粒子状物質ストレーナ22、随意的な油・水分離器24、一次酸化サブシステム30、一連の濾過サブシステム40、42、および44、逆浸透サブシステム50、および最終酸化サブシステム60を含む、種々の異なる水処理サブシステムを含み得る。結果として生じる処理飲料水は、処理済水貯蔵タンク60の中に保持され、そこで、必要に応じた分配のために、また、「逆洗動作」の動作モード中の逆洗またはクリーンインプレース(clean−in−place)処理のための清浄水源として保持される。
【0021】
コントローラ12が、導管サブシステム16に進入する源水の圧力が適正なシステム動作に不十分であるという圧力センサ(図示せず)からの信号を受信すると、コントローラ12は、導管サブシステム16の中の好適な弁25を通して、源水を処理システムの中へ送出するための原水源ポンプ26まで源水を方向付け得る。使用される水源ポンプ26は、好ましくは、損傷を伴わずに固形物に対処することが可能である。次いで、ポンプ26から流れる加圧水は、逆止め弁等の好適な弁27を通して、導管サブシステム16の一次水経路の中へ戻され得る。原水が、過程フロー要件を満たすことに対して十分に高い圧力で加圧源から入手可能である場合、原水ポンプ26は全く操作される必要がない。水源ポンプ26はまた、流入水の圧力を上昇させて要件を満たすために使用され得る。
【0022】
システム10は、ポンプ26を損傷させるほど大きい破片、大型粒子状物質、および他の物体の進入を防止することができる随意的な破片ストレーナ20を有し得、源水がそのような破片または物体を含有し得ると操作者が考えると、操作者は導管サブシステム16への入力において、流入源水流経路の中に手動で配置することができる。システム10を使用して処理されるほとんどの原水源は、水に存在する油の量が他の過程要素によって除去されない程度に油によって汚染されないことが予測されるので、油・水分離器24は、多くの場合、システム10の随意的な構成要素である。しかしながら、油・水分離器要素24の含有は、コントローラ12に、導管サブシステム16の中の弁28を通して油・水分離器24まで源水を方向付けさせて、例えば、逆止め弁等の好適な弁29を通して導管サブシステム16の一次水経路の中へ方向転換する前に、水から源水の中の油を分離することによって、処理システム10に含まれ得る。
【0023】
次いで、源水は、好適な弁21を通して粒子状物質ストレーナ22へと方向付けられ、粒子状物質ストレーナは、物理的障壁としての役割を果たして、水流を潜在的に阻止し、濾過媒体を詰まらせ、および/またはそうでなければストレーナ22の下流に位置する処理サブシステムの処理過程を妨害し得るサイズの粒子状物質の水固形物をさらに捕捉し、除去することができる。次いで、粒子状物質ストレーナ22からの濾された水は、逆止め弁等の好適な弁23を通して導管サブシステムの一次水流経路へと戻され得る。
【0024】
濾された後に、源水は、導管サブシステムによって一次酸化サブシステム30の中へと方向付けられ、そこにおいて水は、オゾン源からオゾン注入器32を通して注入されるオゾンによって処理される。好ましくは、局所オゾン発生器34の中にあるオゾン源である。オゾン添加は、源水の中に残留するより小さい粒子の凝固を強化し、それらを濾過しやすくする。加えて、濾過前のオゾン媒介酸化は、味および臭気を引き起こす化合物をほとんど除去し、水の透明度およびきれいさを向上させ、鉄およびマンガン化合物を酸化し、初期消毒を提供して細菌性およびウイルス性病原体を排除する。濾過前のオゾン添加はまた、フィルタ性能およびフィルタ媒体の寿命も向上させる。
【0025】
好ましくは、一次酸化サブシステム30は、以降で説明される溶解空気浮遊要素(図示せず)を含む。一次酸化サブシステム30が溶解空気浮遊要素を含む場合、オゾン注入器は、水からの有機汚染物質および油の分離と、有機汚染物質および油から分離された結果として生じる水の消毒および酸化とを向上させるために、空気およびオゾンの組み合わせを一次酸化サブシステムに注入するように適合される。以前のストレーナおよび油・水分離器処理要素と違って、一次酸化システム30は、随意的な処理要素ではなく、常に水処理導管流路の中に存在している。
【0026】
一次酸化後、一次酸化サブシステム30の下流にある導管サブシステムに流体接続される供給ポンプ36は、逆浸透サブシステムが使用される場合をのぞいて、処理サブシステムの残りの部分を通して部分的に処理された水を供給または送出する。逆浸透サブシステムが必要とされる場合、供給ポンプ136は、逆浸透サブシステムの直接上流に位置するブースターポンプに部分的に処理された水を送達する。
【0027】
供給ポンプ36から送出される、部分的に処理された水は、水からより小さい粒子状物質を除去するために、好適な弁41を通して1つ以上の濾過サブシステムのうちの第1のサブシステムへと、コントローラ12によって方向付けることができる。好ましくは、水流は、処理過程の次のステップとして、混合媒体濾過サブシステム40を通してコントローラ12によって方向付けることができる。そのような混合媒体濾過サブシステム40は、無煙炭および砂の混合物を含み得る。混合媒体濾過サブシステムは、好ましくは、次の処理サブシステムにおける処理前に、部分的に処理された水から約1ミクロンよりも大きい粒子を物理的に除去するように設計されている。次いで、濾過サブシステム40から退出する処理水は、好適な弁43を通して、導管サブシステムを通る一次水流経路へと方向転換され得る。
【0028】
コントローラ12は、次に、好適な弁45を通して処理水を膜濾過システム42に方向付けてもよい。膜濾過サブシステム42において、サイズが約0.1ミクロンまでの、任意の残留非溶解または懸濁固形物が除去され得る。大型細菌性生物もまた、膜濾過が効果的である粒径範囲内に入り得、存在する任意のそのような細菌は、この処理過程において除去される。このサブシステムにおいて使用される濾過膜は、膜空隙率に応じて、しばしば精密濾過膜と呼ばれる膜、および超濾過膜と呼ばれる膜を包含し、単独で、または組み合わせて使用される。濾過技法を加えた従来の沈降の代わりに、膜濾過の使用は、必要とされるフィルタ媒体の容量を大幅に削減し、したがって、処理装置サイズおよび全空間要件を削減する。次いで、サブシステム42から退出する処理水は、別の好適な弁46を通して導管サブシステム16を通る一次水流経路へと方向転換され得る。
【0029】
コントローラ12は、次に、好適な弁47を通して活性炭濾過サブシステム44を通る処理水を方向付けてもよい。濾過サブシステム44は、粒状活性炭を含有する1つ以上の容器を備えてもよく、部分的に処理された水に残留するVOCおよび/または他の溶解化学化合物を吸収するために、膜濾過要素から下流において使用される。活性炭は、炭素によって物理的に吸収される殺虫剤、工業用溶剤、および潤滑剤等の汚染物質の通過に対する障壁を提供する。次いで、活性炭濾過サブシステム44から退出する、部分的に処理された水は、弁48を通して導管サブシステムを通る一次水流経路へと方向転換され得る。
【0030】
源水供給が、わずかに半塩水から海水の塩分に及んでもよい濃度の溶解塩を含有する場合があるので、システム10はまた、半透膜脱塩過程を利用する逆浸透サブシステム50を含み得る。低濃度の塩を有する原水について、逆浸透サブシステムは、連続的なまたは続発的なモードで操作され、満足のいく結果を達成することができる。しかしながら、処理される原水が海水である場合のように、塩分が高い場合は、逆浸透サブシステムは、単一の通過モードで動作するように設定することができる。代替実施形態では、逆浸透サブシステム50から退出する水は、好適な弁52を通して逆浸透サブシステム50の入口へ戻るようにコントローラ12によって方向転換され得る。逆浸透サブシステムによって提供される多モード動作は、単一の膜等級が、広範な塩濃度を有する水の処理に成功することを可能にする。脱塩に加えて、逆浸透サブシステム50はまた、部分的に処理された原水に残留する場合がある多くの化学汚染物質を除去するためにも機能する。次いで、好適な水質基準を満たすとセンサが示す、逆浸透サブシステムから退出する処理水は、弁52を通して最終酸化サブシステム60へと方向付けられてもよい。
【0031】
最終酸化サブシステム60は、流入する部分的に処理された水を処理して、上流の処理要素およびサブシステムにおいて除去または撲滅されなかった任意の残留病原性微生物を撲滅または除去するために使用される消毒および高度酸化過程(「AOP」)を提供する。この第2または最終酸化サブシステム60は、好ましくは、処理水の最終消毒を達成することに十分な期間にわたって水がオゾンと接触しているための十分な濃度で、オゾン源からのオゾンが注入されるオゾン注入器を装着されたステンレス鋼接触チャンバを備える。いくつかの実施形態では、最終消毒後に、この第2の酸化サブシステムの接触チャンバから退出する水は、任意の残存オゾンをOHヒドロキシルラジカルに変換して、あらゆる残留毒性化合物を破壊するように、紫外線光曝露チャンバに送られてもよい。次いで、処理済みの水は、処理水貯蔵タンク70に送られ、そこにおいて後の分配のために保持され得る。貯蔵タンク70に到達する処理水は、不純物を含まず、人間の消費および使用のために清潔かつ安全である。コントローラ12によって制御可能なサービスポンプ72は、水貯蔵タンク70と導管サブシステム16の出口18との間に流体接続され、コントローラ12は、分配のためにタンク70から水を送出するようにポンプ72に指示することができる。処理水はまた、以降においてより詳細に説明されるように、必要な時に逆洗またはクリーニングインプレースシステム要素のための清浄水源として使用され得る。
【0032】
好ましくは、処理システムにおいて使用されるオゾンは、現場オゾン発生器34において生成される。オゾンの生成は、周囲空気および電気のみを必要とするので、塩素および/または他の処理化学物質を、水が処理される場所に輸送するよりも、現場で必要なオゾンを産生するほうがはるかに実行可能である。システム10において使用されるオゾンは、例えば、塩素が消毒に使用される場合に必要であるように貯蔵されるよりもむしろ、必要に応じて生成される。塩素は非常に有毒なガスであり、消毒剤として使用される塩素の貯蔵は、健康および環境損害の相当なリスクを生じる。システムでのオゾンの使用はまた、オゾンが公知の最も強力な酸化剤の1つであるという利点を有するので好まれる。オゾンは、現場使用に適していない、繊細かつ高価な試験機器の使用を必要とする他の非塩素剤と違って、簡単な現場試験を使用して容易に監視および測定することができる。
【0033】
水処理システム10は、複数の種類の処理過程ステップのための装置を含み、この装置は、組み合わされると、多種多様な原水源に存在することを現実的に見込むことができるあらゆる種類の汚染物質の除去のために、源水を処理することが可能である。システム10は、最高予測レベルの汚染物質および不純物濃度に対処し、処理する能力を有する処理サブシステムおよび要素を含む。しかしながら、コントローラ12は、システムを通って移動する水の状態に基づいて、特定の処理ステップが必要とされるかどうかを決定し、あらゆる不必要な処理サブシステムおよび要素を自動的に迂回することができる。処理システム全体の種々の場所における水中の汚染物質の有無を決定し、飲料水を生産するために必要とされる処理ステップおよびパラメータを自動的に調整するコントローラの能力は、最高の達成可能な動作効率を維持する。システム10によって達成される高い効率は、機器の運転費および消耗を最小化する。
【0034】
図1に示されたシステムは、水処理フロー経路に全ての処理サブシステムおよび要素を含むことによって、高度に汚染された水を処理し、浄化することが可能であるが、全ての原水源が、飲料水を提供するために全処理範囲を必要とするほどひどく汚染されるわけではないことが理解されるであろう。従来技術のアプローチでは、特定の組の汚染物質に対処するために特定のサイトにおいて使用される処理装置のみを含むように、各処理システムをカスタマイズすることが一般的となっており、それにより、原水の状態が変化した場合に、このサイトにおける原水源からの水を処理する能力を排除する。そのような従来技術のアプローチの下では、構造の標準化がなく、各システムは、独立した設計および構築プロジェクトとなり、構築過程を最適化するための生産設備設定と比較して、現場で処理システムを構築するという本質的にあまり効率的ではないアプローチであった。この実践はまた、異なる動作パラメータおよび制御要件を有する処理システムを生産し、より広範な操作者の訓練を必要とする可能性も高い。
【0035】
要約すると、最も経済的かつ効率的な処理アプローチは、特定の水源に実際に存在する汚染物質のみに対して、その水源からの原水を処理することである。システムは、標準化された構成の標準化された一式の処理サブシステムおよび要素を、その能力に提供する。システム装置および現地外でのシステムの構築の標準化は、構築過程を大いに容易にし、費用を削減する。システム10の図示された実施形態では、処理要素は、要素によって対処される汚染物質の種類が原水に存在するか否かに応じて、処理されている水の流路に含まれるか、または流路から除外され得る。
【0036】
図2は、システム10の動作中に、またはコントローラ12によって検出されるシステムの「不調」条件中に、コントローラ12によって選択される「過渡」動作モード中の図1のシステム10の付加的な主要水流経路を描写する。図1の同じ部品に対応する図2のサブシステムおよび要素は、類似の参照数字で指定される。
【0037】
システム10の起動中、コントローラ12は、システム10の「過渡」動作モードを選択し、貯蔵タンクに進入する水の水質が飲料水の質であり、水質における定常状態条件が達成されていることをコントローラが決定するまで、システムは過渡モードのままである。そのような決定が行われるまで、一次酸化システム30の直接上流の水の水質が、一次酸化システム30によってうまく処理することができることに十分な質であることを、コントローラが決定するまで、コントローラ12は、最初に、図2の点線として示されるように、帰還導管80を通して一次酸化システム30の上流の水を水源ポンプ26の上流にある弁25へと再循環させるように、システムに指図する。
【0038】
次いで、コントローラ12は、一次処理のために一次酸化サブシステム30に水を方向付け、次いで、一次酸化システム30の下流の水の水質が、濾過サブシステム40、42、および44のうちの少なくとも1つによって処理されることに十分な質となるまで、導管82および83を通して一次酸化サブシステムへの入力へと水を再循環させる。同様に、濾過サブシステム、逆浸透サブシステム、および最終酸化サブシステムから退出する部分的に処理された水が、その下流に位置する次のサブシステムによって処理されることに十分な水質の水を排出するまで、そのような処理サブシステムのそれぞれから退出する部分的に処理された水は、それぞれ、導管84aおよび83、84bおよび83、84cおよび83、84dおよび83、ならびに84eおよび83を通して再循環させられる。
【0039】
図3は、逆洗動作モード中の図1のシステムの主要な水流経路を描写する。図1の同じ部品に対応する図3のサブシステムおよび要素は、類似の参照数字で指定される。
【0040】
全ての濾過要素または構成要素と同様に、フィルタ媒体は、要素を通って流れる流体から濾過された汚染物質が装着され、媒体および濾過サブシステムから蓄積した汚染物質を洗い流すために、交換または逆洗を必要とする。システムの要素を通した処理過程フローに加えて、図3はまた、逆洗フロー経路も示す。図3の実施例で逆洗に使用される水は、処理済み水貯蔵タンク70から引き出され、通常動作中の図示された処理フロー経路とは本質的に逆であり得る経路で、清掃される処理要素装置を通して送られる。逆洗水は、混入汚染物質とともに、原水源に戻すか、そうでなければ、適切に処分することができる。
【0041】
処理水貯蔵タンク70は、後の分配のために処理済み飲料水を貯蔵するための使用に対して、処理要素を逆洗するための清浄水源としての使用に対して、および適所で処理要素を清掃するためのクリーンインプレース水源としての使用に対して、それぞれ3つの別個の貯蔵容量70a、70b、および70cに区画化され得る。逆洗水源および逆洗流路は両方とも、本発明の範囲内にとどまりながら変化を受け、図3の鎖線によって示された経路は、限定的として解釈されるものではない。システム10の逆洗可能要素および構成要素は、不均一な汚染物質の負荷等の要因によって同時に逆洗を必要としないことが理解されるであろう。コントローラは、典型的には、センサ構成要素によって検出される圧力差に応じて、異なる負荷状況で最も効率的かつ効果的な逆洗流路を確立することが可能となるように設計され、操作される。
【0042】
(詳細なシステム説明)
図4A−4Eは、図1−3のシステム10のサブシステム、要素、制御システム構成要素、および他の装置の一実施形態、ならびに過渡、通常、および逆洗の動作モード中の処理過程水流の実質的により詳細な説明図を描写する。
【0043】
水処理システム110は、システム110専用に開発されたアプリケーションソフトウェアを操作する、従来のプログラム可能なコントローラ112の制御下にある。コントローラは、ある汚染物質の存在、不在、または大きさを検出するセンサを含む、感知および制御サブシステムの一部である。サブシステムはまた、コントローラの中のプロセッサから信号を受信し、指示通りに起動して、必要とされる処理に適切であると決定される流路を確立する種々の作動手段(電動弁等)も含む。
【0044】
コントローラ112は、処理システム110全体に位置する種々のサンプル点(「SP」)において、種々の水質パラメータを含む水の特性を測定するコントローラに電気的に連結される種々のセンサ(以降で説明される)から、種々の入力信号を受信する。コントローラのアプリケーションソフトウェアは、これらの信号を受信し、コントローラ110が、動作モードと、所与のモードおよび時間間隔中に操作されるシステム110の処理サブシステムおよび要素とを選択するために、コントローラに電気的に接続された処理システム110のどの弁、要素、および他の構成要素が、出力信号を送信される必要があるかを決定する。
【0045】
システム110の感知および制御部分において使用するために適切なセンサ装置、プロセッサ、および自動的に動作可能な弁が知られており、本発明の方法に従ってシステムの効果的な動作のための性能を提供する、任意のそのような構成要素が使用され得る。
【0046】
システムにおいて利用されるセンサのネットワークは、リアルタイムで、および事前選択されたパラメータと比較して、システム動作および要素有効性の進行中の監視を維持し、最適な過程条件を維持するために必要とされる調整および変更を行うように、例えば、電動弁へのコマンド信号を生成する制御システムプロセッサへ多様な動作情報を収集して伝達するように設計され、意図されている。包括的な一連のセンサ、プロセッサ、および物理的機器アクチュエータは、システム動作に対する洗練された制御を提供し、システム110が、人間の介入を伴わずに長期間にわたって動作することを可能にする。制御システムの総合的性質は、現場操作者の時間の必要性を削減し、操作者の訓練を有意に削減して、時間および金銭の両方を節約する。
【0047】
図4A−4Eに描写されるように、原水源からの水は、典型的には、処理システム110の導管サブシステム116の入口114から受け取られる。コントローラ112によって導管サブシステム116に流体連結されるか、または流体連結することができる、主要な処理サブシステムおよび要素は、随意的で好適な破片ストレーナ120、水源ポンプ126、随意的な油・水分離器124、粒子状物質ストレーナ122、好ましくは溶解固形物浮遊要素(図示せず)を含む、一次接触器/酸化タンク130、供給ポンプ136、混合粒状媒体フィルタ要素(140a〜140c)、膜フィルタ要素(142a〜142g)、粒状活性炭フィルタ要素(144a〜144b)、逆浸透要素(150A1、150A2、150B1、および150B2)、紫外線光源を有する最終接触容器170、清浄水貯蔵タンクまたはサービス給水タンク170、およびサービスポンプ172を含む。導管サブシステム116は、処理システム110の下側にある、本明細書で説明される種々の選択可能な処理サブシステムおよび要素を通って、飲料水用の出口118までの水流経路を提供する。サービス供給タンク170の中の清浄な処理水は、必要に応じて飲料水として分配するために、また、逆洗動作モード中の逆洗および/またはクリーンインプレース(CIP)のための清浄水源として保持される。
【0048】
(破片ストレーナおよび水源ポンプ)
図1−3のシステム10の実施形態と同様に、システム110は、ポンプ126を損傷するほど大きい破片、大型粒子状物質、および他の物体の進入を防止することができる随意的な破片ストレーナ120を有し得、それにより、源水がそのような破片または物体を含有し得ると操作者が考える場合に、操作者は、導管サブシステム116への入力114において、流入源水流経路の中に手動で配置することができる。好適なストレーナ120は、自動洗浄破片ストレーナである。
【0049】
図4Aは、そこから原水を引き出すか、またはシステム110に投入することができる水源を描写する。源水の水圧が低すぎて処理システム110の中へ水を駆動できない場合、コントローラは、本明細書の以下で説明される、あるセンサ信号に応じて、水源ポンプ126に制御信号を送信して、水源から導管サブシステム116の入口114の中へ水を引き込むように水源ポンプを操作することができる。例えば、コントローラは、(i)処理システムが適正に動作するには流入源水の圧力が不十分であることを示すために、水源ポンプの直後において導管サブシステムに流体連結される圧力センサ201からの要求信号がコントローラによって受信される場合、または(ii)処理水の要求が受信される場合(例えば、清浄水貯蔵タンクまたはサービス給水タンク170の中のレベルが所定のレベルを下回ることを、清浄水貯蔵タンク170の中のレベルセンサ250が感知する場合に発生し得る)に、水源ポンプ126を起動し得る。もしそうであれば、システムコントローラ112は、処理シーケンスを開始する。
【0050】
源水が、過程フロー要件を満たすことに十分なほど高い圧力で加圧源から入手可能である場合、水源ポンプ126は操作される必要がない。水圧がシステムコントローラ112にプログラムされた範囲外である場合、コントローラは、所望のバランスのために、以降で説明される方式で圧力および流量を調整することができる。使用され得る水源ポンプ126の種類は、好ましくは、損傷を伴わずに、自動洗浄ストレーナ120によって許容される粒径を下回る固形物に対処することが可能である自己粉砕式である。前述のように、ストレーナ120はまた、原水源が、その使用のために必要とされる閾値を下回る粒子を含有する場合、システム過程列から除去され得る。
【0051】
(油・水分離器)
システム110を使用して処理されるほとんどの原水源は、水に存在する油の量が他の過程要素によって除去されない程度まで油によって汚染されていないことが予測されるので、油・水分離器124は、システム110の随意的な構成要素であり得る。しかしながら、油・水分離器要素124の含有は、コントローラ112に、導管サブシステム16の中の弁28を通して油・水分離器24まで源水を方向付けさせて、導管サブシステム116の一次水経路の中へ方向転換する前に、水から源水の中の油を分離することによって、処理システム110に含まれ得る。
【0052】
許容速度および圧力で原水がシステム110に流入すると、コントローラに電気的に連結される炭化水素分析器(または油検出器)のためのサンプル点(「SP」)206は、サンプル点における原水中の「全石油炭化水素」(「TPH」)(以降では油と呼ばれる)汚染物質の有無を感知することができる。SP206の下流には、源水から非溶解の油または乳化した油および燃料汚染物質を除去するために含まれてもよい、油・水分離器124がある。所定の閾値を超える油汚染レベルがSP202において検出された場合、出力信号が炭化水素分析器によってシステムコントローラ112に送信される。コントローラは次に、弁125を起動するための制御信号を提供し、油・水分離器の中へ原水流を方向付ける。別のSP203は、油・水分離器の下流でTPHを測定する。TPHが高すぎる場合、水の一部分または全てが、導管129の中の圧力調節弁117および圧力チェック弁118を通して水源ポンプへの入口へと再循環させられるように、好適な自動制御弁131が調整される。油・水分離器の下流にある導管に連結される圧力センサ206は、油・水分離器の排出圧力を監視する。水から分離される油は、処分または再加工のために、導管128を通して収集および除去される。流量制御弁119は、導管128を通ってシステムから退出する廃棄物の流速を調節するために、導管128の中に流体連結され得る。別の圧力センサ208は、油・水分離器の廃棄物流排出圧力を測定するために、廃棄物導管128の中に連結され得る。次いで、圧力センサ201、206、および215の圧力測定値は、油・水分離器の入口、出力、および拒絶出口の間の圧力差を決定して、廃棄物導管128の制御弁119を調整するために、コントローラによって使用される。
【0053】
油閾値が満たされない場合、原水は油・水分離機を回避して下流に続く。油・水分離器124は、処理過程列の中の最初に位置し、可能な限り早い機会に原水からの油型汚染物質の除去を可能にして、下流過程要素の汚染および劣化を防止する。
【0054】
(粒子状物質ストレーナ濾過)
例えば、自己清浄式自動スクリーンフィルタ等のストレーナ122は、油・水分離器124の下流にある導管サブシステム116に流体連結され得る。ストレーナ要素122は、物理的障壁としての役割を果たして、水流を潜在的に阻止し、濾過媒体を詰まらせ、および/またはそうでなければ、処理過程を妨害し得る粒子サイズの固形物を捕捉し、下流処理要素に進入する水から除去する。粒子センササンプル点SP208または濁度センササンプル点(図示せず)は、処理されている水が所定の閾値よりも大きい破片または粒子を含有するかどうかに関して、情報をコントローラ112に提供するために、ストレーナ122の上流に位置し得る。閾値が満たされる場合、コントローラ112は、弁121を作動させる信号を送信し、ストレーナ要素122を通して処理中の水を方向付ける。ストレーナ122による粒子状物質の除去後、部分的に処理された水は、好適な弁123、例えば、逆止め弁を通して一次水流経路に戻され得る。拒絶された水流は、導管204を通して源水に戻されるか、またはそうでなければ、適正に処分される。閾値粒子値が満たされない場合、弁121は、処理中の水がストレーナ122を迂回することを可能にするように、コントローラ112によって位置付けられる。圧力センサ209は、圧力を測定し、流量センサ211は、ストレーナ122の下流にある導管116の中の水の流量を測定する。好ましくは、ストレーナ122は、原水から約100ミクロン以上の粒子を除去するように選択される。これは、過程効率を向上させ、必要とされるフィルタ逆洗の頻度を低減するために、混合媒体フィルタ要素140a〜140cに到達する粒子のサイズを制御する。
【0055】
(一次酸化)
処理中の水は次に、一次酸化のために一次接触タンク130に移動する。一次酸化は、処理中の水にオゾンを注入することによって行われ、システム110の全ての動作構成において行われる。一次接触タンクの中の水位は、レベルセンサ210によって監視されてもよく、レベルセンサ210によってコントローラ112に提供されるフィードバックに基づいて、流量制御弁131を調整することによって制御される。レベルセンサ210がより多くの水に対する要求信号をコントローラに送信すると、一次酸化タンクまたは一次接触タンク130の中の所定の水位を維持するために、流量制御弁131の位置および水源ポンプ126の出力が調整される。溢れた廃棄物は、導管200を通して原水源に送り返されるか、そうでなければ適正に処分される。オゾンは、供給ポンプ136によって同じタンクから引き出された水を使用して、一次接触タンク130に注入され、オゾン注入器132を通して方向付けられてもよい。オゾンは、好ましくは、オゾン発生器134によって、オゾン注入器132に供給される。図4Aで描写されるように、注入器132に供給されるオゾンの量は、一次接触タンク130の下流の処理過程フローにおいて溶解オゾンサンプル点212で得られる溶解オゾン測定値に基づいて、オゾン流量制御弁133によって制御され得る。コントローラは、SP212に連結されるオゾンセンサから入力信号を受信し、オゾン流量制御弁133への制御信号を生成する。一次接触タンク130の下流のオゾンの濃度が所定の範囲内ではない場合、必要に応じて、オゾン注入の速度を増加または減少させるように、信号がコントローラによって送信される。オゾン注入の速度は、流量計135によって測定され得る。一次接触タンク130は、好ましくは、処理中の原水にオゾンを注入するために必要とされるエネルギーの量を削減する重力シリンダ(非加圧)である。
【0056】
好ましくは、一次酸化タンク130は、溶解空気浮遊要素を含む。タンク130が溶解空気浮遊要素を含む場合、オゾン注入器は、水からの有機汚染物質および油の分離と、有機汚染物質および油から分離された結果として生じる水の消毒および酸化とを強化するために、空気およびオゾンの組み合わせを一次酸化サブシステムに注入するように適合される。オゾンは、好ましくは、いくつかの理由で使用される。それは、細菌性およびウイルス性病原体を排除するために産業上利用可能である最も強力な消毒剤のうちの1つであり、電気以外に消耗物を必要とせず、処理中の水に残留するより小さい粒子の凝集および凝固を強化して、より濾過しやすくし、下流混合媒体フィルタ要素(140a〜140c)および膜フィルタ要素(142a〜142g)の中で、粒子がより容易に溶液から離れるように水の表面張力を低下させ、これらの同じフィルタ要素をより逆洗しやすくする。オゾンは、混合粒状媒体フィルタ要素140a〜140cおよび膜フィルタ要素142a〜142cにおいて生物汚染を引き起こし得る藻類および藻類によって生じる生物粘液を不活性化する。生物汚染は、これらのフィルタの性能を劣化させ、それらの効果的な濾過を低減する。加えて、濾過前のオゾン媒介酸化は、味および臭気を引き起こす化合物をほとんど除去し、水の透明度およびきれいさを向上させ、鉄およびマンガン化合物を酸化し、初期消毒を提供することができる。
【0057】
好ましくは、(一次接触タンク130および最終接触チャンバ160の両方の中で)処理システムに注入されるオゾンは、オゾン発生器134によって現場で生成される。オゾンの生成は、周囲空気および電気のみを必要とするので、塩素および/または他の処理化学物質を水が処理される場所に輸送するよりも、現場で必要なオゾンを産生するほうがはるかに実行可能である。システム110で使用されるオゾンは、好ましくは、例えば、塩素が消毒に使用された場合に必要となるように貯蔵されるよりもむしろ、必要に応じて生成される。塩素は非常に有毒なガスであり、消毒剤として使用される塩素の貯蔵は、健康および環境被害の相当なリスクを生じさせる。オゾンは、現場使用に適していない繊細かつ高価な試験機器の使用を必要とする他の非塩素剤と違って、簡単な現場試験を使用して、容易に監視および測定することができる。
【0058】
(供給ポンプ)
供給ポンプ136は、一次接触タンク130の下流に位置し得る。供給ポンプ136は、2つの主要な目的を果たす。それは、ほとんどの動作状況の下で、残りのシステム要素および一次接触タンク130の下流にある他の装置を通して、部分的に処理された水を送達するために使用される一次ポンプであり、ならびにオゾン注入器132に水を方向付けるために使用される。圧力センサ214、流量センサ216、および流量センサ210からの入力は、供給ポンプ136の出力を制御するためにコントローラ112によって使用される一次入力である。
【0059】
(混合媒体濾過)
図4Bに描写されるように、一次酸化後に、部分的に処理された水は、処理過程における次のステップとして、複数の混合媒体フィルタ要素、例えば、要素140a〜140cを通って流れてもよい。これらの処理要素において使用されるフィルタ媒体は、典型的には、一般的に使用されている材料(例えば、無煙炭、砂、およびガーネット)の混合物を含む。これらの混合媒体フィルタ要素は、後続の処理ステップ(単数または複数)前に部分的に処理された水から、約0.5ミクロン〜1ミクロンより大きい粗い粒子を物理的に除去する。好ましくは、混合粒状媒体フィルタは、固形物のより重厚な蓄積に耐えることができ、膜フィルタと比較して固形物のより効率的な捕捉および解放を示すので、複数の膜フィルタ要素、例えば、要素142a〜142gの前に使用される。したがって、膜フィルタ要素の前に混合媒体フィルタを配置することは、膜フィルタ要素の汚染を低減し、膜フィルタの処理能力を延長する。混合媒体フィルタのための逆洗水量も、膜フィルタより少ないので、混合媒体フィルタにおいて固形物を捕捉することは、頻繁な膜フィルタ逆洗によって無駄に失われる処理水を少なくする。
【0060】
混合媒体濾過要素に進入する水と、要素から出て行く水との間の圧力差は、圧力センサ214および218によって測定される。圧力差の大きさは、圧力および流量を許容範囲内に回復させるために逆洗動作が必要であるかどうかを決定するために、コントローラ112によって使用される。好ましくは、混合媒体フィルタ要素140a〜140cは、並流するように構成され、通常処理過程動作モードと逆洗動作モードとの間で独立して制御することができる。混合粒状媒体フィルタ容器をオフラインにし、次いで、別個の混合粒状媒体フィルタ要素を選択的にオフラインにする前に、圧力センサ214と218とによって測定される圧力差および流量計216の出力に留意し、圧力センサ214および218の出力の変化ならびに流量計216の出力の同時変化を観察することによって、もしあれば、どの混合媒体フィルタ要素が逆洗を必要とするかを決定するように、コントローラ112によって計算を行うことができる。混合媒体フィルタが逆洗を必要とする場合、1つの要素が通常処理フローモードから外され、逆洗モードに入れられる一方で、サブシステムの中の残りの要素は、通常処理過程モードで継続する。コントローラは、1つのフィルタ要素を処理フローから外し、残りのフィルタ要素を通して過程フローを方向付けるように、コントローラのアプリケーションソフトウェアによって実装される所定のアルゴリズムに従って、好適な弁、例えば、弁141a、141b、141c、143a、143b、および143cを起動する。混合媒体フィルタ要素140a〜140cを出て行く水流は、オゾンが部分的に処理された水の中に残っていないことを確実にするために、酸化還元電位(「ORP」)サンプル点SP220においてチェックされる。過剰なオゾンの存在は、処理過程列において次に存在する膜フィルタ要素142a〜142gに有害となる。SP220において得られるORP測定値に基づいて、コントローラ112は、亜硫酸水素ナトリウム(SBS)注入器223を起動するかどうかを決定し、起動された場合、存在するオゾンを中和するために、どれだけのSBSが部分的に処理された水に添加されるべきかを決定することができる。
【0061】
(膜濾過)
図4Bにおいて描写されるように、複数の膜フィルタ要素、例えば、要素142a〜142gでは、例えば、サイズが約0.1ミクロンまでの部分的に処理された水の中の任意の残留非溶解懸濁固形物が除去される。限定的に、溶解汚染物質のうちのいくつかも除去され得る。粒子カウンタによる粒子特性(サイズおよび数)、またはSP222における濁度計(図示せず)による濁度、およびSP220における酸化還元電位(「ORP」)の測定値は、すでに部分的に処理された水をさらに処理するために、膜フィルタ要素142a〜142gが必要とされるかどうかを決定するために使用される。粒子数および/または濁度が所定の閾値を上回る場合、コントローラは、膜フィルタ要素を通して部分的に処理された水を方向付けるために、好適な弁145を起動する。粒子数および/または濁度が所定の閾値を下回る場合、膜フィルタ要素142a〜142gは迂回される。可能な場合に膜フィルタ要素を迂回することは、膜濾過要素にわたって圧力を維持することと関連付けられるエネルギー消費を削減するだけでなく、膜自体の耐用年数を延長する。
【0062】
通常動作モード中、膜フィルタ要素は、2つの水流を出力する。第1の出力は、好適な弁146、例えば、3方向切替え弁へと下流に続く、膜フィルタによって処理される水である。第2の出力は、導管180を通して収集される濃縮廃棄物であり、その廃棄物は、処分/再加工のために収集されるか、または水源に戻される。圧力センサ218および226は、膜フィルタ要素の入力および出力にそれぞれ位置し、膜フィルタ要素142a〜142gにわたる圧力差を計算するためにコントローラ112によって使用される入力を提供する。圧力差が所定の閾値に達すると、コントローラ112は、膜フィルタに対する逆洗浄過程を起動する。逆洗浄過程を達成するために、コントローラは、サービスポンプ172を起動し、膜フィルタ要素142a〜142gの裏面に清浄水を供給するように、適宜に、弁146、148、147a、147b、149a、149b、231、および289を含む種々の弁を構成させる。次いで、逆洗浄過程に使用される水は、弁181を通して廃棄物流導管182へと転換される。逆洗浄動作の頻度が所定の閾値を超えると、システムの操作者は、CIP弁184aを手動で切り替えることによって、クリーンインプレース(「CIP」)過程を手動で起動し得る。CIP過程は、CIP化学物質が所定の持続時間にわたってフィルタ膜と接触したままであることを可能にするためのCIP化学物質および浸漬サイクルの付加を伴って、逆洗浄過程と同様である。膜フィルタ逆洗浄および/または清掃が発生する頻度は、逆洗浄および/清掃過程による処理水の損失、ならびに膜フィルタ汚染が進行するにつれて生じる、より大きい圧力差を克服するために必要とされる増加したエネルギーを最適化するように選択される。
【0063】
大型細菌性生物は、膜濾過が効果的である粒径範囲内に入ることができ、存在する任意のそのような細菌は、膜濾過ステップで除去される。膜濾過サブシステムにおいて使用される濾過膜は、膜空隙率に応じて、しばしば精密濾過膜と呼ばれる膜、ならびに限外濾過膜と呼ばれる膜を包含し、単独で、または組み合わせて使用される。好ましくは、システムは、特定の用途に応じて、限外濾過膜、精密濾過膜、または両方を含み得る。濾過処理過程を加えた従来の沈降法の代わりに、膜濾過の使用は、必要とされるフィルタ媒体の容量を大幅に削減し、したがって、処理システムに対する装置サイズおよび全空間要件を削減する。
【0064】
(活性炭濾過)
図4Cにおいて描写されるように、活性炭処理サブシステムは、並列構成で構成される活性炭要素144aおよび144b等の複数の活性炭フィルタ要素を含み得る。各要素は、典型的には、粒状活性炭を含有する容器である。活性炭要素は、膜フィルタ要素によって除去可能である任意の粗い汚染物質から粒状活性炭を保護するために、膜フィルタ要素142a〜142gの下流に位置する。これは、不必要な汚染から活性炭フィルタ要素144aおよび144bを保存し、部分的に処理された水に残留する殺虫剤、工業用溶剤、および潤滑剤等の、有機化合物および/または他の溶解化学化合物を除去するために、それらを確保しておく。活性炭要素は、粒状活性炭によって物理的に吸収されるこれらの種類の汚染物質の通過に対する障壁を提供する。
【0065】
膜フィルタ要素142a〜142gから出て行く、またはそれらを迂回する水は、水が活性炭フィルタ要素144aおよび144bに進入する前に、TOCサンプル点SP228において、全有機体炭素含有量について監視される(または特定の紫外吸収計および/または分光計によって監視される)。水のTOC含有量がプログラムされた閾値を上回る場合、コントローラ112の信号は、炭素フィルタ要素を通るように部分的に処理された水の全流量を方向付けるために、好適な弁147aおよび147bを起動する。炭素フィルタ要素における処理後、部分的に処理された廃水は、下流の潜在的なさらなる処理のために、弁149aおよび149bを通して一次水流経路の中へ戻るように方向付けられてもよい。TOC含有量が所定の閾値を下回る場合、活性炭フィルタ要素は迂回され、再度、活性炭フィルタ要素を通る圧力を維持するために必要とされるエネルギーを節約し、活性炭を交換または再生しなければならない前の期間を延長する。塩分が存在せず、分析方法が、逆浸透が必要となる、部分的に処理された水の中の他の規制化合物の不在を検証した場合、活性炭フィルタ要素144aおよび144bは、膜フィルタ要素による処理後に残された任意の化合物を「消す」ために使用することができる。塩分の存在または欠如は、伝導度サンプル点SP230において決定される。
【0066】
伝導度に影響を及ぼさない規制化合物の有無を検証するため、および/または分析センサ技術が現在利用可能ではない規制化合物の有無を検証するために、操作者が行うグラブサンプル分析を使用することができる。グラブサンプル分析の使用が必要とされる場合、コントローラ112は、これらのサンプル入力が、設定された間隔で制御システムに入力されることを要求し、行われない場合、水処理システムがフェイルセーフ動作して運転停止する。
【0067】
膜フィルタ要素142a〜142gおよび活性炭フィルタ要素144aおよび144bは、過剰な懸濁物質およびTOCから逆浸透フィルタ膜要素を保護するために、逆浸透要素の上流に位置する。このアプローチは、RO膜の耐用年数を延長し、その濾過有効性を向上させる。
【0068】
(逆浸透濾過)
わずかに半塩水から海水の塩分にまで及ぶ濃度で、原水供給が溶解塩を含有し得るので、システムはまた、逆浸透サブシステムをも含む。逆浸透処理要素は、圧力下で動作するので、かなりコンパクトな設置面積を有し、溶解化合物である汚染物質の最も幅広い範囲に対処する。ほとんどの使用法の下で、逆浸透処理要素は主に、部分的に処理された水から溶解化合物を除去するために使用されることが予測される。
【0069】
図4Dに描写されるように、逆浸透サブシステムは、例えば、要素150A1〜150B2等の複数の逆浸透要素を含み得る。各逆浸透要素は、半透膜脱塩アプローチを利用する。好ましくは、逆浸透サブシステムは、直列の2層の逆浸透要素を含む。各群は、並列の複数の逆浸透要素を含む。図4Dでは、第1群は、逆浸透要素150A1および150A2を備え、逆浸透要素150B1および150B2は、第1群の要素と直列に構成される第2層の逆浸透要素を備える。
【0070】
膜フィルタ要素147aおよび147bから出て行くか、またはそれらを迂回する水は、逆浸透群の上流の水が脱塩を必要とするかどうかを決定するために、十分な濃度の塩を含む溶解固形物の存在に対して検査される。十分に高い濃度が伝導度サンプル点230において検出された場合、コントローラ112は、好適な弁154、例えば、3方向ボール弁の起動を指示する信号を提供して、溶解固形物を除去するために、導管153を通して逆浸透要素へと部分的に処理された水を送る。脱塩が必要とされず、他の化学汚染物資が部分的に処理された水に存在しないことが確認された場合、コントローラ112は、導管155を通して水を方向付けるように弁154を起動することによって、逆浸透サブシステムを迂回し、エネルギーを節約して逆浸透膜の寿命を延長し得る。
【0071】
活性炭フィルタ要素144aおよび144bによって生成される水中の炭素微粒子から、逆浸透要素150A1〜150B2を保護するために、カートリッジフィルタ156が、逆浸透要素150A1〜150B2の上流の過程フローに位置し得る。圧力センサ232および234は、コントローラ112への信号を通してフィルタ負荷を監視するように、カートリッジフィルタ156を横断して位置し得る。
【0072】
逆浸透サブシステムにおける処理が必要であることをコントローラ112が決定すると、コントローラ112は、流水圧が逆浸透動作に十分であるかどうかを決定するために、圧力センサ236からの信号を利用する。圧力が十分である場合、ブースターポンプ157はオンにされない。流水圧が逆浸透動作に必要とされる閾値レベルを下回る場合、コントローラ112は、必要レベルで動作するようにブースターポンプ157に信号伝達して、逆浸透要素の上流で必要な水圧を達成する。ブースターポンプ157に進入する前に、部分的に処理された水は、上流処理過程フローから逆浸透要素の中の水流を分断する加圧毛細緩衝容器158を通って流れる。レベルセンサ238が、緩衝容器158の中の水位を監視するために使用され得る。
【0073】
典型的には、逆浸透膜を通る単一の通過は、80という分子量以上の化合物の98%を除去する。部分的に処理された水に存在する特定の化学物質、および必要とされる処理のレベルに応じて、逆浸透膜を通る複数の通過が必要であり得る。図4Dで描写された逆浸透要素の実施形態は、逆浸透膜の順次適用(低塩分)および逆浸透膜の単一通過適用(高塩分)を含む種々の動作モードを通して、逆浸透過程が行われることを可能にする。システムは、付加的な弁および提案ステップをシステムに追加することによって、他のモードで逆浸透サブシステムを操作するために容易に修正され得る。選択される特定の動作モードおよび逆浸透膜構成は、特定の用途、所望の動作圧力、選択される逆浸透要素、および/または操作者の選好に基づく。処理される原水が河口からの半塩水である場合のように、低濃度の塩を有する原水について、逆浸透サブシステムは、順次モードで動作するように設定することができる。このシナリオにおいて、コントローラは、SP230における伝導度測定値に基づいて、弁154、159、および161を制御して、最初に、要素150A1および150A2の群を通して、次いで、弁161を通して要素150B1および150B2の入口へと水を方向付ける。次いで、逆浸透要素150A1、150A2、150B1、および150B2からの処理水の出力は、逆止め弁163を通して一次水流導管へと方向付けられる。処理水が依然として処理を必要とする場合、コントローラは、好適な弁165を調整して、迂回・再循環導管229を通して、一次接触酸化タンク130へと処理水を再循環させることができる。逆浸透要素群から除去された過程濃縮または拒絶水流は、濃縮物の流速を制御するために、好適な弁161および/または162を通して、流量制御弁164を有するRO過程濃縮物導管へと方向付けられてもよい。導管はまた、拒絶されている濃縮物の流速を監視するためにその中に連結された流量計237も有する。
【0074】
代替として、コントローラは、希釈過程モードにおいて逆浸透サブシステムを操作することができる。SP230において提供される伝導度測定値に基づいて、コントローラは、要素150A1および150A2の群を通して、次いで、弁161を通して、要素150B1および150B2の群の入力へと決定される水の一部を方向付けるにために弁154を調整することによって、逆浸透要素を通して送る部分的に処理された水の割合を決定することができる一方で、部分的に処理された水の残りは、導管155を通して逆浸透過程を迂回し、次いで、逆浸透過程の下流で再結合して、安全な塩分レベルを有する水を生産する。希釈アプローチは、毒性化学物質が部分的に処理された水の中になく、逆浸透要素が塩分を制御するためだけに使用されていると決定されると、使用されるのみである。
【0075】
処理されるべき原水が海水である場合のように、溶解化合物が高いとき、逆浸透サブシステムは、単一通過モードで動作するように設定することができる。このシナリオにおいて、コントローラは、SP230における伝導度測定値に基づいて、弁159および161を制御して、要素150A1および150A2の群を通して、または、次いで、要素150B1および150B2の群を通して、交互に水を方向付ける。言い換えれば、水は、一度に1群の要素のみを通して方向付けられる。次いで、逆浸透要素150A1、150A2、または150B1および150B2からの処理水の出力は、逆止め弁163を通して一次水流導管へと方向付けられる。部分的に処理された水が依然として処理を必要とする場合、コントローラは、制御弁165を調整して、迂回・再循環導管229を通して、一次接触酸化タンク130へと処理水を再循環させることができる。
【0076】
逆浸透要素群、要素150A1および150A2、または要素150B1および150B2から除去される過程濃縮および拒絶水は、好適な弁161および/または162を通って、排出のためにRO過程濃縮物導管へと流れる。
【0077】
逆浸透サブシステムによって提供される多モード動作は、単一の膜等級が、広範な溶解固形物濃度を有する水の処理に成功することを可能にする。本発明の実施形態内と見なされる多モード動作の代替案は、交換可能な逆浸透膜を有することである。この場合、原水源の塩分に基づいて、特定の逆浸透膜を選択することができる。脱塩に加えて、逆浸透要素はまた、部分的に処理された原水に残留する場合がある多くの化学汚染物質、有機化学物質(例えば、毒、殺虫剤、薬品)、金属(例えば、水銀、ヒ素、カドミウム)、および放射性物質を除去するためにも機能する。これらの種類の化学汚染物質が存在する場合、活性炭濾過から出て行く部分的に処理された水の全ては、逆浸透要素150A1〜150B2を通して処理される。本発明の実施形態は、必要な過程ステップ(例えば、逆浸透過程の必要性)を決定するために、特定の用途に応じて変化する場合がある、分析機器専特有の化合物の使用を可能にする。自動分析センサがまだ利用可能ではない状況に対して、本発明は、グラブサンプルが採取され、試験結果がコントローラ112に手動で入力されることを可能にする。本発明はまた、過程ステップおよび/または処理済みの水質を決定する場合に、規制化合物の有無を推測するために、代用物を測定または検出する分析機器の使用も可能にする。グラブサンプル分析の使用が必要とされる場合、コントローラは、これらのサンプル入力が設定された間隔で制御システムに入力されることを要求し、行われない場合、水処理システムがフェイルセーフ動作して運転を停止する。
【0078】
逆浸透を使用することの不利点は、逆浸透膜が硬度イオン/アルカリ度抗生物質を引き出し、部分的に処理された水のpHを減少させることである。水が逆浸透要素において処理された後、部分的に処理された水のpHは、最終酸化チャンバ160の下流にあるSP290において決定される。このpH測定値に基づいて、コントローラ112は、緩衝注入器166への緩衝化学物質の適切な量を決定して、pHを人間が消費するための許容レベルに調整し得る。
【0079】
(最終接触酸化/紫外線光照射)
逆浸透サブシステムにおける処理後には、事実上全ての汚染物質が処理水から除去されている。しかしながら、部分的に処理された水は依然として、上流処理要素において除去または破壊されなかった病原性微生物、および毒性となり得る微量の低分子量化合物を含有する場合がある。これらの汚染物質に対処するために、システムは、処理水に最終硬度酸化/消毒処理過程を受けさせる最終接触酸化/UV要素160を含み得る。ベンチュリ167が、要素160の上流にある一次水流導管の中へ連結され、要素160に進入する水が一定圧力に維持されるが、最小流量を上回る可変流量で維持されるように、圧力調節器168はベンチュリ167と並列している。コントローラは、弁244を調整して、ベンチュリ167の中へのオゾンの流量を調節し得る。流量計239は、オゾン注入器の中へのオゾンの流量を測定する。
【0080】
最終接触酸化/UV要素160は、好ましくは、それを通って一次水流導管からの上流水が容器に進入する入口172を有する垂直蛇行通路の形状であるサービス供給タンク170の内側に位置付けられる区画またはチャンバである。チャンバ160は、消毒過程を開始するために、チャンバ160に進入するにつれて十分なオゾンを水に注入するようにコントローラ112が指示することができるオゾン注入器(図示せず)が装着されている。その形状により、水が蛇行性通路を通って出口174まで進行することに要する時間は、処理水の最終消毒を達成するように、水が消毒過程用のオゾンに暴露されるための十分な時間である。消毒に必要とされるよりも高いレベルのオゾンが、最終接触容器に注入され、それによりオゾンをある濃度に維持させる。処理水は、接触チャンバ160から退出しようとするとき、紫外線光源176からの紫外線(「UV」)光で照射される。UV光は、オゾンを加水分解してOHヒドロキシルラジカルを作成する。ヒドロキシルラジカルが残留汚染物質を分解し、処理水を仕上げ、残存オゾンを除去するので、最終処理水中の溶液中には残留オゾンがない。
【0081】
チャンバ160から出て行く水は、導管175を通ってサービスタンク170の中へ方向付けられる。導管175は、好ましくは、種々のパラメータを監視および/または測定するための種々のサンプリング点を含む。SP290は、pHを測定するために使用される。SP291は、UV放射を監視するために使用され得る。SP292は、分光法を使用して、処理水の分光分析を行うために使用され得る。SP293は、濁度センサが濁度を測定するためのSPであり得る。SP294は、残存オゾン濃度を測定するためにオゾンセンサによって使用されてもよく、SP295は、伝導度を測定して残存溶解固形物濃度を決定するために使用され得る。検査された伝導度および残存オゾンパラメータ測定値が所定の範囲外である場合、オゾン注入のレベルは、特定された最終水質を提供するために必要に応じて自動的に調整される。
【0082】
最終接触チャンバ160において使用されるオゾンは、オゾン発生器134によって現場で生成される。システム110はまた、オゾン破壊ユニット300をも含む。一次接触タンク130および最終接触チャンバ160からの過剰なオゾンは、通気制御弁256および導管205を通して破壊ユニット300へ放出されてもよく、そこで大気中に放出するために安全な化合物に分解される。
【0083】
接触チャンバ160から退出する水は、弁177を通して、コントローラによってサービス供給タンク170に送り返されてもよく、そこで分配またはシステム内でサービス利用のために保持される。サービスタンクに到達する処理水(処理済み水)は不純物を含まず、人間の消費および使用のために清潔かつ安全である。水は、サービス給水タンク170から、導管178および229ならびに弁298を通して、消費者または利用者に送られてもよい。コントローラが弁を作動させる前に、コントローラは、消費者に送る前に、SP296において処理済水の残存溶解オゾン濃度を評価して、人間の消費に好適であることを確実にする。
【0084】
過渡動作モード中、種々のサンプル点で得られる尺度パラメータに基づいて、コントローラは、処理済み水が飲料水の仕様を満たさないことを決定し得、または処理済水の水質の定常状態条件に達していないことを決定し得る。そのようなシナリオにおいては、コントローラは、弁177を起動して、迂回・再循環導管229への弁177を通して、一次接触酸化タンク130へと処理済水を方向付けてもよい。
【0085】
逆洗モードでは、サービス給水タンクに貯蔵された処理済水は、必要な時に、膜フィルタ、活性炭フィルタ、および逆浸透要素に対する逆洗過程用の清浄水源として使用され得る。そのような逆洗過程に水が必要とされる場合、コントローラは、サービスポンプを起動して、逆洗処理過程で使用するために、導管299および弁289を通してサービス水貯蔵タンク170に貯蔵された水を方向付ける。
【0086】
オゾンおよびUV放射は、消耗品を必要とせず、回復活性のためのロジスティクス支援のみを必要とするので、最終酸化過程のための好ましい処理オプションである。システムの処理能力は、タンク170に進入する前に過酸化水素水を水に注入することによって拡張および拡大することができる。このシステムの変化例または代替実施形態は、ほとんどの処理用途で必要とは考えられないが、過酸化水素注入装置およびそれが使用される注入ステップの包含は、本発明の範囲内であることを理解されたい。
【0087】
(システムコンテナ)
システム110について上記で説明された装置は、好ましくは、最大の携帯性のために極めてコンパクトな配設で配置および接続される。図5で描写されるように、水処理システムの実施形態は、好ましくは、その支持構造および保護環境としての機能を果たす標準サイズの運送用コンテナ500内で収納、運送、および操作されるように包装され得る。運送用コンテナ500は、システム操作、観察、維持、および修復のためのアクセス点を可能にするために、戦略的にコンテナの中に位置するドア502a〜502r等のアクセスパネルまたはドアを追加することによって修正され得る。コンテナはまた、壁の構造強度を増加させて、ドアの追加に起因する構造強度の損失を補うために、補足隔壁を追加することによって修正される。装置の重量は、遠隔の場所への運送を可能にするように管理される。可能な輸送モードは、商用トラック、ヘリコプター、および空中投下配備を含む。
【0088】
システム装置は、固定場所において組み立てられることが企図され、好ましくは、標準サイズの運送用コンテナサイズ以内である。そのような運送用コンテナに装置を封入することは、輸送および設定中に自然力および他の物理的損傷から装置を保護するだけでなく、処理現場での使用中に装置に対するセキュリティをも提供する。修正された標準サイズの運送用コンテナ内の機器の好適な構成レイアウトが、図5に描写されている。図4A−4Eの同じ部品に対応する図5のサブシステムおよび要素は、類似の参照数字で示される。好ましくは、サービス給水タンク170は、逆浸透要素150A1〜150B2に対する物理的支持を提供し得る。
【0089】
高温および高湿度条件における動作は、電気および電子機器および構成要素にとって非常に破壊的となり得て、水処理が必要とされる多くの現場は、高い熱および/または湿度のレベルを含むが、それらに限定されない極端な天候条件を経験する厳しい気候を伴う地域にあることが企図される。システムの装置を保護し、厳しい気候または過酷な天候による動作の中断を回避するために、コンテナ筐体には、1つ以上の冷却および除湿ユニット、ならびにそのようなユニットを制御するための環境制御サブシステムが提供される。例えば、ポンプおよびモータの動作からのコンテナ筐体の内部の加熱を回避する手段として、所望または必要であれば、発熱機器をコンテナ筐体の冷却および除湿される容量の外側に配置することができ、または独立して換気および/または冷却することができる。
【0090】
(操作方法)
図6A−6Bは、図4A−4Eで描写されたシステム110と関連して説明される、種々の加工モード、条件、およびセンサ入力データ下でのシステム110の操作に使用される、センサ入力およびコントローラ出力信号の描写を含み、コントローラ110と種々のセンサとの間の相互作用および依存性、および水処理システムの中の作動手段を説明する、過程フロー制御論理をより詳細に描写する決定図である。
【0091】
図6Aを参照すると、ステップ600では、コントローラが、システム要求信号を開始する。そのような要求信号は、例えば、清浄水貯蔵タンクまたはサービス給水タンク170の中のレベルが所定のレベルを下回る時に発生し得る。別のレベルセンサは、貯蔵タンクの中の処理水のレベルを決定するためだけでなく、水源のレベルが十分であることを確約するために使用され得る。システム要求信号に応答して、コントローラ112は、ステップ601で、種々のセンサをオンにし、一次接触タンク130の中の水位センサ210からの入力信号を監視する。ステップ602では、コントローラは、レベルセンサ210からの入力信号に基づいて、接触タンクの中の水位が動作を開始するために容認可能であるかどうかを決定する。レベルが容認可能である場合、ステップ603では、供給ポンプ136が従事させられる。水位が許容レベルではない場合、コントローラは、ステップ604で、レベルセンサ210において測定される水位が十分となるまで、流量制御弁131を作動させて一次接触タンク130の中へ水を送る。
【0092】
ステップ605では、コントローラは次に、圧力センサ209における圧力を監視し、一次接触タンク130の上流の圧力が許容レベルであるかどうかを決定する。圧力が許容レベルを下回る場合、ステップ606では、コントローラは、圧力センサ209における圧力が許容レベルになるまで、水源ポンプ126の出力を調整する。ステップ607では、ポンプは、その出力を調整する。原水が許容圧力でシステムに流入している場合、コントローラは、次の過程ステップへと続く。
【0093】
コントローラは次に、ステップ608ではTPHセンサSP202からの入力信号、またはステップ610では油センサ(図4Aでは図示せず)からの入力信号に応答して、流入水に存在する油があるかどうかを決定する。ステップ612では、油が存在し、油・水分離器がシステムの一部である場合、コントローラは、弁125を起動させる出力信号を送信し、油・水分離器装置を通して水流を送る。ステップ614では、油・水分離器が、水から油を除去する。油が存在しないことをコントローラが決定した場合、弁125は、水が油・水分離器を迂回することを可能にするように設定される。
【0094】
ステップ616では、コントローラは次に、粒子センサ208からの入力信号を監視し、またはステップ618では、濁度センサ(図4Aでは図示せず)からの入力信号を監視して、原水が裏漉しを必要とする十分なサイズの粒子状物質を含むかどうかを決定する。初期裏漉しが必要とされることをコントローラが決定した場合、ステップ620では、コントローラは、弁121を起動して原水を粒子状物質ストレーナ122に送り、粒子状物質を除去する。ステップ622では、ストレーナが粒子状物質を除去する。初期裏漉しが必要とされないことをコントローラが決定した場合、ステップでは、水が粒子状物質ストレーナを迂回するように弁121を起動する。
【0095】
システム要求信号がステップ600でコントローラに提示される場合、コントローラはまた、一次接触タンク130の中のレベルセンサ210を参照して、水位が供給ポンプ136を従事させるのに十分であるかどうかを決定する。水位が十分である場合、コントローラは供給ポンプ136を従事させる。水位が十分ではない場合、コントローラは、タンクの中の水位が十分となるまで一時停止するように、ポンプ136に信号を出力する。
【0096】
ステップ625では、コントローラが圧力センサ214を参照する。ステップ626では、コントローラは、センサ214からの圧力値が十分ではないかどうかを決定する。ステップ627では、コントローラは、供給ポンプ136に信号を出力して、圧力が所定のレベルに達するまでポンプの動作を調整するようにポンプに指図する。センサ214における圧力が動作に十分である場合、ポンプの動作は同じままである。
【0097】
次いで、コントローラは、ステップ628では流量計211からの入力信号を、ステップ629Aでは溶解オゾンセンサSP212からの入力信号を監視する。代替として、ステップ629Bでは、コントローラは、ORPセンサ(図示せず)を監視して、一次酸化タンク130から出て行く部分的に処理された水が、所定の濃度範囲内の溶解オゾンを含有するかどうかを決定することが可能である。ステップ630では、コントローラは、溶解オゾンが所定の範囲内であるかどうかを決定する。もしそうでない場合、ステップ632では、コントローラは、オゾン検出器が、必要と決定される通りに、オゾン注入の速度を増加または減少させるために、出力信号をオゾン注入器132に送信する。溶解オゾンが所定の範囲内である場合、コントローラは次の過程ステップに続く。
【0098】
コントローラは、ステップ641では濁度センサ213を、またはステップ640では粒子センサ(図示せず)を参照して、混合媒体濾過が必要とされるかどうかというさらなる決定の基準として、水の濁度を決定する。ステップ642では、コントローラは、混合媒体濾過が必要とされるかどうかを決定する。濾過が必要とされる場合、ステップ643では、コントローラは、自動弁141aから141cを起動して、混合媒体濾過要素を通して水を送る。濾過が必要とされない場合、コントローラは、濾過要素141aから141cが迂回されるように、弁141aから141cを作動させる。
【0099】
ステップ644では、コントローラは、水の酸化/還元レベルが所定の制限内であるかどうかを決定するために、SP220におけるORPについて、混合媒体フィルタを出て行く水を監視する。ステップ645では、コントローラは、酸化/還元電位が制限内であるかどうかを決定する。もしそうでない場合、ステップ646では、コントローラは、SBS注入器223に信号を出力し、硫酸水素ナトリウムを水に添加して水の酸化還元電位レベルを低減するように指図する。酸化/還元電位レベルが所定の制限内である場合、コントローラは次の過程ステップに移動する。
【0100】
ステップ647Aでは、コントローラは、TOCセンサSP224を通るTOC含有量について、混合媒体濾過要素から出て行く、またはそれを迂回する水を監視する。加えて、または代替として、ステップ647Bでは、コントローラは、濁度センサSP(図示せず)からの信号を、またはステップ647Cでは、粒子センサSP222からの信号を監視し得、それらの全ては、膜濾過要素に進入する水流の中に配置され得る。ステップ648では、コントローラは、膜濾過が必要であるかどうかを決定する。TOCまたは他の測定水質パラメータがプログラムされた閾値を上回る場合、コントローラは弁145を起動し、膜フィルタ要素142aから142gを通る、またはそれらの周囲の水の流量を制御する。ステップ649では、膜フィルタ要素が流入水を処理する。水質が所定の制限内である場合、コントローラは、水が膜フィルタ要素を迂回するように弁145を作動させる。
【0101】
ステップ650では、コントローラは、ステップ650AでのTOCセンサSP、ステップ650BでのTPHセンサSP、ステップ650CでのSUVA計SP、または分光計SP650Dを含む、濁度に関する1つ以上の水質パラメータに対して、膜濾過要素からの信号を出て行く水、またはそれを迂回する水を監視して、水が活性炭濾過要素144aおよび144bによって処理される必要があるかどうかを決定する。ステップ651では、コントローラは、水が活性炭濾過要素において処理される必要があるかどうかを決定する。もしそうであれば、コントローラは、ステップ652で、弁146、147a、147b、149a、および149bを作動させ、処理のために活性炭濾過要素を通して水を送る。測定水質パラメータが好適に低いとコントローラが決定する場合、炭素濾過/吸収処理要素は迂回される。
【0102】
ステップ653において、コントローラは、ステップ653Aでは伝導度センサSP230からの入力信号、ステップ653Bでは全溶解固形物(「TDS」)センサ(図示せず)からの入力信号、またはステップ653Cでは分光計(図示せず)から、活性炭濾過要素から退出する水、またはそれらを迂回する水の水質パラメータを監視し、それらのセンサは、活性炭濾過/吸収要素から流れる水、またはそれらを迂回する水の中の溶解化合物の存在について検査する。ステップ654では、コントローラは、逆浸透が必要とされるかどうかを決定する。逆浸透が必要とされないことをコントローラが決定した場合、制御システムは、部分的に処理された水が逆浸透要素を迂回するように弁154を作動させる。
【0103】
ステップ655において、コントローラは、ステップ655AではTOCセンサSP227、またはステップ655BではORPセンサSP(図示せず)からの入力信号を監視することによって、水の水質パラメータを監視して、逆浸透要素を使用することが安全であるかどうかを決定する。ステップ656では、コントローラは、逆浸透要素を使用することが安全であるかどうかを決定する。逆浸透要素を使用することが安全ではない場合、ステップ657では、弁231を作動させて、水を再循環させるように再循環導管229へ水を送る。安全であるとコントローラが決定した場合、コントローラは、次の過程ステップへと進む。
【0104】
ステップ658において、コントローラは、ステップ658Aでは伝導度計SP230から、ステップ658BではTDSセンサSP(図示せず)から、またはステップ658Cでは分光計SP(図示せず)からの入力信号を監視することによって、水の水質パラメータを監視する。ステップ659では、コントローラは、逆浸透要素の下流の再結合水流の水質が、溶解化合物の所定のレベルを満たすために、逆浸透要素を通過する必要がある水の部分と、逆浸透要素を迂回する必要がある水の部分とを決定する。ステップ660では、コントローラは、制御弁154およびポンプ157を調整し、逆浸透要素を通過する部分と要素を迂回する部分とに水を割り当てる。
【0105】
ステップ661において、コントローラは、ステップ661Aでは伝導度センサSP230から、またはステップ661BではTDSセンサSP(図示せず)からの入力信号を監視することによって、水の水質パラメータを監視し、水中の全溶解固形物を決定する。ステップ662では、コントローラは、水が高塩分水であるかどうかを決定する。もしそうであれば、ステップ663では、コントローラは、水が2層の逆浸透要素150Aおよび150Bを通る単一通過を行うように、少なくとも弁159および161を作動させる。水が高レベルの全溶解固形物を含有しない場合、ステップ664では、コントローラは、水が2層の逆浸透要素によって連続的に処理されるように、弁159および161を作動させる。
【0106】
ステップ666において、コントローラは、ステップ666AではORPセンサ(図示せず)、およびステップ666Bではオゾンセンサ(図示せず)からの入力信号を監視して、最終消毒ステップを行うために、オゾンに関する試験水の処理後に、最終接触酸化チャンバ160から退出する部分的に処理された水の中の残存オゾンのレベルを決定する。検査した水質パラメータが所定の範囲外である場合、ステップ667では、コントローラは、最終消毒ステップ中に水に注入されるオゾンのレベルを調整するように、チャンバ160と関連付けられるオゾン注入器制御弁167に指図する信号を出力する。ステップ668では、注入器によってチャンバ160に注入されるオゾンの量が調整される。測定パラメータが所定の範囲内である場合、オゾン注入器は、チャンバ160tに同じ量のオゾンを注入し続ける。
【0107】
ステップ676では、コントローラは、pHセンサSP290を参照して、最終接触チャンバ160から退出する水のpHが範囲外であるかどうかを決定する。pHが範囲外であるとコントローラが決定した場合、ステップ678では、コントローラは、十分な量の緩衝物質を注入して処理水のpHを調整するように、緩衝注入器166に指図する。ステップ680では、緩衝注入器が緩衝物質を注入する。
【0108】
部分的に、逆浸透膜の特性、水から全ての毒性有機化合物を除去する際の活性炭媒体の有効性、さらに、特定の処理動作で利用される処理要素に応じて、処理済水が安全基準を満たすことを妨げる有機化学物質を、最終酸化/消毒チャンバ160に進入する水が依然として含有し得る可能性がある。ステップ670において、コントローラは、ステップ670AではSUVA計SP、またはステップ670Bでは分光計SP(図示せず)を監視して、有機化学物質と関連付けられる毒性化合物レベルが所定の範囲内であるかどうかを確認し得る。ステップ672では、それにより、コントローラは、高度酸化処理過程(「AOP」)が行われる必要があるかどうかを決定する。スペクトル分析およびSUVA出力が所定の範囲内ではない場合、コントローラは、紫外線灯176に信号を出力する。ステップ674では、紫外線灯176は、水をさらに消毒して残留オゾンを破壊するように、処理水に放射する。スペクトル分析およびSUVA出力が両方とも所定の範囲内である場合、コントローラは次の過程ステップに移動する。
【0109】
代替として、システムは、最終酸化/消毒チャンバ160に進入する前に、過酸化水素を注入する緩衝注入器を有し得る。次いで、緩衝注入器は、過酸化水素を注入する。このシステムの変化例または代替実施形態は、ほとんどの処理用途で必要とは考えられないが、過酸化水素注入装置およびそれが使用される注入ステップの包含は、本発明の範囲内であることを理解されたい。
【0110】
ステップ683−690では、コントローラは、処理済水の水質の最終分析のために、例えば、伝導度センサSP295、溶解オゾンセンサSP294、色センサ、全溶解固形物センサ、濁度センサSP293、pH計SP290、SUVAセンサSP291、および分光計SP292等の、最終接触酸化容器160の出口に位置する種々の他のセンサおよび計測器からの入力信号を監視して、それが本当に飲料水であるかどうかを決定し得る。種々のセンサからの測定パラメータの全てが所定の範囲に入るのではないことをコントローラが決定した場合、ステップ692では、コントローラは、弁177を作動させる信号を出力して、処理済水を一次酸化タンク130の入力へ再循環させる。ステップ694では、サービスポンプは、再循環導管229への弁177を通して、一次酸化タンク130の入力へ戻るように水を方向転換する。検査された水が飲料に適している場合、ステップ696では、制御が弁177を起動する信号を出力して、サービス給水タンク170の中のサービス水として水を貯蔵するか、または弁298を作動させて、水を利用者に直接送り出すようにポンプ172を従事させる。
【0111】
(起動および他の過渡動作モード)
システム装置の実施形態は、所定の起動シーケンスを行うようにコントローラ112をプログラムする、アプリケーションソフトウェアの適用を含む。起動シーケンスの目的は、付加的な処理サブシステムおよび要素がオンラインにされる前に、安全かつ系統的に、かつ、各主要処理サブシステムおよび要素が適正に機能し安定しているという確認を可能にする過程において、システム110が起動されることを確実にすることである。起動シーケンスはまた、貯蔵タンクに進入することが許可されるか、または最終利用者の消費のために提供される前に、人間が消費するための必要水質仕様を処理水が満たしていることも検証する。
起動中、コントローラ112は、水源ポンプ126を起動し、定常状態条件に達するまで、全ての原水が油・水分離器124および粒子状物質ストレーナ122を通して方向付けられることを要求するように、システムを構成する。いったん定常状態条件に達すると、コントローラ112ならびに関連システムセンサおよび機器は、コントローラによって実行されるアプリケーションソフトウェアによって行われる決定に基づいて、これらの要素が依然として必要とされるかどうかを決定する。同時に、コントローラ112は、所定のレベルの溶解オゾンがサンプル点(SP)212によって測定されるように確立されるまで、一次接触器130およびオゾン注入器制御弁133を通して処理中の水を再循環させるように、一次接触器タンク130およびサービスポンプ136を構成する。この時、コントローラ112は、混合媒体フィルタ要素140a、140b、および140cをオンラインにし、それらを処理中の水に対する既存の再循環ループに追加するように、システム110を構成する。処理中の水の濁度が、SP213において測定される際に、所定の閾値に達すると、コントローラは、膜フィルタ要素142aから142gをオンラインにし、処理中の水に対する再循環ループを増大させ続けるように、システムを構成する。処理中の水のTOCレベルまたは同等のパラメータが、SP228において測定される際に、所定の閾値に達すると、コントローラ112は、システムにおいて活性炭フィルタ要素144aおよび144bをオンラインにし、それらを処理中の水の再循環ループに追加するように、システムを構成する。処理中の水のTOCレベルが、SP240において測定される際に、所定の閾値に達すると、コントローラは、逆浸透要素150A1から150B2を再循環ループに追加することによって、これらの要素をオンラインにするようにシステムを構成する。逆浸透要素から退出する水が定常状態条件に達した後、次いで、コントローラ112は、最終接触酸化/UV容器160をオンラインにし、それを再循環ループに含み得る。この時、システム全体は、再循環モードで動作し、操作者が全ての主要要素の適正な動作を確認することを可能にする。この最終段階が定常条件に達し、処理水が人間の消費のために安全と確認された後、システム110は、起動シーケンスを終了して通常動作モードを開始し、人間が消費するための清浄水を供給する。
【0112】
また、操作者が監視局からシステムの動作の全ての側面を監視し得、コントローラにユーザ入力を提供する能力を有することにも留意されたい。したがって、コントローラはまた、特に、毒性化合物の潜在的な存在への操作者の懸念に関して、そのようなユーザ入力を監視する。
【0113】
コントローラがシステムにおいて不調条件を検出した場合、コントローラは、過渡モードでシステムを操作することを止め、そして過渡動作モードに戻る。
【0114】
(通常動作モード)
図7A−7Bは、通常動作モードでの図4Aから4Eのシステム110の実施形態を操作する方法を図示する、フロー図である。図7Aで描写されるように、ステップ700では、コントローラ112は、図6AおよびBで説明されるコントローラ過程と関連して説明される、センサ入力信号に基づいて、一次酸化タンク水位が最大限度を下回るかどうかを決定する。水位が低い場合、コントローラは、ステップ702で、送出を始めるように、信号を水源ポンプ126に出力する。水位が最大限度にある場合、ステップ704では、コントローラは、動作しないように水源ポンプに信号を出力し、処理サブシステムを通してさらなる源水は加工されない。
【0115】
ステップ706では、コントローラは、水が油を含有するかどうかを決定する。水が油を含む場合、ステップ708では、コントローラは、油・水分離器に水流を方向付けるように信号を弁125に出力し、流入源水から油を除去するよう動作し始めるように、信号を油・水分離器124に出力する。水が油を含まない場合、コントローラは、ステップ710では、水が油・水分離器124を迂回するように弁125を起動する。
【0116】
ステップ712では、コントローラ112は、水が、一次酸化処理タンクの動作に干渉する場合がある所定のサイズの粒子状物質を含有するかどうかを決定する。水がそのような粒子状物質を含有しない場合、ステップ714では、コントローラは、弁121を作動させて、水から、例えば、100ミクロン等のあるサイズを超える粒子状物質を裏漉しする、ストレーナ122を通して水を方向付ける。水がそのような粒子状物質を含有しない場合、コントローラは、ステップ716では、水がストレーナ122を迂回するように弁121を作動させる。
【0117】
ステップ718では、コントローラは、サービス給水タンク170が水で満杯であるかどうかを決定する。満杯である場合、ステップ720では、コントローラは、送出を停止するように、信号を供給ポンプ136に出力する。満杯ではない場合、コントローラは、ステップ722では、一次酸化タンク130が満杯であるかどうかを決定する。タンク130が十分に満杯ではない場合、コントローラは、ステップ724では、送出しないように信号を供給ポンプ136に出力する。一次酸化タンク130が十分に満杯である場合、コントローラは、ステップ726では、タンク130から水を送出するように、信号を供給ポンプに出力する。
【0118】
ステップ728では、コントローラは、一次酸化タンク130にオゾンを注入して、タンクの中の水を処理し、消毒するために必要とされる溶解オゾン濃度標的を維持するように、信号をオゾン注入器に出力する。ステップ730では、コントローラは、一次酸化タンク130から退出する水の溶解オゾンレベルが常に所定の範囲に入るかどうかを決定する。もしそうでない場合、ステップ732では、コントローラは、一次酸化タンク130から退出する水がタンクの入力に再循環されるように、信号を出力して弁217bを作動させる。溶解オゾンレベルが所定範囲に入る場合、コントローラは、ステップ734では、濁度および粒子特性が、タンク130から退出する容認可能な水の所定の範囲に入るかどうかを決定する。水が濁度および粒子特性要件を満たさない場合、ステップ736では、コントローラは、混合媒体フィルタ要素140a、140b、および140cを通して水を送るように、信号を弁141a、141b、141c、143a、143b、および143cに出力する。水が要件を満たす場合、コントローラは、ステップ738では、水が混合媒体フィルタ要素を迂回するように、信号を弁141a、141b、141c、143a、143b、143c、217a、および217bに出力する。
【0119】
ステップ740では、コントローラは次に、膜濾過要素142aから142gの上流の水が、常に十分低い濁度レベルおよび/または粒子特性を有するかどうかを決定する。水が十分に低い濁度レベルおよび/または粒子特性を有する場合、コントローラは、ステップ742で、水が膜要素142aから142gを迂回するように、信号を弁145、146、および148に出力する。水が十分に低い濁度レベルおよび/または粒子特性を持たない場合、コントローラは、ステップ744で、十分な量の亜硫酸水素ナトリウムを注入して好適なレベルを維持するように、SBS注入器223に指図する。ステップ746では、コントローラは、水が膜要素142aから142gにおいて処理されるために、水が十分なORPレベルを満たすかどうかを決定する。水が所定の水質基準を満たさない場合、コントローラは、水が一次酸化タンク130に再循環させられるように、信号を弁145、146、および148に出力する。水が粒子状物質の水質基準を満たす場合、コントローラは、ステップ750で、処理のために膜濾過要素を通して水を送るように、信号を弁145に出力する。
【0120】
ステップ752では、コントローラは、膜濾過要素を通して送られる、部分的に処理された水が、常に十分低いレベルのTOCを有するかどうかを決定する。もしそうではない場合、コントローラは、ステップ754で、弁が粒状活性炭要素144aおよび144bを通して部分的に処理された水を送るように、信号を弁146、147a、147b、148、149a、および149bに出力する。部分的に処理された水が常にTOC水質要件を満たす場合、コントローラは、ステップ756で、部分的に処理された水が粒状活性炭要素を迂回するように、弁146、149a、149b、および148を作動させる。ステップ758では、コントローラは、部分的に処理された水の水質パラメータが逆浸透要素150A1から150B2による加工に好適であるかどうかを決定する。水が要件を満たさない場合、コントローラは、ステップ760で、さらなる処理のために、水が一次酸化タンク130に再循環させられるように、弁231を作動させる。部分的に処理された水が要件を満たす場合、ステップ762では、コントローラ112は、逆浸透要素による水の処理が役立つほど、水が十分なレベルの溶解化合物を有するかどうかを決定する。逆浸透処理が役立たない場合、コントローラは、ステップ764で、部分的に処理された水が逆浸透処理要素を迂回するように、弁154および231を作動させる。逆浸透処理が役立つ場合、コントローラは、ステップ766で、所定の下流水質レベルを維持することが可能であるために、部分的に処理された水のいくらかまたは全てが、逆浸透要素を通して送られるべきであると決定し、逆浸透サブシステムを通して水の全てまたは所定の部分を送るように、弁154および231を位置付ける。ステップ768では、コントローラは、部分的に処理された水が、低いまたは高い塩分濃度を有するかどうかを決定する。水が低レベルの溶解化合物または伝導度を有する場合、コントローラは、ステップ770で、それぞれ、2層の逆浸透要素150Aおよび150Bを通して連続的に、部分的に処理された水を送るように、弁159および161を作動させる。コントローラは次に、ステップ772で、低い上部圧力レベルで動作させるように、信号をブースターポンプ157に出力する。水が高レベルの溶解化合物または伝導度を有する場合、コントローラは、ステップ774で、所定の期間にわたって、交互に逆浸透要素の層のうちの1つを通して出力へ処理されている水を送るように、弁158および161を作動させる。ステップ776では、コントローラは、より高い上部圧力レベルで動作させるように、信号をブースターポンプ157に出力する。
【0121】
ステップ778では、コントローラは、消毒を達成するために、オゾンがオゾン注入器によって水に注入される最終酸化チャンバ160の中で処理するために部分的に処理された水を送る。ステップ780では、コントローラは次に、高度酸化処理が必要とされるかどうかを決定する。必要とされる場合、コントローラは、ステップ782で、UV光でオゾン処理水を照射するように、紫外線灯に指図する。ステップ784では、コントローラは、SP290において水のpHレベルを決定し、次いで、水に緩衝化学物質を注入して、人間が消費するための標的pHレベルを達成するように、緩衝注入器166に指図する。ステップ786では、コントローラは、種々の水質パラメータを測定する、SP、例えば、SP291から295における種々のセンサから、センサ入力信号を受信し、処理済水の水質が人間の消費のために好適な飲料水であるかどうかを決定するために、これらの入力を使用する。コントローラが飲料水であると決定した場合、ステップ788では、コントローラは、飲料水をサービス給水タンク170に送達するように弁177を作動させる。水が飲料に適していないとコントローラが決定した場合、コントローラは、ステップ790で、再循環導管229を通して水を一次酸化タンク130に再循環させるように弁177を作動させる。
【0122】
(逆洗動作モード)
全ての濾過要素または構成要素と同様に、フィルタ媒体は、要素を通って流れる流体から濾過された汚染物質を負荷され、交換、または媒体および濾過サブシステムから蓄積した汚染物質を洗い流すための逆洗を必要とする。図4Eの実施例で逆洗に使用される水は、サービス給水タンク170から引き出され、通常動作中の図示された処理流路の本質的に逆であり得る経路で、清掃される処理要素装置を通して送られる。混入汚染物質を伴う逆洗水は、原水源に戻すか、またはそうでなければ、適切に処分することが可能である。
【0123】
逆洗水源および逆洗流路は両方とも、本発明の範囲内にとどまりながら変化を受け、図4A−4Eに示された経路は、限定的と解釈されるものではない。システム110の逆洗可能な要素および構成要素は、不均等な汚染物質負荷等の要因により、同時に逆洗を必要としないことが理解されるであろう。コントローラは、典型的には、圧力センサ構成要素によって検出される圧力差に基づいて、異なる負荷状況で最も効率的かつ効果的な逆洗流路を確立することが可能となるように設計され、操作される。
【0124】
本発明は、具体的実施形態を参照して説明されているが、これらの説明は限定的な意味で解釈されるように意図されていない。開示された実施形態の種々の修正、ならびに本発明の代替実施形態が、本発明の説明を参照すると当業者に明白となるであろう。概念および開示される具体的実施形態は、本発明の同じ目的を実行するための他の構造を修正または設計するための基礎として容易に利用され得ることが、当業者によって理解されるべきである。また、そのような同等の構造は、添付の請求項で記載されるような本発明の精神および範囲から逸脱しないことも、当業者によって認識されるべきである。
【0125】
したがって、請求項は、本発明の真の範囲に入る、任意のそのような修正または実施形態を対象とすることが検討される。

【特許請求の範囲】
【請求項1】
飲料水を生産するように原水を処理するための自動水処理システムであって、
原水源から水を受け取るための入口と飲料水用の出口とを有する導管サブシステムであって、前記水が前記導管サブシステムを通って前記入口から出口へ流れることが可能である、導管サブシステムと、
前記導管システムに接続された複数のポンプであって、前記複数のポンプは、前記導管システムを通して水流を駆動することが可能である、複数のポンプと、
前記導管システムに接続された複数の水処理サブシステムと、
前記水処理システムを潜在的に妨害し得るサイズの粒子状物質を除去するためのストレーナサブシステムと、
裏漉しされた水の一次処理のために、前記ストレーナサブシステムの下流にある一次酸化サブシステムと、
前記一次酸化サブシステムに連結されたオゾン注入器であって、前記裏漉しされた水の中の汚染物質の酸化のために、前記一次酸化サブシステムにオゾンを注入するオゾン注入器と、
前記水からより小さい粒子状物質を除去するための少なくとも1つの濾過サブシステムであって、前記少なくとも1つの濾過サブシステムは、混合媒体濾過要素、精密濾過膜要素、限外濾過膜要素、および活性炭フィルタ要素から成る群より選択される、少なくとも1つの濾過サブシステムと、
前記水から少なくとも溶解汚染物質を除去するための逆浸透サブシステムと、
最終酸化サブシステムであって、前記最終酸化サブシステムは、前記最終酸化サブシステムの上流にあるサブシステムから受け取られる前記水をさらに酸化し、消毒し、消毒および高度酸化をさらに強化するように、前記最終酸化サブシステムに、オゾンが注入され、次いで、紫外線放射が付与されることが可能である、最終酸化サブシステムと、
複数のセンサであって、前記複数のセンサのそれぞれは、前記複数のセンサのそれぞれの位置における前記水の一式の特性のうちの少なくとも1つを測定することが可能であるように、前記水処理システムの中に位置付けられ、前記水の前記一式の特性は、流速、水圧、水位、および水質パラメータを含み、各センサは、測定された特性を表す信号を出力する、複数のセンサと、
前記処理システムの中の複数の場所における前記複数のセンサから出力信号を受信するためのコントローラと
を備え、
前記コントローラは、
複数のモードでの前記処理システムの動作を制御することと、
前記複数の動作モードのうちの1つを選択することと、
前記複数のセンサから受信される前記水の前記測定された特性を監視することと、
前記処理システムの全体を通した複数の場所での水質を決定するために、前記複数のセンサから受信される前記測定された特性を使用することと、
選択された動作モードおよび前記複数のセンサからの前記測定された特性の前記出力信号に基づいて、前記導管サブシステムを通る水流を自動的に制御することと、
前記選択された動作モードおよび複数のセンサ場所における水質パラメータ測定値に基づいて、出力時に飲料水を生産するために前記複数のサブシステムのうちのどれが必要とされるかを自動的に決定することと、
飲料水を生産するために必要とされない前記水処理サブシステムおよび要素を迂回するように、前記導管サブシステムを通る水流を自動的に方向付けることと
が可能である、水処理システム。
【請求項2】
前記コントローラが操作され得る前記モードは、過渡動作モードおよび通常処理動作モードを含む、請求項1に記載の水処理システム。
【請求項3】
前記水質パラメータは、全石油炭化水素(TPH)、濁度、粒径、粒子数、溶解オゾン(DO)、全有機体炭素(TOC)、伝導度、全溶解固形物(TDS)、酸化還元電位(ORP)、特定紫外線吸収、分光、およびpHから成る群より選択され、
前記複数のポンプは、前記原水源から前記入口を通して前記処理システムの中へ水を輸送するために使用されることが可能である第1のポンプを含み、
前記ストレーナサブシステムは、前記一次酸化サブシステムを潜在的に妨害し得るサイズの粒子状物質を除去するための粒子状物質ストレーナを含む、
請求項2に記載の水処理システム。
【請求項4】
前記コントローラは、前記処理システムの起動中に前記過渡動作モードを自動的に選択する、請求項3に記載の水処理システム。
【請求項5】
前記コントローラは、
第1のポンプを起動し、定常状態条件が達成されるまで、前記水が前記粒子状物質ストレーナを通過するように、前記導管システムを通して水流を方向付けることと、
前記所定測定水質パラメータに基づいて、前記一次酸化サブシステムの上流にある前記システムの前記処理サブシステムのうちのいずれかを迂回できるかどうかを決定することと、
前記一次酸化サブシステムから退出する前記水の中のオゾンの所定の測定値が達成されるまで、前記一次酸化システムを通して前記水を再循環させるように前記導管サブシステムを指図することとが可能である、請求項4に記載の水処理システム。
【請求項6】
前記複数のポンプは、前記一次酸化サブシステムの下流にある前記導管サブシステムに接続された第2のポンプを含み、前記第2のポンプは、前記一次酸化サブシステムからの部分的に処理された水を、前記システムの残りの部分まで下流へ供給し、
前記コントローラは、
前記少なくとも1つの濾過サブシステムから退出する前記水の中の濁度、粒子数、および粒径から成る群より選択される少なくとも1つの所定の測定水質パラメータが達成されるまで、前記一次酸化システムおよび前記少なくとも1つの濾過サブシステムを通して前記水を再循環させることと、
前記濾過サブシステムから退出する前記水において、伝導度、特定紫外線吸収、TOC、TDS、およびTPHから成る群からの少なくとも1つの測定パラメータの所定のレベルが測定された場合に、前記一次酸化システム、前記少なくとも1つの濾過サブシステム、および前記逆浸透サブシステムを通して前記水を再循環させること、および、前記逆浸透サブシステムが定常状態条件に達するまで、前記逆浸透サブシステムを通して前記水を再循環させ続けることと、
前記最終酸化サブシステムが定常状態条件に達し、飲料水を生産するまで、前記一次酸化システム、前記少なくとも1つの濾過サブシステム、前記逆浸透サブシステム、および前記最終酸化サブシステムを通して前記水を再循環させことと
を前記導管サブシステムに指図することが可能である、
請求項5に記載の水処理システム。
【請求項7】
前記コントローラは、前記最終酸化サブシステムから退出する処理水が定常状態条件に達し、飲料水を生産することを前記コントローラが決定した場合に、前記通常動作モードを選択することが可能である、請求項4に記載の処理システム。
【請求項8】
前記少なくとも1つの濾過サブシステムは、
前記水から約0.5ミクロンよりも大きいサイズを有する粒子状物質を除去するための並列の複数の混合媒体フィルタと、
前記複数の混合媒体フィルタの下流にある並列の複数の膜フィルタであって、前記複数の混合媒体フィルタから水を受け取り、前記水から約0.1ミクロンよりも大きいサイズを有する粒子状物質を除去するための複数の膜フィルタと、
前記複数の膜フィルタの下流にある並列の複数の活性炭フィルタと
を備え、前記複数の活性炭フィルタは、前記複数の膜フィルタから水を受け取り、有機化合物および他の溶解化学汚染物質を除去し、微生物が前記炭素フィルタの上流面に生息することにより、木炭の表面上での生物学的濾過を可能にし、
前記逆浸透サブシステムは、前記活性炭フィルタの下流にある複数の逆浸透フィルタを備え、前記逆浸透フィルタは、前記活性炭フィルタから水を受け取り、わずかに半塩水から海水の濃度に及ぶ濃度の溶解汚染物質を除去し、
前記コントローラは、
前記一次酸化サブシステム、前記複数のフィルタのそれぞれ、前記逆浸透サブシステム、および前記最終酸化サブシステムの動作を独立して制御することと、
複数のセンサ場所における前記水質パラメータ測定値に基づいて、出力時に飲料水を生産するために前記濾過サブシステムの前記複数のフィルタのうちのどれが必要とされるかを自動的に決定することと、
飲料水を生産するために必要とされない前記濾過サブシステムの前記複数のフィルタのそれぞれを迂回するように、前記導管サブシステムを通して水流を方向付けることと、
複数のセンサ場所における前記水質パラメータ測定値に基づいて、出力時に飲料水を生産するために前記逆浸透フィルタのうちのどれが必要とされるかを自動的に決定することと、
飲料水を生産するために必要とされない前記逆浸透フィルタのそれぞれを迂回するように、前記導管サブシステムを通して水流を方向付けることと
が可能である、請求項7に記載の水処理システム。
【請求項9】
前記複数のポンプは、サービスポンプをさらに備え、
前記システムが操作され得る前記モードは、逆洗動作モードをさらに含む、請求項8に記載の水処理システム。
【請求項10】
前記水処理システムは、標準サイズの商用運送用コンテナをさらに備え、前記コンテナは、複数の端壁および端部間の複数の側壁と、前記端部のうちの1つにおける少なくとも1つのドアとを有し、前記コンテナは、前記少なくとも1つのドアの反対側の端部と前記端部間の側面とに、補足隔壁および複数のドアを追加することによって修正され、前記水処理システムの他の要素は、修正された前記コンテナの内側に納まるように構成され、前記複数のドアを通してアクセスされることが可能である、請求項9に記載の水処理システム。
【請求項11】
前記ストレーナサブシステムは、
前記原水源と前記第1のポンプとの間に位置する破片ストレーナであって、前記第1のポンプの動作に干渉し得る破片およびより大きい粒子状物質を前記水から除去するための破片ストレーナと、
前記第1のポンプの下流にある粒子状物質ストレーナと
を備え、 前記粒子状物質ストレーナは、前記一次酸化サブシステムを潜在的に妨害し得るサイズの粒子状物質を除去する、請求項1に記載の水処理システム。
【請求項12】
前記導管サブシステムに接続された油・水分離器をさらに備え、前記油・水分離器は、前記破片ストレーナの下流かつ前記粒子状物質ストレーナの上流にあり、非溶解または乳化された油および燃料汚染物質を除去する、請求項11に記載の水処理システム。
【請求項13】
前記一次酸化サブシステムは、溶解空気浮遊要素をさらに備え、
前記溶解空気浮遊要素に連結された前記オゾン注入器は、空気およびオゾンの組み合わせを前記一次酸化サブシステムに注入し、前記水からの有機汚染物質および油の分離と、前記有機汚染物質および油から分離された結果として生じる水の消毒および酸化とを強化する、請求項1に記載の水処理システム。
【請求項14】
前記複数のポンプは、前記コントローラが前記導管サブシステムの中の水圧および流速を管理することを可能にするように、前記導管サブシステムを通して水を送出するための可変周波数ポンプを備え、前記可変周波数ポンプの使用は、流速および圧力の変化を加減するために従来は必要とされた、前記水処理システムの中の中間貯蔵タンクの排除を可能にする、請求項1に記載の水処理システム。
【請求項15】
前記複数のポンプは、前記逆浸透サブシステムの上流にあるブースターポンプをさらに含み、
前記システムは、前記ブースターポンプの上流にある少なくとも1つの加圧毛細管をさらに備え、前記加圧毛細管は、上流の処理サブシステムから、前記逆浸透サブシステムの中の水の流速および圧力を分断することが可能であり、
前記濾過サブシステムの下流にある前記導管サブシステムの中の水流の圧力が、前記逆浸透サブシステムの動作のために不十分であることを前記複数のセンサが検出した場合に、前記コントローラは、逆浸透動作のために十分な前記逆浸透サブシステムの中への水流の圧力を達成するよう動作するように、前記ブースターポンプに自動的に指図することが可能である、
請求項14に記載の水処理システム。
【請求項16】
標準サイズの商用運送用コンテナをさらに備え、前記コンテナは、複数の端壁および複数の側壁と、そのうちの1つの端部における少なくとも1つのドアとを有し、前記コンテナの前記壁は、補足隔壁で増強され、複数のさらなるドアが、前記複数の側壁および前記既存のドアの反対側の前記端壁に追加され、前記水処理システムの他の要素は、修正された前記標準サイズの商用運送用コンテナの内側に納まるように構成され、前記複数のドアを通してアクセスされることが可能である、請求項14に記載の水処理システム。
【請求項17】
飲料水の使用、逆洗、およびクリーンインプレース逆洗のための水を貯蔵するための少なくとも3つの区画を有する飲料水貯蔵タンクをさらに備え、前記貯蔵タンクは、前記逆浸透サブシステムのための構造プラットフォームを提供するように構成されている、請求項14に記載の水処理システム。
【請求項18】
飲料水を生産するように原水を処理する方法であって、
原水源から、水処理システムの導管サブシステムの入口の中へ水を受け取るステップであって、前記水処理システムは、複数の水処理過程を提供するための複数の処理サブシステムを有し、前記導管サブシステムは、飲料水用の出口も有し、前記水は、前記導管サブシステムを通って前記入口から出口へ流れることが可能である、ステップと、
複数のセンサを用いて、前記水処理システムの中の複数の場所における前記水の複数の特性を感知するステップであって、前記水の前記一式の特性は、水の流速、水圧、水位、および水質パラメータを含む、ステップと、
前記複数のセンサのそれぞれから信号を出力するステップであって、前記信号は、そのようなセンサによって測定される水の特性を表す、ステップと、
前記水処理システムの動作を制御するコントローラにおいて前記複数の場所に位置する前記複数のセンサから出力信号を受信するステップと
を含み、前記コントローラは、
前記複数のセンサから受信される前記測定される水の特性を監視することと、
前記水源からの前記水の水圧が前記水処理システムを操作するために低すぎる場合に、前記原水源から前記導管サブシステムを通して水を送出することと、
前記測定される水の特性に基づいて、前記水処理システムを操作する複数のモードのうちの1つを選択することと、
前記水処理システムの全体を通した複数の場所における水質を決定するために、前記複数のセンサから受信される前記測定された特性の出力信号を使用することと、
選択された動作モードおよび前記複数のセンサからの前記測定される特性の前記出力信号に基づいて、前記導管サブシステムを通る水流を自動的に制御することと、
前記選択された動作モードおよび複数のセンサ場所における水質パラメータ測定値に基づいて、出力時に飲料水を生産するために前記複数の処理ステップのうちのどれが必要とされるかを自動的に決定することと、
飲料水を生産するために必要とされない処理過程のための前記処理サブシステムを迂回するように、前記導管サブシステムを通る水流を自動的に方向付けることと
を行い、
前記複数の水処理過程は、
前記水処理システムを潜在的に妨害し得るサイズの粒子状物質を前記水から裏漉しすることと、
前記裏漉しされた水の中の汚染物質の酸化のために、一次酸化処理サブシステムにオゾンを注入することによって、前記一次酸化処理サブシステムにおいて前記裏漉しされた水を一次処理することと、
少なくとも1つの濾過処理サブシステムを使用して、前記水からより小さい粒子状物質を濾過することであって、前記少なくとも1つの濾過処理サブシステムは、混合媒体濾過要素、精密濾過膜要素、限外濾過膜要素、および活性炭フィルタ要素から成る群より選択される、ことと、
逆浸透処理サブシステムを使用して、前記水から溶解固形物を除去することと、
最終酸化処理サブシステムにおいて、オゾンを前記水に注入することによって前記水をさらに消毒することと、
前記最終酸化処理サブシステムにおいて、紫外線光を前記水に付与することにより、ヒドロキシルラジカルを作成し、あらゆる残留汚染物質を酸化すること(およびあらゆる残留注入オゾンの実質的に全てを破壊すること)と
を含む、方法。
【請求項19】
前記コントローラによって選択可能な前記動作モードは、過渡動作モードおよび通常処理動作モードを含む、請求項18に記載の方法。
【請求項20】
前記水質パラメータは、全石油炭化水素(TPH)、濁度、粒径、粒子数、溶解オゾン(DO)、全有機体炭素(TOC)、伝導度、全溶解固形物(TDS)、酸化還元電位(ORP)、特定紫外線吸収、分光、およびpHから成る群より選択される、請求項19に記載の方法。
【請求項21】
前記コントローラは、前記処理システムの起動中に前記過渡動作モードを自動的に選択する、請求項20に記載の方法。
【請求項22】
前記コントローラは、
第1のポンプを起動し、定常状態条件が達成されるまで、前記水が前記粒子状物質ストレーナを通過するように、前記導管システムを通して水流を方向付けることと、
前記所定測定水質パラメータに基づいて、前記一次酸化サブシステムの上流にある前記システムの前記処理サブシステムのうちのいずれかを迂回できるかどうかを決定することと、
そのような決定の場合に、前記一次酸化サブシステムの上流の前記処理過程を回避するように、前記導管サブシステムを通して前記水を方向付けることと、
前記コントローラが、前記一次酸化サブシステムから退出する前記水の中のオゾンの所定の測定値を受信するまで、前記一次酸化システムを通して前記水を再循環させることと
を行う、請求項21に記載の方法。
【請求項23】
前記一次酸化サブシステムからの部分的に処理された水を前記一次酸化サブシステムの下流にある前記導管サブシステムの中へ供給するステップと、
前記コントローラが、前記少なくとも1つの濾過サブシステムから退出する前記水において、濁度、粒子数、および粒径から成る群より選択される少なくとも1つの所定の測定水質パラメータを受信するまで、前記一次酸化システムおよび前記少なくとも1つの濾過サブシステムを通して前記水を再循環させるステップと、
前記コントローラが、伝導度、特定紫外線吸収、TOC、TDS、およびTPHから成る群からの少なくとも1つの測定パラメータの所定の測定値を受信し、前記逆浸透サブシステムが定常状態条件に達したと決定するまで、前記一次酸化システム、前記少なくとも1つの濾過サブシステム、および前記逆浸透サブシステムを通して前記水を再循環させるステップと、
前記コントローラが、pH、濁度、伝導度、溶解オゾン、特定紫外線吸収、TOC、および分光から成る群からの複数の測定パラメータのうちの少なくとも1つの所定の測定値を受信し、前記最終酸化サブシステムが定常状態条件に達しており、飲料水を生産していると決定するまで、前記一次酸化システム、前記少なくとも1つの濾過サブシステム、前記逆浸透サブシステム、および前記最終酸化サブシステムを通して前記水を再循環させるステップと
さらに含む、請求項22に記載の方法。
【請求項24】
前記コントローラは、
前記最終酸化サブシステムから退出する処理された水が、定常状態条件に達しており、飲料水であることを決定することと、
定常状態条件が達成されたことを前記コントローラが決定すると、前記通常動作モードを選択することと
を行う、請求項22に記載の方法。
【請求項25】
前記少なくとも1つの濾過処理サブシステムを使用して、前記水からより小さい粒子状物質を濾過するステップは、
並列の複数の混合媒体フィルタを使用して、前記水から約0.5ミクロンよりも大きいサイズを有する粒子状物質を除去することと、
前記混合媒体フィルタの下流にある並列の複数の膜フィルタを使用して、前記水から約0.1ミクロンよりも大きいサイズを有する粒子状物質を除去することと、
前記膜フィルタの下流にある並列の複数の活性炭フィルタを使用して、有機化合物および他の溶解化学汚染物質を除去することであって、微生物が、前記炭素フィルタの上流面に生息することにより、木炭の表面上で生物学的濾過を可能にする、ことと
を含み、
前記水から溶解固形物を除去するステップは、
複数の逆浸透フィルタを使用して、わずかに半塩水から海水の濃度に及ぶ濃度の溶解汚染物質を除去することを含み、
前記コントローラは、
前記一次酸化サブシステム、前記複数のフィルタのそれぞれ、前記逆浸透サブシステム、および前記最終酸化サブシステムの動作を独立して制御して、一次的に酸化するステップ、前記複数のフィルタのそれぞれを使用して粒子状物質を除去するステップ、および溶解汚染物質を除去するステップを個別に選択することと、
複数のセンサ場所における前記水質パラメータ測定値に基づいて、出力時に飲料水を生産するために濾過過程のうちのどれが必要とされるかを自動的に決定することと、
飲料水を生産するために必要とされない濾過過程のそれぞれを迂回するように、前記導管サブシステムを通して水流を方向付けることと、
複数のセンサ場所における前記水質パラメータ測定値に基づいて、出力時に飲料水を生産するために十分な溶解汚染物質を除去するために前記逆浸透フィルタのうちのどれが必要とされるかを自動的に決定することと、
飲料水を生産するために十分な溶解汚染物質を除去するために必要とされない前記逆浸透フィルタのそれぞれを迂回するように、前記導管サブシステムを通して水流を方向付けることと
を行う、請求項24に記載の方法。
【請求項26】
前記コントローラによって選択可能な前記動作モードは、逆洗動作モードをさらに含み、
前記方法は、
前記通常動作モードでは、前記一次酸化システムの下流に位置するサービスポンプを使用して、前記導管サブシステムの中の前記水を送出するステップと、
前記逆洗動作モードでは、前記サービスポンプを使用して、前記導管サブシステムを通る水流を逆転させるステップと
をさらに含む、請求項25に記載の方法。
【請求項27】
標準サイズの商用運送用コンテナの中に前記水処理システムを設置するステップであって、前記コンテナは、複数の端壁および端部間の複数の側壁と、前記端部のうちの1つの端部における少なくとも1つのドアとを有し、前記コンテナは、前記少なくとも1つのドアの反対側の前記端部と前記端部間の側面とに補足隔壁および複数のドアを追加することによって修正され、前記水処理システムの他の要素は、修正された前記コンテナの内側に納まるように構成されることが可能である、ステップと、
前記複数のドアを通して、前記水処理プラントの前記サブシステムにアクセスするステップと
をさらに含む、請求項26に記載の方法。
【請求項28】
前記原水源と前記第1のポンプとの間に位置する破片ストレーナを使用することによって、前記第1のポンプの動作に干渉し得る破片およびより大きい粒子状物質を前記水から除去するステップをさらに含む、請求項18に記載の方法。
【請求項29】
前記導管サブシステムに接続された油・水分離器を使用することによって、非溶解または乳化された油および燃料汚染物質を除去するステップをさらに含み、前記油・水分離器は、前記粒子状物質ストレーナの上流にある、請求項28に記載の方法。
【請求項30】
一次酸化処理サブシステムにおいて前記裏漉しされた水を一次処理するステップは、
溶解空気浮遊要素を有する一次酸化サブシステムに空気およびオゾンの組み合わせを注入し、前記水から有機汚染物質および油を分離し、前記有機汚染物質および油から分離された結果として生じる水の消毒および酸化とを強化することを含む、請求項18に記載の方法。
【請求項31】
前記水を送出するステップは、
前記導管サブシステムの中の水圧および流速を管理するために、前記コントローラによって決定される速度において、前記導管サブシステムを通して可変流速で水を送出し、それにより、前記水処理システムの中の中間貯蔵タンクが流速および圧力の変化を加減する必要性を排除することを含む、請求項18に記載の方法。
【請求項32】
前記一次酸化サブシステムの下流にあるブースターポンプを前記コントローラに操作させることによって、前記逆浸透サブシステムの上流の圧力および流速を高めるステップと、
前記ブースターポンプの上流に、少なくとも1つの加圧毛細管を有することによって、前記上流処理サブシステムから、前記逆浸透サブシステムの中の水の流速および圧力を分断するステップと、
前記濾過サブシステムの下流にある前記導管サブシステムの中の水流の圧力が、前記逆浸透サブシステムの動作のために不十分であることを、前記複数のセンサが検出した場合に、逆浸透動作のために十分な前記逆浸透サブシステムの中への水流の圧力を達成するように、前記コントローラが前記ブースターポンプを自動的に操作するステップと
をさらに含む、請求項31に記載の方法。
【請求項33】
標準サイズの商用運送用コンテナの中へ前記水処理システムを設置するステップをさらに含み、前記コンテナは、複数の端壁および複数の側壁と、その各端部における少なくとも1つのドアとを有し、前記コンテナの前記壁は、補足隔壁および前記複数の側壁の中の複数のさらなるドアで増強され、前記水処理システムの他の要素は、前記標準サイズの商用運送用コンテナの内側に納まるように構成されることが可能であり、前記複数のドアを通してアクセス可能であり得る、請求項32に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate

【図4E】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7A】
image rotate

【図7B】
image rotate


【公表番号】特表2012−526657(P2012−526657A)
【公表日】平成24年11月1日(2012.11.1)
【国際特許分類】
【出願番号】特願2012−511062(P2012−511062)
【出願日】平成22年5月14日(2010.5.14)
【国際出願番号】PCT/US2010/035036
【国際公開番号】WO2010/132859
【国際公開日】平成22年11月18日(2010.11.18)
【出願人】(511275980)オムニ ウォーター ソリューションズ, エルエルシー (1)
【Fターム(参考)】