説明

分光システムおよびその制御方法

【課題】分光システムにおいて、反射しないで受信される信号と反射してから受信される信号を分離する。
【解決手段】各信号強度検出回路(狭帯域フィルタ118、検波器119、AD変換器120)は、受信用ミキサ115からの信号から予め定められた各周波数の成分を分離して抽出する。また、波長可変レーザ光源101からの光の波長が一定の期間において波長可変レーザ光源103からの光の波長を当該波長が複数の波長のそれぞれに等しくなる期間が離散的になるように変化させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分光システムおよびその制御方法に関するものである。
【背景技術】
【0002】
従来、ミリ波やテラヘルツ波である電磁波の透過スペクトルまたは反射スペクトルを測定する分光システムとして、例えば図5に示すような装置がある(非特許文献1参照)。
【0003】
このシステムでは、2台の波長可変光源21、22から発生する波長λ(周波数=C/λ、c:光速)、λ2(周波数=c/λ)の光を合波分波器23で一旦合波後、2つに分波させ、その一方を送信部24、他方を受信部25に導入する。
【0004】
図6は、送信部24に導入される光信号のスペクトルを示す図である。波長の異なる2つの光が合波されたことにより、その周波数差の唸りが生じている。送信部24は光伝導スイッチと電磁波放射用アンテナで構成されており、波長の異なる2つの光信号が入力されると、唸り周波数c(1/λ―1/λ)に対応する電磁波(ミリ波やテラヘルツ波)を発する。送信部24で発生したミリ波やテラヘルツ波は、この例では、被測定物Sを透過し、受信部25に導入される。
【0005】
受信部25は光伝導スイッチと電磁波受信用アンテナで形成されており、図6で示される光信号が入射された状態で、電磁波受信用アンテナにミリ波やテラヘルツ波の電磁波が到来すると、その強度に比例した光電流が流れる。波長可変光源21、22の波長を掃引した時に、受信部25で検出される光電流強度の変化は、受信部25に到来するミリ波やテラヘルツ波の各周波数における電磁波の強度を表す。これは被測定物Sに対するミリ波・テラヘルツ波電磁波の透過または反射スペクトルである。この例では、合波分波器23で波長λ1、λ2の波長を波長計26、27で測定し、波長可変光源21、22の掃引時の波長精度を高めている。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】“Tunable CW Terahertz source with High-Precision Frequency Control,”A. J. Deninger, T. Goubel, D. Schoenherr, A. Roggenbuck, F. Kison, and P. Meissner, The Joint 33nd International Conference on Infrared and Millimeter Waves and 16th International Conference on Terahertz Electronics, T4B3.1418.
【発明の概要】
【発明が解決しようとする課題】
【0007】
図5に示すような装置においては、電磁波の多重反射が問題となることがある。例えば、被測定物Sで反射した一部の電磁波は、送信部24に戻り、そこで再び反射され、もう一度被測定物Sに向かう。また、被測定物Sを透過して受信部25に到達した電磁波の一部は、受信部25で反射され、被測定物Sに戻り、そこで再び反射され、もう一度受信部25に向かう。いずれの場合にしても、光伝導スイッチで電気信号に変換される電磁波は、単純に送信部24から発せられ受信部25に直接到達した信号だけではなく、被測定物Sと送信部24を何回か往復した信号、受信部25と被測定物Sを何回か往復した信号、などの重ね合わせである。この場合、反射物の間隔が電磁波の波長の1/2の整数倍のとき、受信部25に到達する電磁波の強度が強くなるという効果が生じるため、本来測定されるべき、被測定物Sに対する電磁波の透過特性が正確に測定できなくなってしまう。
【0008】
本発明は、上記の課題に鑑みてなされたものであり、その目的とするところは、反射しないで受信される信号と反射してから受信される信号を分離できる分光システムおよびその制御方法を提供することにある。
【課題を解決するための手段】
【0009】
上記の課題を解決するために、第1の本発明は、第1の波長可変レーザ光源と、第2の波長可変レーザ光源と、波長固定レーザ光源と、前記第1の波長可変レーザ光源からの光と前記波長固定レーザ光源からの光を合波することにより得られる光ビート信号を電磁波に変換する第1のフォトミキサと、前記第1の波長可変レーザ光源からの光と前記第2の波長可変レーザ光源からの光を合波することにより得られる光ビート信号を電磁波に変換する第2のフォトミキサと、前記第1のフォトミキサからの電磁波を照射された被測定物を経た電磁波と前記第2のフォトミキサからの電磁波とを混合する手段と、前記混合された電磁波から前記波長固定レーザ光源からの光の周波数と前記第2の波長可変レーザ光源からの光の周波数の差に等しい周波数を有する電磁波である中間周波信号を抽出する受信用ミキサと、前記第1の波長可変レーザ光源からの光の波長が一定の期間において前記第2の波長可変レーザ光源からの光の波長を、該波長が予め定められた複数の波長のそれぞれに等しくなる期間が離散的になるように、変化させる手段と、前記第2の波長可変レーザ光源からの光の波長の離散的な変化に伴い前記中間周波信号が有することとなる複数の周波数について当該中間周波信号から当該各周波数の成分を分離して抽出する手段と、を備えることを特徴とする分光システムをもって解決手段とする。
【0010】
例えば、前記第2の波長可変レーザ光源からの光の波長を変化させる手段は、前記複数の波長のそれぞれに対応する周波数に等しくなる期間が離散的になるように変化する周波数を有する参照信号を出力する参照信号発生器と、前記波長固定レーザ光源からの光と前記第2の波長可変レーザ光源からの光を合波することにより得られる光ビート信号を電磁波に変換する手段と、前記参照信号の周波数と当該電磁波の周波数との差を検出し当該差がなくなるように前記第2の波長可変レーザ光源を制御する手段とを備える。
【0011】
第2の本発明は、第1の本発明に係る分光システムの制御方法であって、前記第1の波長可変レーザ光源からの光の波長が一定の期間において前記第2の波長可変レーザ光源からの光の波長を、該波長が前記複数の波長のそれぞれに等しくなる期間が離散的になるように、変化させることを特徴とする分光システムの制御方法をもって解決手段とする。
【0012】
第3の本発明は、第1の本発明に係る分光システムの制御方法であって、前記第1のフォトミキサからの電磁波が前記受信用ミキサに到達するまでの到達時間の2倍の周期で前記第1の波長可変レーザ光源からの光の前記一定の波長の値を切り替えることを特徴とする分光システムの制御方法をもって解決手段とする。
【発明の効果】
【0013】
本発明によれば、反射しないで受信される信号と反射してから受信される信号を分離することができる。
【図面の簡単な説明】
【0014】
【図1】図1は、本実施の形態に係る分光システムの構成を示すブロック図である。
【図2】図2(a)は、波長可変レーザ光源101の波長の変化を示す図、図2(b)は、参照信号発生器108からの参照信号の周波数の変化を示す図、図2(c)は、波長可変レーザ光源103の波長の変化を示す図、図2(d)は、受信用ミキサ115に到達する電磁波の周波数の変化を示す図である。
【図3】図3(a)は、受信用ミキサ115に到達する電磁波の周波数の変化を示す図、図3(b)は、受信用ミキサ115から出力される中間周波信号の周波数の変化を示す図である。
【図4】各狭帯域フィルタ118の透過特性を示す図である。
【図5】従来の分光システムの構成を示すブロック図である。
【図6】送信部24に導入される光信号のスペクトルを示す図である。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態について図面を参照して説明する。
【0016】
図1は、本実施の形態に係る分光システムの構成を示すブロック図である
分光システムは、ミリ波やテラヘルツ波の電磁波の透過スペクトルを測定するものである。
【0017】
図中101は波長掃引可能な波長可変レーザ光源、102は波長固定レーザ光源、103は波長可変レーザ光源101と波長固定レーザ光源102とは別の波長で発振している発振波長の微調整が可能な波長可変レーザ光源、104は波長可変レーザ光源101からの光と波長固定レーザ光源102の光の合波、波長可変レーザ光源101からの光と波長可変レーザ光源103からの光の合波、波長固定レーザ光源102と波長可変レーザ光源103からの光の合波を行う光合分波回路、105は波長可変レーザ光源101からの光と波長固定レーザ光源102からの光の合波により得られる光ビート信号をビート周波数に一致する周波数を有する電磁波に変換して放射するためのフォトミキサ、106は波長可変レーザ光源101からの光と波長可変レーザ光源103からの光の合波により得られる光ビート信号をビート周波数に一致する周波数を有する電磁波に変換して放射するためのフォトミキサ、107は波長固定レーザ光源102と波長可変レーザ光源103からの光の合波により得られる光ビート信号をビート周波数に一致する電気信号に変換するためのフォトダイオード、108は波長可変レーザ光源103の発振波長を微調整するための参照信号を与えるための参照信号発生器、109はフォトダイオード107からの電気信号と参照信号発生器108からの参照信号を混合するためのミキサ、110はフォトダイオード107と参照信号発生器108からの参照信号の周波数差を検出し、波長可変レーザ光源103の発振波長を微調整するための制御信号を出力するための周波数差検出回路、111はフォトミキサ105から放射される、被測定物の特性評価に用いる電磁波を平行ビームにコリメートするためのコリメート鏡、112は被測定物(透過特性が評価される物質)、113はフォトミキサ106から放射される電磁波(この電磁波は、ヘテロダイン受信器を励起する局部発振信号として用いられる)を平行ビームにコリメートするためのコリメート鏡、114は被測定物112の特性評価に用いる電磁波とヘテロダイン受信器を励起する局部発振信号として用いられる電磁波を混合するためのハーフミラー、115は被測定物112を透過してきた電磁波の強度を測定するための受信用ミキサ、116は被測定物112の特性評価に用いる電磁波とヘテロダイン受信器を励起する局部発振信号として用いられる電磁波を受信用ミキサ115に導入するためのコリメート鏡、117は受信用ミキサ115により中間周波信号に変換された信号の強度を増幅するための受信用増幅器、118は狭帯域フィルタ(各狭帯域フィルタの透過特性は互いに異なっている)、119は検波器、120はAD(アナログディジタル)変換器、121は制御装置である。
【0018】
狭帯域フィルタ118、検波器119、AD変換器120を囲む点線は、このブロックがそれぞれ異なる周波数をもつ信号の強度を測定するための信号強度検出回路であることを示している。
【0019】
波長固定レーザ光源102、波長可変レーザ光源103には、例えば、半導体単一モードレーザが用いられる。
【0020】
フォトミキサ105からは、波長可変レーザ光源101からの光の周波数と波長固定レーザ光源102からの光の周波数の差に等しい周波数を有する電磁波が出力される。
【0021】
フォトミキサ106からは、波長可変レーザ光源101からの光の周波数と波長可変レーザ光源103からの光の周波数の差に等しい周波数を有する電磁波が出力される。
【0022】
(分光システムの動作)
波長可変レーザ光源101、波長可変レーザ光源103は当初は、消光状態であり、一方、波長固定レーザ光源102は発光しており、その光の波長はλFLS1に固定されている。波長λFLS1は、例えば、1.5479340μmである。
【0023】
この状態で、制御装置121は、波長可変レーザ光源101に制御信号を送信し、図2(a)に示すように、波長可変レーザ光源101からの光の波長を時間的に変化させる。
【0024】
波長可変レーザ光源101は、例えば、外部共振器型のレーザを用い、この場合、外部共振器を構成しているミラーや回折格子をモーターなどにより回転や移動させることにより、波長可変レーザ光源101からの光の波長を高速で掃引させることができる。また、波長可変レーザ光源101は、外部共振器を用いるため、光の波長を広範囲で掃引させることができる。
【0025】
波長λTLS、λTLS、λTLSは、例えば、それぞれ1.5500000μm、1.5500080μm、1.5500160μmである。
【0026】
波長可変レーザ光源101は、波長λTLSでΔtだけ発光したあと、Δtだけ消光し、次にλTLSでΔtだけ発光し、Δtだけ消光する、というパターンを繰り返しながら波長が掃引される。Δtは、フォトミキサ105から放射された電磁波が受信用ミキサ115に到達するまでの時間の長さである。つまり、制御装置121は、波長可変レーザ光源101からの光の波長の値をΔtの2倍の周期で切り替える。
【0027】
また、制御装置121は、参照信号発生器108に制御信号を送信し、図2(b)に示すように、参照信号の周波数を変化させる。
【0028】
参照信号の周波数は、1つのパターンを有し、これをΔtの時間が経過するごとに繰り返す。また、1つのパターンの中において、参照信号の周波数は、周波数f、f、f、fのそれぞれに等しくなる期間が離散的になるように変化する。参照信号の周波数は、例えば、ステップ状に変化する。周波数f、f、f、fは、例えば、それぞれ150MHz、300MHz、450MHz、600MHzである。
【0029】
このような参照信号が出力されると、波長可変レーザ光源103からの光の波長は、図2(c)に示すように時間的に変化する。波長λFLS2、λFLS2、λFLS2、λFLS2は、例えば、それぞれ1.5479328μm、1.5479316μm、1.5479304μm、1.5479292μmである。
【0030】
つまり、フォトダイオード107は、波長固定レーザ光源102からの光の周波数と波長可変レーザ光源103からの光の周波数の差に等しい周波数を有する電磁波を出力し、そして、ミキサ109は、フォトダイオード107からの電磁波の周波数と参照信号の周波数の差に等しい周波数を有する信号を出力し、周波数差検出回路110は、この信号の周波数がゼロになるように、波長可変レーザ光源103を制御するからである。
【0031】
この制御において、周波数差検出回路110は、例えば、波長可変レーザ光源103の注入電流量やデバイスの温度を変える。
【0032】
なお、波長固定レーザ光源102からの光の周波数と、波長可変レーザ光源103からの光の周波数を高い精度(10桁かそれ以上)で測定し、これら周波数の差が、参照信号の周波数に代わる目標値に一致するように、波長可変レーザ光源103を制御してもよい。この場合、フォトダイオード107、参照信号発生器108、ミキサ109、周波数差検出回路110は不要である。
【0033】
波長可変レーザ光源103からの光の波長が、図2(c)に示すように変化した場合、受信用ミキサ115では、図2(d)に示すように、波長可変レーザ光源101の点灯からΔtだけ遅れて周波数c(1/λTLS―1/λFLS1)の電磁波が到達し、更に波長可変レーザ光源101の点灯から3Δtだけ遅れて周波数c(1/λTLS―1/λFLS1)の電磁波が到達し、波長可変レーザ光源101の点灯から5Δtだけ遅れて周波数c(1/λTLS―1/λFLS1)の電磁波が到達する、というパターンを繰り返しながら受信する電磁波の周波数が変化していく。cは光速である。
【0034】
ここで、図3(a)のように受信用ミキサ115に到着した周波数c(1/λTLS―1/λFLS1)の電磁波について考えると、受信用ミキサ115に到着し始めた時の信号は、最短コースを通って受信用ミキサ115に到着していることになるから、信号としては、直接波であるといえる。また、それよりも時間的に遅れた信号については、反射などして、長い経路を通ってきた信号と、フォトミキサ105から遅れて出てきた信号の重ね合わせとなるから、直接波と間接波の重ね合わせと考えられる。
【0035】
つまり、電磁波の多重反射があった場合、直接受信された電磁波に比べて、反射波は、長い経路を伝播することになる。そのため反射波(間接波)は、直接波よりも時間的に遅れて受信用ミキサ115に到達することになる。
【0036】
前述のように、本実施の形態では、参照信号発生器108からの参照信号の周波数をΔtのなかでf、f、f、fと変化させ、これにより波長可変レーザ光源103のからの光の波長をλFLS2、λFLS2、λFLS2、λFLS2と変化させる。
【0037】
すると、図3(b)のように受信用ミキサ115から出力される中間周波信号の周波数は、c(1/λFLS1―1/λFLS2)、c(1/λFLS1―1/λFLS2)、c(1/λFLS1―1/λFLS2)、c(1/λFLS1―1/λFLS2)と時々刻々変化することになる。
【0038】
各狭帯域フィルタ118は、図4に示すように、それぞれ周波数c(1/λFLS1―1/λFLS2)、c(1/λFLS1―1/λFLS2)、c(1/λFLS1―1/λFLS2)、c(1/λFLS1―1/λFLS2)を中心とした透過帯域を有するように予め設定される。
【0039】
よって、中間周波信号の周波数c(1/λFLS1―1/λFLS2)の成分は、その周波数を含む透過帯域を有する信号強度検出回路でのみで検出される。中間周波信号の周波数c(1/λFLS1―1/λFLS2)の成分は、その周波数を含む透過帯域を有する信号強度検出回路でのみで検出される。中間周波信号の周波数c(1/λFLS1―1/λFLS2)の成分は、その周波数を含む透過帯域を有する信号強度検出回路でのみで検出される。中間周波信号の周波数c(1/λFLS1―1/λFLS2)の成分は、その周波数を含む透過帯域を有する信号強度検出回路でのみで検出される。つまり、受信用ミキサ115に到達する信号の強度を到達時刻別に測定できる。
【0040】
各AD変換器120は、各検波器119の出力をディジタルのデータに変換する。制御装置121は、データをそのデータが出力された時間のデータとして記録する。これにより、受信用ミキサ115で受信された信号を4つの信号に分離でき、つまり、受信された信号を周波数c(1/λFLS1―1/λFLS2)をもつ直接波のみからなる信号、と、その他の信号(直接波と間接波が混在した信号)に分離できる。
【0041】
仮に、このような受信用ミキサ115で受信した電磁波を到来時間別に検出する機能がない場合、遅れてくる反射波を切る分けることができない。しかし、本実施の形態では、波長λFLS2の変化に対応するように、複数ある信号強度検出回路のうち、アクティブなのはいつも一つで、それが時々刻々と変化する、そのため、直接波より遅れて受信用ミキサ115に到達する反射波を切り分けることが可能になる。つまりは、反射波の影響を受けない、言い換えれば、多重反射の影響を受けない被測定物に対するミリ波・テラヘルツ波電磁波の透過または反射スペクトルを測定する分光システムが実現できる。
【0042】
制御装置121にて記録されるデータは、フォトミキサ105からの電磁波が被測定物112を透過して、多重反射せずに受信用ミキサ115で直接検出される電磁波の強度の周波数依存を表す関数である。この関数は、本実施の形態に係る分光システム自体の持つ周波数特性と、被測定物112が持つ電磁波の透過特性の積である。
【0043】
また、被測定物112を設置しない状態で、制御装置121にて記録されるデータは、分光システム自体の持つ周波数特性を表す。したがって、予め、被測定物112を設置しないで測定しておいたデータで、被測定物112を設置した状態で測定したデータを除することで、被測定物112が持つ電磁波の透過特性を示すデータを得ることができる。
【0044】
なお、本実施の形態では、時間により離散的に変化する周波数ごとの透過特性を有する信号強度検出回路を複数用いたが、周波数の変化にあわせて透過特性を離散的に変化させることが可能な同一の信号強度検出回路を用いてもよい。
【0045】
また、本実施の形態では、4つの周波数f1〜f4を用いたが、周波数の数は、2以上であれば、任意である。よって、信号強度検出回路も周波数の数に応じて設ければよい。
【0046】
また、本実施の形態では、被測定物112の透過特性を求めるのに分光システムを用いたが、これを被測定物112の反射特性を求めるのに用いてもよい。
【符号の説明】
【0047】
101、103…波長可変レーザ光源
102…波長固定レーザ光源
104…光合分波回路
105、106…フォトミキサ
107…フォトダイオード
108…参照信号発生器
109…ミキサ
110…周波数差検出回路
111、113、116…コリメート鏡
112…被測定物
114…ハーフミラー
115…受信用ミキサ
117…受信用増幅器
118…狭帯域フィルタ
119…検波器
120…AD変換器
121…制御装置

【特許請求の範囲】
【請求項1】
第1の波長可変レーザ光源と、
第2の波長可変レーザ光源と、
波長固定レーザ光源と、
前記第1の波長可変レーザ光源からの光と前記波長固定レーザ光源からの光を合波することにより得られる光ビート信号を電磁波に変換する第1のフォトミキサと、
前記第1の波長可変レーザ光源からの光と前記第2の波長可変レーザ光源からの光を合波することにより得られる光ビート信号を電磁波に変換する第2のフォトミキサと、
前記第1のフォトミキサからの電磁波を照射された被測定物を経た電磁波と前記第2のフォトミキサからの電磁波とを混合する手段と、
前記混合された電磁波から前記波長固定レーザ光源からの光の周波数と前記第2の波長可変レーザ光源からの光の周波数の差に等しい周波数を有する電磁波である中間周波信号を抽出する受信用ミキサと、
前記第1の波長可変レーザ光源からの光の波長が一定の期間において前記第2の波長可変レーザ光源からの光の波長を、該波長が予め定められた複数の波長のそれぞれに等しくなる期間が離散的になるように、変化させる手段と、
前記第2の波長可変レーザ光源からの光の波長の離散的な変化に伴い前記中間周波信号が有することとなる複数の周波数について当該中間周波信号から当該各周波数の成分を分離して抽出する手段と、
を備えることを特徴とする分光システム。
【請求項2】
前記第2の波長可変レーザ光源からの光の波長を変化させる手段は、
前記複数の波長のそれぞれに対応する周波数に等しくなる期間が離散的になるように変化する周波数を有する参照信号を出力する参照信号発生器と、
前記波長固定レーザ光源からの光と前記第2の波長可変レーザ光源からの光を合波することにより得られる光ビート信号を電磁波に変換する手段と、
前記参照信号の周波数と当該電磁波の周波数との差を検出し当該差がなくなるように前記第2の波長可変レーザ光源を制御する手段と
を備えることを特徴とする請求項1記載の分光システム。
【請求項3】
請求項1記載の分光システムの制御方法であって、
前記第1の波長可変レーザ光源からの光の波長が一定の期間において前記第2の波長可変レーザ光源からの光の波長を、該波長が前記複数の波長のそれぞれに等しくなる期間が離散的になるように、変化させることを特徴とする分光システムの制御方法。
【請求項4】
請求項1記載の分光システムの制御方法であって、
前記第1のフォトミキサからの電磁波が前記受信用ミキサに到達するまでの到達時間の2倍の周期で前記第1の波長可変レーザ光源からの光の前記一定の波長の値を切り替えることを特徴とする分光システムの制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−3007(P2013−3007A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−135495(P2011−135495)
【出願日】平成23年6月17日(2011.6.17)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度、独立行政法人情報通信研究機構、「高度通信・放送研究開発委託研究/ICTによる安全・安心を実現するためのテラヘルツ波技術の研究開発」、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】