説明

内視鏡システム、および粘膜表層の毛細血管の強調画像表示方法

【課題】高解像度な粘膜表層の毛細血管の画像を診断に供する。
【解決手段】ズーム操作スイッチで非拡大が選択されたときに、最大強度(第一の強度)で狭帯域光を照射する第一照射動作と、通常の強度(第二の強度)で狭帯域光を照射する第二照射動作をCCD33の蓄積期間単位で交互に繰り返させる。画像処理回路49は、第一照射動作で得たR画素値rとの相関演算により、第一照射動作で得たG画素値gから粘膜表層の毛細血管の成分b’を抽出する。表示制御回路50は、第二照射動作で得たB画素値bと抽出した成分b’をモニタ19のB、Gチャンネルに、第二照射動作で得たG画素値gをRチャンネルにそれぞれ割り当てる。モニタ19には毛細血管が赤褐色に着色された強調画像が表示される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粘膜表層の毛細血管の強調画像を表示する内視鏡システム、および粘膜表層の毛細血管の強調画像表示方法に関する。
【背景技術】
【0002】
医療分野において内視鏡を利用した検査が広く普及している。周知の如く、内視鏡は被検体内に挿入する挿入部の先端から被検体の被観察部位に照明光を照射し、被観察部位の像を取り込む。
【0003】
従来、照明光の光源にはキセノンランプやメタルハライドランプ等の白色光源が用いられていたが、病変の発見を容易にするために狭い波長帯域の光(狭帯域光)を被観察部位に照射し、その反射光を画像化して観察する手法が脚光を浴びている(特許文献1および2参照)。この手法によれば、粘膜下層部の血管を強調した画像や、胃壁、腸の表層組織等の臓器の構造物を強調した画像を容易に得ることができる。
【0004】
特許文献1には、帯域制限フィルタを照明光の光路中に配置して狭帯域光を作り出し、カラーフィルタを前面に配したCCDで狭帯域光の反射光を撮像する態様(第2実施形態)が記載されている。特許文献2は、白色光を照射してその反射光を撮像する通常観察用とは別に、狭帯域光観察用の撮像光学系(レンズ、撮像素子等)を内視鏡に搭載している。特許文献1、2ともに、観察対象として粘膜表層の毛細血管が例示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2002−095635号公報
【特許文献2】特開2007−111357号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
粘膜表層の毛細血管を観察対象とした場合、毛細血管は10μm程度と非常に細いため、CCD等の撮像素子の性能や、ズーム機能の非拡大を選択、あるいは内視鏡の挿入部先端を被観察部位から離して観察するといった観察状態によっては十分な解像度を得られないという問題があった。解像度が不足した画像が診断に供された場合は、病変を見落としたり逆に正常部位を病変と判断したりするおそれがあるため、解像度不足を補う方策が要望されていた。
【0007】
毛細血管を観察する場合は青色の狭帯域光を被観察部位に照射してその反射光を撮像するため、原色カラーフィルタを用いた場合はB画素に毛細血管の像が結像される。しかし、原色カラーフィルタとして一般的なベイヤー配列では、全画素数に対するB画素の数が相対的に少なく(全画素数をNとした場合、B画素数はN/4)、毛細血管の観察画像の解像度不足の原因となっている。解決策として画素の高精細化が考えられるが、反射光が入射する画素の開口が小さくなって光量が不足し、結果的にS/N比が低下するため採用はできない。
【0008】
特許文献1、2では、毛細血管を観察対象とした場合の解像度低下の問題には言及しておらず、その方策も当然講じられていない。
【0009】
本発明は上述の問題点に鑑みてなされたものであり、その目的は、高解像度な粘膜表層の毛細血管の画像を診断に供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本発明の内視鏡システムは、ブロードな波長帯域の白色光を被検体の被観察部位に照射する第一照射手段と、白色光とともに波長帯域が制限された青色の狭帯域光を被観察部位に照射する第二照射手段と、RGB各画素を有し、被観察部位からの反射光を撮像する撮像手段と、前記第二照射手段の動作を制御する動作制御手段であり、所定の光量となる第一の強度で狭帯域光を照射する第一照射動作と、B画素の画素値が飽和しない第一の強度よりも低い第二の強度で狭帯域光を照射する第二照射動作とを、前記第二照射手段に前記撮像手段の蓄積期間単位で交互に繰り返させる動作制御手段と、第一照射動作で得たG画素とR画素の画素値の相関演算を行うことで、第一照射動作で得たG画素の画素値からG画素が狭帯域光に感応する感度領域の成分を抽出する抽出手段と、第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示させる表示制御手段とを備えることを特徴とする。
【0011】
ズーム機能を備えていた場合、ズーム操作で非拡大が選択されたときに、前記制御手段は第一、第二照射動作を前記第二照射手段に行わせ、前記抽出手段は成分の抽出を行い、前記表示制御手段は第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分を元にした強調画像のモニタへの表示を行う。なお、ズームの拡大・非拡大は二段階でもそれ以上でもよい。多段階ズームの場合は、最もワイド端側が選択されたとき、あるいはワイド端側の数段階が選択されたときに第一、第二照射動作、成分の抽出、第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分を元にした強調画像の表示を行う。
【0012】
前記第一照射手段および前記第二照射手段は、白色光および狭帯域光の強度を各々独立に制御可能である。ズーム機能を備えていた場合、ズーム操作で非拡大が選択されたときに、第二照射動作において、拡大が選択されたときよりも白色光に比べて狭帯域光の強度が強くなるよう前記第一照射手段および前記第二照射手段を制御する。多段階ズームの場合は、上記同様、最もワイド端側が選択されたとき、あるいはワイド端側の数段階が選択されたときに狭帯域光の強度が強くなるよう白色光と狭帯域光の強度比を変更する。
【0013】
第二照射動作で得たG画素の画素値に対してビニング処理を施すビニング処理手段を備えていてもよい。前記ビニング処理手段は、第二照射動作で得たR画素の画素値に対してビニング処理を施してもよい。
【0014】
前記表示制御手段は、第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分をモニタのB、Gチャンネルに、第二照射動作で得たG画素の画素値をモニタのRチャンネルにそれぞれ割り当てる。
【0015】
前記抽出手段は、画素補間後の第一照射動作で得たG画素の画素値から抽出を行う。
【0016】
前記第一照射手段は、青色光を発するレーザ光源と、青色光により緑色から黄色に励起発光する波長変換部材とを有し、青色光と励起発光とを混合して白色光を得る。前記第二照射手段は、中心波長405nmの青色の狭帯域光を発するレーザ光源を有する。
【0017】
本発明の粘膜表層の毛細血管の強調画像表示方法は、ブロードな波長帯域の白色光と波長帯域が制限された青色の狭帯域光を被検体の被観察部位に照射し、その反射光を撮像手段で撮像し、これにより得られたRGB各画素の画素値を元に粘膜表層の毛細血管の強調画像を表示する方法であって、所定の光量となる第一の強度で狭帯域光を照射する第一照射動作と、B画素の画素値が飽和しない第一の強度よりも低い第二の強度で狭帯域光を照射する第二照射動作とを撮像手段の蓄積期間単位で交互に繰り返し、第一照射動作で得たG画素とR画素の画素値の相関演算を行うことで、第一照射動作で得たG画素の画素値からG画素が狭帯域光に感応する感度領域の成分を抽出し、第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示することを特徴とする。
【発明の効果】
【0018】
本発明によれば、所定の光量となる第一の強度で狭帯域光を照射して、これにより得られたG画素の画素値からG画素が狭帯域光に感応する感度領域の成分を抽出して、これを元に粘膜表層の毛細血管の強調画像を表示するので、高解像度な粘膜表層の毛細血管の画像を診断に供することができる。
【図面の簡単な説明】
【0019】
【図1】電子内視鏡システムの構成を示す外観図である。
【図2】電子内視鏡システムの構成を示すブロック図である。
【図3】ベイヤー配列のカラーフィルタを示す図である。
【図4】CCDのRGB各画素の分光感度特性を示すグラフである。
【図5】CCD動作と白色光および狭帯域光の強度の関係を示すタイミングチャートである。
【図6】高解像度化処理を示す図である。
【図7】最大強度で狭帯域光を照射して得た画像データDaと通常の強度で狭帯域光を照射して得た画像データDbを用いたモニタへの表示方法を示す図である。
【発明を実施するための形態】
【0020】
図1において、電子内視鏡システム2は、電子内視鏡10、プロセッサ装置11、および光源装置12からなる。電子内視鏡10は、周知の如く、被検体(患者)内に挿入される可撓性の挿入部13と、挿入部13の基端部分に連設された操作部14と、プロセッサ装置11および光源装置12に接続されるコネクタ15と、操作部14、コネクタ15間を繋ぐユニバーサルコード16とを有する。
【0021】
操作部14には、挿入部13の先端17を上下左右方向に湾曲させるためのアングルノブや、送気・送水ノズルからエアー、水を噴出させるための送気・送水ボタンの他、観察画像を静止画記録するためのレリーズボタン、あるいは被観察部位の拡大・非拡大(望遠・広角)撮影を指示するためのズーム操作スイッチ18といった操作部材が設けられている。
【0022】
また、操作部14の先端側には、電気メス等の処置具が挿通される鉗子口が設けられている。鉗子口は、挿入部13内の鉗子チャンネルを通して、先端17に設けられた鉗子出口に連通している。
【0023】
プロセッサ装置11は、光源装置12と電気的に接続され、電子内視鏡システム2の動作を統括的に制御する。プロセッサ装置11は、ユニバーサルコード16や挿入部13内に挿通された伝送ケーブルを介して電子内視鏡10に給電を行い、先端17に搭載されたCCD33(図2参照)の駆動を制御する。また、プロセッサ装置11は、伝送ケーブルを介してCCD33から出力された撮像信号を受信し、受信した撮像信号に各種処理を施して画像データを生成する。プロセッサ装置11で生成された画像データは、プロセッサ装置11にケーブル接続されたモニタ19に観察画像として表示される。
【0024】
電子内視鏡システム2には、被検体の被観察部位に白色光を照射して観察する通常観察モードと、被観察部位に白色光および中心波長405nmの狭い波長帯域の青色光(狭帯域光)を照射して、被観察部位内の血管のうち表層血管(毛細血管)に着目して観察する特殊観察モードとが用意されている。各モードの切替は操作部14のモード切替スイッチ20を操作することにより行われる。電子内視鏡システム2の電源投入直後は通常観察モードが自動的に選択される。
【0025】
図2において、先端17には、観察窓30、照明窓31等が設けられている。観察窓30の奥には、対物光学系32を介して被検体内撮影用のCCD33が配されている。対物光学系32はレンズ群およびプリズムからなり、レンズ群は、ズーム操作スイッチ18の操作に連動して光軸に沿って移動(例えばテレ端、ワイド端の二つの位置間を移動)するズームレンズ34を含む。このズームレンズ34の移動により、被観察部位の拡大・非拡大撮影が可能となる。照明窓31は、ユニバーサルコード16や挿入部13に配設されたライトガイド35、および照明レンズ36で導光される光源装置12からの照明光を被観察部位に照射する。
【0026】
CCD33は、観察窓30、対物光学系32を経由した被検体内の被観察部位の像が撮像面に入射するように配置されている。撮像面には複数の色セグメントからなるカラーフィルタ、例えば、図3に示すベイヤー配列(R−赤、G−緑、B−青)の原色カラーフィルタ37が形成されている。
【0027】
原色カラーフィルタ37の分光透過率、および画素自体の分光感度によって、CCD33のRGB各画素の分光感度特性は図4に示すようになる。R画素は600nm近傍、G画素は550nm近傍、B画素は450nm近傍の波長の光にそれぞれ感度を有する。G画素はB画素の感度領域である405nm付近の波長の光にも僅かではあるが感度を有する。
【0028】
図2において、操作部14には、アナログ信号処理回路(以下、AFEと略す)38、CCD駆動回路39、およびCPU40が設けられている。AFE38は、相関二重サンプリング回路(以下、CDSと略す)、自動ゲイン制御回路(以下、AGCと略す)、およびアナログ/デジタル変換器(以下、A/Dと略す)から構成されている。CDSは、CCD33から出力される撮像信号に対して相関二重サンプリング処理を施し、CCD33で生じるリセット雑音およびアンプ雑音の除去を行う。AGCは、CDSによりノイズ除去が行われた撮像信号を、プロセッサ装置11から指定されるゲイン(増幅率)で増幅する。A/Dは、AGCにより増幅された撮像信号を所定のビット数のデジタル信号に変換する。A/Dでデジタル化された撮像信号は、伝送ケーブルを介してプロセッサ装置11の画像処理回路49に入力される。
【0029】
CCD駆動回路39は、CCD33の駆動パルス(垂直/水平走査パルス、電子シャッタパルス、読み出しパルス、リセットパルス等)とAFE38用の同期パルスとを発生する。CCD33は、CCD駆動回路39からの駆動パルスに応じて撮像動作を行い、撮像信号を出力する。AFE38の各部は、CCD駆動回路39からの同期パルスに基づいて動作する。
【0030】
CPU40は、電子内視鏡10とプロセッサ装置11とが接続された後、プロセッサ装置11のCPU45からの動作開始指示に基づいて、CCD駆動回路39を駆動させるとともに、CCD駆動回路39を介してAFE38のAGCのゲインを調整する。
【0031】
CPU45は、プロセッサ装置11全体の動作を統括的に制御する。CPU45は、図示しないデータバスやアドレスバス、制御線を介して各部と接続している。ROM46には、プロセッサ装置11の動作を制御するための各種プログラム(OS、アプリケーションプログラム等)やデータ(グラフィックデータ等)が記憶されている。CPU45は、ROM46から必要なプログラムやデータを読み出して、作業用メモリであるRAM47に展開し、読み出したプログラムを逐次処理する。また、CPU45は、検査日時、患者や術者の情報等の文字情報といった検査毎に変わる情報を、プロセッサ装置11の操作パネルやLAN(Local Area Network)等のネットワークより得て、RAM47に記憶する。
【0032】
操作部48は、プロセッサ装置11の筐体に設けられる操作パネル、あるいは、マウスやキーボード等の周知の入力デバイスである。CPU45は、操作部48、および電子内視鏡10の操作部14にあるレリーズボタンやズーム操作スイッチ18、モード切替スイッチ20等からの操作信号に応じて、各部を動作させる。
【0033】
画像処理回路49は、電子内視鏡10から入力された撮像信号に対して、色補間、ホワイトバランス調整、ガンマ補正、画像強調、画像用ノイズリダクション、色変換等の各種画像処理を施す。色補間では、例えば当該画素の画素値(当該画素がR画素の場合はB、G画素値)を、当該画素を囲む八個の画素のうちの同色画素(B画素値を補間する場合は周囲のB画素)の画素値の平均値で補間する線形補間が行われ、これにより各画素についてRGBの画素値の組が生成される。
【0034】
また、画像処理回路49は、特殊観察モードでズーム操作スイッチ18により非拡大が選択されたときに、表層血管をより際立たせるための高解像度化処理を行う。
【0035】
表示制御回路50は、CPU45からROM46およびRAM47のグラフィックデータを受け取る。グラフィックデータには、観察画像の無効画素領域を隠して有効画素領域のみを表示させる表示用マスク、検査日時、あるいは患者や術者、現在選択されている観察モード等の文字情報、グラフィカルユーザインターフェース(GUI;Graphical User Interface)等がある。表示制御回路50は、画像処理回路49からの画像に対して、表示用マスク、文字情報、GUIの重畳処理、モニタ19の表示画面への描画処理等の各種表示制御処理を施す。
【0036】
表示制御回路50は、画像処理回路49からの画像を一時的に格納するフレームメモリを有する。表示制御回路50は、フレームメモリから画像を読み出し、読み出した画像をモニタ19の表示形式に応じたビデオ信号(コンポーネント信号、コンポジット信号等)に変換する。これにより、モニタ19に観察画像が表示される。
【0037】
プロセッサ装置11には、上記の他にも、画像に所定の圧縮形式(例えばJPEG形式)で画像圧縮を施す圧縮処理回路や、圧縮された画像をCFカード、光磁気ディスク(MO)、CD−R等のリムーバブルメディアに記録するメディアI/F、LAN等のネットワークとの間で各種データの伝送制御を行うネットワークI/F等が設けられている。これらはデータバス等を介してCPU45と接続されている。
【0038】
光源装置12は、中心波長445nmの青色光を発する第一レーザ光源55と、中心波長405nmの青色光を発する第二レーザ光源56とを有する。各光源55、56の光出射側には、集光レンズ57、58、可動絞り59、60、およびライトガイド61、62が配され、ライトガイド61、62はカプラー63を介して一本のライトガイド35に連結されている。ライトガイド35は、各光源55、56から発せられた光を照明窓31に導光する。なお、カプラー63を設けるのではなく、各光源55、56用に二本のライトガイドを設けてもよい。
【0039】
光源装置12のCPU64は、プロセッサ装置11のCPU45と通信し、光源ドライバ65、66を介して各光源55、56の各レーザ光の点消灯制御および可動絞り59、60による光量制御を各光源55、56および各可動絞り59、60別に行う。
【0040】
ライトガイド35の光出射側には、集光レンズ36が配置されるとともに、波長変換部材41が配置されている。波長変換部材41は、第一レーザ光源55からの中心波長445nmのレーザ光の一部を吸収して、緑色〜黄色に励起発光する複数種の蛍光体を有する。これにより、第一レーザ光源55からの青色のレーザ光と、このレーザ光により励起された緑色〜黄色の励起光とが合波されて、白色光つまり通常照明光が生成される。その一方で波長変換部材41は、第二レーザ光源56からの中心波長405nmのレーザ光には反応せず、該レーザ光は波長変換部材41を透過して照明窓31から被観察部位に照射される。
【0041】
通常観察モードが選択された場合、CPU45は、CPU64を介して光源ドライバ65、66の駆動を制御して、第一レーザ光源55のみを点灯させる。被観察部位に照射される照明光は白色光のみとなる。特殊観察モードが選択された場合は、各光源55、56を同時に点灯させ、被観察部位に白色光と狭帯域光を同時に照射させる。
【0042】
生体組織の粘膜表層付近には主に毛細血管が多く存在する。因みに表層より深い中層には毛細血管の他に毛細血管より太い血管が存在し、深層にはさらに太い血管が存在している。一方、生体組織に対する光の深達度は光の波長に依存しており、中心波長405nmのような波長が短い光の場合、生体組織での吸収特性および散乱特性により表層付近までしか光は深達せず、この表層付近からの反射光のみが観察される。従って、中心波長405nmの狭帯域光を照射してその反射光を撮像すれば、表層の毛細血管の情報を得ることができる。血管中のヘモグロビンは405nmの光に対して高い吸収率をもつので、中心波長405nmの狭帯域光は血管で吸収され、血管以外の生体組織からの光が主として反射光として戻ってくる。
【0043】
毛細血管の情報は、中心波長405nmの狭帯域光の反射光に感応するB画素の画素値bに含まれる。一方、中深層の太い血管の情報は、G画素、R画素の画素値g、rに含まれている。図4で説明した通り、G画素は波長405nmにも僅かに感度を有するため、その画素値は毛細血管の情報も含んでいる。つまり中深層の太い血管の情報(以下、中深層血管の成分ともいう)をg’、毛細血管の情報(以下、毛細血管の成分ともいう)をb’とすると、G画素の画素値gは、
g=g’+b’・・・(1)
と表すことができる。但し、毛細血管の成分b’は、中深層血管の成分g’に比べて極微量である。
【0044】
特殊観察モードで観察対象となる毛細血管は、サイズが10μm程度と極めて細い。このため、G画素の1/2とB画素の数が相対的に少ないベイヤー配列のカラーフィルタ37を用いた場合、中心波長405nmの狭帯域光の反射光、つまり毛細血管の像が投影されるB画素の数が少なくなり、画像化に必要な毛細血管の成分が不足する。例えば図3に点線で示すように、毛細血管の像がR、G画素の列に投影された場合は一切毛細血管の情報を得ることができない。この問題は非拡大で被観察部位と先端17の距離を離したときに顕著となる。
【0045】
そこで、特殊観察モードで非拡大が選択された際には、図5に示すように、第二レーザ光源56および可動絞り60の動作を制御して最大強度(第一の強度)で狭帯域光を照射し、G画素の画素値に毛細血管の情報b’をより多く含ませるようにし、G画素をあたかもB画素と見做すことでB画素の数が少ないことを補う。続いて狭帯域光の強度が特殊観察モードで拡大が選択された際と同等(第二の強度)となるよう可動絞り60および第二レーザ光源56の動作を制御する。そして、最大強度で狭帯域光を照射する動作(第一照射動作)と通常の強度で狭帯域光を照射する動作(第二照射動作)をCCD33の蓄積期間単位で繰り返す。そうしたうえで、画像処理回路49で以下に説明する高解像度化処理を行う。なお、最大強度で狭帯域光を照射して得た画像データをDa、通常の強度で狭帯域光を照射して得た画像データをDbとする。また、以下に表記する画素値g、b、r等はいずれも色補間後の画素値である。
【0046】
最大強度で狭帯域光を照射するため、画像データDaのB画素値bは最大値近くなるか飽和するが、G画素値gの毛細血管の成分b’は通常強度で狭帯域光を照射する場合と比べて多くなる。このため、高解像度化処理では、画像データDaのG画素値gに含まれる毛細血管の成分b’を得る。画像データDaのG画素値gから毛細血管の情報b’を得るには、G画素値gから中深層の太い血管の情報g’に相当する分を除けばよい。具体的には図6に示すように、中深層の太い血管の情報のみをもつ画像データDaのR画素の画素値rとの相関演算を行う。すなわち、β(g−αr)を演算することでG画素の画素値gから毛細血管の成分b’を抽出する。つまり画像処理回路49は抽出手段として機能する。なお、αはG画素とR画素の感度比、βはB画素とG画素の波長405nmにおける感度比に応じてそれぞれ予め決められる相関係数である。
b’=β(g−αr)・・・(2)
【0047】
中層血管は50μm程度、深層血管は100μm程度と、中深層の血管は毛細血管と比べて5〜10倍程度太いため、非拡大時でも比較的多数のG、R画素の双方に像が投影される。従ってG、R画素の画素値には強い相関があるといえ、上記の相関演算の結果抽出される毛細血管の成分b’も確度が高いといえる。
【0048】
通常観察モード時、表示制御回路50は、色補間により各画素で生成されたRGB各画素値をモニタ19のRGBチャンネルにそれぞれ割り当て、肉眼で観察したときと略同等の画像をモニタ19に表示させる。特殊観察モードで拡大が選択されたときは、色補間後のB画素の画素値bをモニタ19のBチャンネルおよびGチャンネルに、G画素値gをRチャンネルにそれぞれ割り当てる。一方非拡大が選択されたときは、画像データDbのB画素値bと、画像データDaのG画素値gから抽出した毛細血管の成分b’をBチャンネルおよびGチャンネルに、画像データDbのG画素値gをRチャンネルにそれぞれ割り当てる。特殊観察モードではR画素値rはどのチャンネルにも割り当てない。こうして生成された画像は、表層の毛細血管の箇所は赤褐色、その他の箇所はシアンから緑色に着色され、毛細血管が強調されてモニタ19に表示される。
【0049】
図7に概念的に示すように、表示制御回路50は、フレームが隣り合う画像データDa、Dbの組を用いて画像の表示を行う。各画像データDa、Dbは、一回前のフレームとその次のフレームの2回ずつモニタ19への表示に使用される。このため、画像の表示フレームレートは、通常観察モードおよび特殊観察モードで拡大が選択された際と変わらない。
【0050】
表示制御回路50は、特殊観察モードで非拡大が選択されたときに画像データDbのB画素値bと画像データDaのG画素値gから抽出した毛細血管の成分b’をBチャンネルおよびGチャンネルに割り当てる際、これらに適当な重み係数を掛けて加算し、半分にしたものを割り当てる。重み係数としては、G画素の画素数がB画素の2倍であることから、単純に毛細血管の成分b’を2倍してもよいし、画素値bと毛細血管の成分b’の大小関係に応じて変更(画素値b>>毛細血管の成分b’の場合は画素値bに掛ける重み係数を大きくする等)してもよい。
【0051】
次に、上記のように構成された電子内視鏡システム2の作用について説明する。電子内視鏡10で被検体内を観察する際、術者は、電子内視鏡10と各装置11、12とを繋げ、各装置11、12の電源をオンする。そして、操作部48を操作して、被検体に関する情報等を入力し、検査開始を指示する。
【0052】
検査開始を指示した後、術者は、挿入部13を被検体内に挿入し、光源装置12からの照明光で被検体内を照明しながら、CCD33による被検体内の観察画像をモニタ19で観察する。
【0053】
CCD33から出力された撮像信号は、AFE38の各部で各種処理を施された後、プロセッサ装置11の画像処理回路49に入力される。画像処理回路49では、入力された撮像信号に対して各種画像処理が施され、画像が生成される。画像処理回路49で処理された画像は、表示制御回路50に入力される。表示制御回路50では、CPU45からのグラフィックデータに応じて、各種表示制御処理が実行される。これにより、観察画像がモニタ19に表示される。
【0054】
電子内視鏡システム2で検査を行うときには、観察対象に応じて観察モードが切り替えられる。挿入部13を被検体内に挿入する際には通常観察モードを選択して、白色光を照射して得られた画像を観察して広い視野を確保しつつ挿入作業を行う。詳細な観察が必要な病変が発見された際には特殊観察モードを選択し、病変に狭帯域光を照明して得られた画像を観察する。そして、必要に応じてズーム操作スイッチ18を操作して画角を変更したり、レリーズボタンを操作して静止画像を取得する。病変に処置が必要な場合は鉗子チャンネルに各種処置具を挿通させて、病変の切除や投薬等の処置を施す。
【0055】
通常観察モードの場合は、CPU40の指令の下に第一レーザ光源55のみが点灯されて、照明窓31から被観察部位に白色光が照射される。一方、特殊観察モードが選択された場合は第一レーザ光源55に加えて第二レーザ光源56が点灯される。第二レーザ光源56から出射された狭帯域光は、ライトガイド35で先端17に導光され、照明窓31から被観察部位に照射される。
【0056】
特殊観察モードでズーム操作スイッチ18により非拡大が選択された場合、第二レーザ光源56および可動絞り60の動作が制御され、最大強度で狭帯域光を照射する動作と通常の強度で狭帯域光を照射する動作がCCD33の蓄積期間単位で繰り返される。画像処理回路49では、色補間が行われた後、式(2)に示すR画素値rとの相関演算により、最大強度で狭帯域光を照射して得た画像データDaのG画素値gから毛細血管の成分b’が抽出される。拡大が選択された場合は通常の強度で狭帯域光が照射される。
【0057】
通常観察モードでは、表示制御回路50によりRGB各画素値がモニタ19のRGBチャンネルにそれぞれ割り当てられ、モニタ19には肉眼で観察したときと略同等の観察画像が表示される。特殊観察モードで拡大が選択されたときは、B画素の画素値bがBチャンネルおよびGチャンネルに、G画素値gがRチャンネルにそれぞれ割り当てられる。特殊観察モードで非拡大が選択されたときは、通常の強度で狭帯域光を照射して得た画像データDbのB画素値bと、最大強度で狭帯域光を照射して得た画像データDaのG画素値gから抽出した毛細血管の成分b’に重み係数を掛けて加算し2で割ったものがBチャンネルおよびGチャンネルに、画像データDbのG画素値gがRチャンネルにそれぞれ割り当てられる。モニタ19には毛細血管が赤褐色に着色された強調画像が表示される。
【0058】
非拡大を選択したときに毛細血管の成分をB画素のみから取得してこれを画像化しようとすると、毛細血管は非常に細くB画素の数も少ないため、毛細血管の像の解像度が低下し、場合によっては医療ミスに繋がる重大な影響を観察結果に与えるが、本発明では、最大強度で狭帯域光を照射することで、数が多いG画素でも毛細血管の成分を取得することができるようにしている。そうしたうえでG画素値gから毛細血管の成分b’を抽出し、これとB画素値bを用いて毛細血管を強調した画像を表示している。従って毛細血管の像を高解像度で表示することができ、観察結果も適正なものとなり医療ミスを確実に防止することができる。
【0059】
最大強度で狭帯域光を照射するだけでよく、毛細血管の成分b’の抽出もR画素値rとの簡単な相関演算のみで済むため、装置の大型化、コストアップの懸念がない。
【0060】
なお、特殊観察モードで非拡大を選択したときに拡大時と同等の通常の強度と最大強度で交互に狭帯域光を照射しているが、最大強度よりも低く通常の強度よりも若干強い強度の狭帯域光を照射することで、毛細血管の成分の取得をより容易なものとしてもよい。具体的には、第一レーザ光源55から発せられる中心波長445nmの光の強度L1に対して、第二レーザ光源56から発せられる中心波長405nmの狭帯域光の強度L2を、拡大時と比べて非拡大時に強くする。例えば拡大時はL1:L2=1:1、非拡大時はL1:L2=1:4となるよう各光源55、56または可動絞り59、60の動作をCPU64で制御する。非拡大時に第二レーザ光源56から発せられる中心波長405nmの狭帯域光の強度を強めれば、結果的に画像データDbのB画素値bの値が増幅され、逆にG画素値gの値は抑制されるので、毛細血管の成分をより多く取り込むことができる。
【0061】
さらに加えて、特殊観察モードで非拡大が選択されたときに、画像処理回路49で画像データDbのG画素値gにビニング処理を適用してもよい。ビニング処理は、隣り合う複数の画素(例えば2×2=4個)の画素値を加算して一つの画素を表す信号とするものである。ビニング処理を実行することで、その後の処理で取り扱う画像データのデータ容量を大幅に削減することができ、また、複数の画素を一つの画素と見做すので、見かけ上のCCD33の感度(S/N比)も向上する。その反面解像度は低下するが、gの中味はサイズが比較的太い中深層血管の像であるため、解像度が低下しても毛細血管の場合と比べて診断への影響は少ないと考えられる。
【0062】
上記実施形態では、特殊観察モード時はR画素値rを画像表示に用いていないが、モニタ19のRチャンネルに割り当てる等してもよい。この場合はR画素値rに対しても上記ビニング処理を施し、G画素値g同様S/N比を向上させてもよい。
【0063】
第一照射動作における第一の強度は上記実施形態の最大強度でなくともよく、B画素値bが飽和する程度の強度であればよい。G画素が中心波長405nmの狭帯域光の被観察部位からの反射光に感応して、表層血管をより際立たせるための高解像度化処理に必要な情報を十分に得ることができる強度であればよい。
【0064】
上記実施形態ではズームを二段階としたが、二段階以上としてもよい。その場合は最もワイド端側を選択した際、あるいはワイド端側の数段階を選択した際に、上記実施形態の非拡大時と同様に第一、第二照射動作や高解像度化処理、中心波長405nmの狭帯域光の強度L2の変更、ビニング処理を行う。ズームのどの段階まで第一、第二照射動作や高解像度化処理、中心波長405nmの狭帯域光の強度L2の変更、ビニング処理を行うかを術者が選択可能に構成してもよい。ズーム操作に関わらず、特殊観察モードが選択された際には一律に高解像度化処理等を行ってもよい。また、先端17と被観察部位との距離を測距センサで測定し、一定距離離れたときに高解像度化処理等を行ってもよい。
【0065】
中心波長405nmの狭帯域光の光源としてレーザ光源を例示したが、白色光源とその光路中に配置した405nmの光のみを透過させる帯域制限フィルタとを組み合わせた構成としてもよく、帯域制限フィルタの代わりにエタロンや液晶チューナブルフィルタといった波長可変素子を用いてもよい。
【0066】
なお、本発明に係る内視鏡システムは、上記実施形態に限らず、本発明の要旨を逸脱しない限り種々の構成を採り得ることはもちろんである。例えば、撮像素子は上記実施形態のCCDに限らずCMOSイメージセンサを用いてもよい。
【0067】
上記実施形態では撮像素子を先端に配した電子内視鏡を例示したが、本発明はこれに限らず、イメージガイドの出射面に撮像素子を配したファイバスコープや、撮像素子と超音波トランスデューサが先端部に内蔵された超音波内視鏡等、他の形態の内視鏡にも適用することができる。
【符号の説明】
【0068】
2 電子内視鏡システム
10 電子内視鏡
11 プロセッサ装置
12 光源装置
18 ズーム操作スイッチ
19 モニタ
20 モード切替スイッチ
33 CCD
34 ズームレンズ
35 ライトガイド
37 カラーフィルタ
40、45、64 CPU
41 波長変換部材
49 画像処理回路
50 表示制御回路
55 第一レーザ光源
56 第二レーザ光源
59、60 可動絞り
65、66 光源ドライバ

【特許請求の範囲】
【請求項1】
ブロードな波長帯域の白色光を被検体の被観察部位に照射する第一照射手段と、
白色光とともに波長帯域が制限された青色の狭帯域光を被観察部位に照射する第二照射手段と、
RGB各画素を有し、被観察部位からの反射光を撮像する撮像手段と、
前記第二照射手段の動作を制御する動作制御手段であり、所定の光量となる第一の強度で狭帯域光を照射する第一照射動作と、B画素の画素値が飽和しない第一の強度よりも低い第二の強度で狭帯域光を照射する第二照射動作とを、前記第二照射手段に前記撮像手段の蓄積期間単位で交互に繰り返させる動作制御手段と、
第一照射動作で得たG画素とR画素の画素値の相関演算を行うことで、第一照射動作で得たG画素の画素値からG画素が狭帯域光に感応する感度領域の成分を抽出する抽出手段と、
第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示させる表示制御手段とを備えることを特徴とする内視鏡システム。
【請求項2】
ズーム機能を備え、
ズーム操作で非拡大が選択されたときに、前記制御手段は第一、第二照射動作を前記第二照射手段に行わせ、
前記抽出手段は成分の抽出を行い、
前記表示制御手段は第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分を元にした強調画像のモニタへの表示を行うことを特徴とする請求項1に記載の内視鏡システム。
【請求項3】
ズーム機能を備え、
前記第一照射手段および前記第二照射手段は、白色光および狭帯域光の強度を各々独立に制御可能であり、ズーム操作で非拡大が選択されたときに、第二照射動作において、拡大が選択されたときよりも白色光に比べて狭帯域光の強度が強くなるよう前記第一照射手段および前記第二照射手段を制御することを特徴とする請求項1または2に記載の内視鏡システム。
【請求項4】
第二照射動作で得たG画素の画素値に対してビニング処理を施すビニング処理手段を備えることを特徴とする請求項1ないし3のいずれかに記載の内視鏡システム。
【請求項5】
前記表示制御手段は、第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分をモニタのB、Gチャンネルに、第二照射動作で得たG画素の画素値をモニタのRチャンネルにそれぞれ割り当てることを特徴とする請求項1ないし4のいずれかに記載の内視鏡システム。
【請求項6】
前記抽出手段は、画素補間後の第一照射動作で得たG画素の画素値から抽出を行うことを特徴とする請求項1ないし6のいずれかに記載の内視鏡システム。
【請求項7】
前記第一照射手段は、青色光を発するレーザ光源と、
青色光により緑色から黄色に励起発光する波長変換部材とを有し、
青色光と励起発光とを混合して白色光を得ることを特徴とする請求項1ないし6のいずれかに記載の内視鏡システム。
【請求項8】
前記第二照射手段は、中心波長405nmの青色の狭帯域光を発するレーザ光源を有することを特徴とする請求項1ないし7のいずれかに記載の内視鏡システム。
【請求項9】
ブロードな波長帯域の白色光と波長帯域が制限された青色の狭帯域光を被検体の被観察部位に照射し、その反射光を撮像手段で撮像し、これにより得られたRGB各画素の画素値を元に粘膜表層の毛細血管の強調画像を表示する方法であって、
所定の光量となる第一の強度で狭帯域光を照射する第一照射動作と、B画素の画素値が飽和しない第一の強度よりも低い第二の強度で狭帯域光を照射する第二照射動作とを撮像手段の蓄積期間単位で交互に繰り返し、
第一照射動作で得たG画素とR画素の画素値の相関演算を行うことで、第一照射動作で得たG画素の画素値からG画素が狭帯域光に感応する感度領域の成分を抽出し、
第二照射動作で得たB画素の画素値、および前記抽出手段で抽出した成分を元にした粘膜表層の毛細血管の強調画像をモニタに表示することを特徴とする粘膜表層の毛細血管の強調画像表示方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−170640(P2012−170640A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−36026(P2011−36026)
【出願日】平成23年2月22日(2011.2.22)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】