説明

分光センサの製造方法

【課題】 信頼性の高い分光センサを得ることができる分光センサの製造方法を提供する。
【解決手段】 分光センサ1の製造方法は、ハンドル基板上に設けられた表面層をエッチングすることによりキャビティ層21を形成する第1の工程と、第1の工程の後、キャビティ層21上に第1のミラー層22を形成する第2の工程と、第2の工程の後、第1のミラー層22上に光透過基板3を接合する第3の工程と、第3の工程の後、キャビティ層21からハンドル基板を除去する第4の工程と、第4の工程の後、ハンドル基板が除去されたキャビティ層21上に第2のミラー層23を形成する第5の工程と、第5の工程の後、第2のミラー層上に光検出基板4を接合する第6の工程と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分光センサの製造方法に関する。
【背景技術】
【0002】
従来の分光センサとして、光の入射位置に応じて所定の波長の光を透過させる干渉フィルタ部と、干渉フィルタ部に入射する光を透過させる光透過基板と、干渉フィルタ部を透過した光を検出する光検出基板と、を備えるものが知られている。ここで、干渉フィルタ部は、キャビティ層を介して一対のミラー層が対向させられることによりファブリペロー型に構成されている場合がある。
【0003】
このような分光センサの製造方法として、特許文献1には、次のような方法が記載されている。まず、光検出基板上に一方のミラー層を形成し、その後、そのミラー層上にナノインプリント法によってキャビティ層を形成する。続いて、キャビティ層上に他方のミラー層を形成し、最後に、そのミラー層上に光透過基板を接合する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開第2008/017490号
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1記載の分光センサの製造方法あっては、製造された分光センサの信頼性が低下するおそれがある。その理由は次のとおりである。すなわち、光検出基板の表面には、受光部や配線層等の形成に起因した凹凸が存在しているので、そのような表面に形成されたミラー層上に、ナノインプリント法によってキャビティ層を形成しても、高精度(例えば、厚さにおいてnmオーダー)のキャビティ層を得ることができないおそれが高い。また、光検出基板にミラー層やキャビティ層を積み上げるように形成していくので、各プロセスにおいて光検出基板にダメージを与えるおそれが高い。
【0006】
そこで、本発明は、信頼性の高い分光センサを得ることができる分光センサの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の分光センサの製造方法は、キャビティ層並びにキャビティ層を介して対向する第1及び第2のミラー層を有し、所定の波長範囲の光を入射位置に応じて選択的に透過させる干渉フィルタ部と、干渉フィルタ部に入射する光を透過させる光透過基板と、干渉フィルタ部を透過した光を検出する光検出基板と、を備える分光センサの製造方法であって、ハンドル基板上に設けられた表面層をエッチングすることによりキャビティ層を形成する第1の工程と、第1の工程の後、キャビティ層上に第1のミラー層を形成する第2の工程と、第2の工程の後、第1のミラー層上に光透過基板を接合する第3の工程と、第3の工程の後、キャビティ層からハンドル基板を除去する第4の工程と、第4の工程の後、ハンドル基板が除去されたキャビティ層上に第2のミラー層を形成する第5の工程と、第5の工程の後、第2のミラー層上に光検出基板を接合する第6の工程と、を備える。
【0008】
この分光センサの製造方法では、ハンドル基板上に設けられた表面層をエッチングすることによりキャビティ層を形成する。このように、ハンドル基板を用いてエッチングによりキャビティ層を形成することで、高精度のキャビティ層を安定して得ることができる。更に、光透過基板側にキャビティ層並びに第1及び第2のミラー層を形成した後に、光検出基板を接合する。これにより、キャビティ層やミラー層を形成するための各プロセスにおいて光検出基板にダメージが与えられるのを防止することができる。よって、この分光センサの製造方法によれば、信頼性の高い分光センサを得ることが可能となる。
【0009】
ここで、第1の工程の前に、シリコンからなるハンドル基板の一方の主面にシリコン酸化膜を形成し、当該シリコン酸化膜を表面層としてもよい。これによれば、低コストで高品質のキャビティ層を安定して得ることができる。
【0010】
また、第1の工程の前に、シリコン基板の一方の主面及び他方の主面に熱酸化処理を施すことにより、シリコンからなるハンドル基板の一方の主面及び他方の主面にシリコン酸化膜を形成し、ハンドル基板の一方の主面又は他方の主面に形成されたシリコン酸化膜を表面層としてもよい。これによれば、ハンドル基板の反りが抑制されるため、より高精度のキャビティ層を安定して得ることができる。
【0011】
また、第3の工程の前に、所定の波長範囲の光を透過させる光学フィルタ層を光透過基板上に形成しておき、第3の工程では、第1のミラー層と光学フィルタ層とが対向するように、第1のミラー層上に光透過基板を接合してもよい。これによれば、所定の波長範囲の光を効率良く干渉フィルタ部に入射させることができる。
【発明の効果】
【0012】
本発明によれば、信頼性の高い分光センサを得ることができる。
【図面の簡単な説明】
【0013】
【図1】本発明の一実施形態の分光センサの製造方法によって製造された分光センサの縦断面図である。
【図2】図1の分光センサのキャビティ層の平面図である。
【図3】図1の分光センサの製造方法を説明するための縦断面図である。
【図4】図1の分光センサの製造方法を説明するための縦断面図である。
【図5】図1の分光センサの製造方法を説明するための縦断面図である。
【図6】図1の分光センサの製造方法を説明するための縦断面図である。
【図7】図1の分光センサの製造方法を説明するための縦断面図である。
【図8】図1の分光センサの製造方法を説明するための縦断面図である。
【図9】図1の分光センサの製造方法を説明するための縦断面図である。
【図10】図1の分光センサの製造方法を説明するための縦断面図である。
【図11】図1の分光センサの製造方法を説明するための縦断面図である。
【図12】図1の分光センサの製造方法を説明するための縦断面図である。
【図13】図1の分光センサの製造方法を説明するための縦断面図である。
【図14】図1の分光センサの製造方法を説明するための縦断面図である。
【図15】図1の分光センサの製造方法を説明するための縦断面図である。
【図16】図1の分光センサの製造方法を説明するための縦断面図である。
【図17】図1の分光センサの製造方法を説明するための縦断面図である。
【図18】図1の分光センサの製造方法を説明するための縦断面図である。
【図19】レジスト層とキャビティ層との関係を示すプロファイル図である。
【図20】レジスト層が形成されたハンドル基板の平面図である。
【図21】図1の分光センサの変形例の縦断面図である。
【図22】図20の分光センサのキャビティ層の平面図である。
【発明を実施するための形態】
【0014】
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
【0015】
図1に示されるように、分光センサ1は、所定の波長範囲の光を入射位置に応じて選択的に透過させる干渉フィルタ部20と、干渉フィルタ部20に入射する光を透過させる光透過基板3と、干渉フィルタ部20を透過した光を検出する光検出基板4と、を備えている。分光センサ1は、一辺の長さが数百μm〜数十mm程度の直方体状のCSP(Chip Size Package)として構成されている。
【0016】
光透過基板3は、ガラス等からなり、厚さ0.2mm〜2mm程度の矩形板状に形成されている。光透過基板3の裏面3bには、干渉フィルタ部20と対向するように光学フィルタ層5が形成されている。光学フィルタ層5は、誘電体多層膜や有機カラーフィルタ(カラーレジスト)であり、厚さ0.1μm〜10μm程度の矩形膜状に形成されている。光学フィルタ層5は、対向する干渉フィルタ部20に入射させるべき所定の波長範囲の光を透過させるバンドパスフィルタとして機能する。
【0017】
光検出基板4は、フォトダイオードアレイであり、厚さ10μm〜150μm程度の矩形板状に形成されている。光検出基板4の表面4aには、干渉フィルタ部20を透過した光を受光する受光部6が形成されている。受光部6は、光検出基板4の長手方向に略垂直な方向に沿って延在する長尺状のフォトダイオードが光検出基板4の長手方向に沿って一次元に配列されて構成されている。更に、光検出基板4には、受光部6で光電変換された電気信号を外部に取り出すための配線7(表面配線、裏面配線、貫通配線等)が形成されている。光検出基板4の裏面4bには、配線7と電気的に接続された表面実装用のバンプ8が設けられている。なお、光検出基板4は、フォトダイオードアレイに限定されず、他の半導体光検出素子(C−MOSイメージセンサ、CCDイメージセンサ等)であってもよい。
【0018】
干渉フィルタ部20は、キャビティ層21及びDBR(Distributed Bragg Reflector)層22,23を有している。干渉フィルタ部20において、DBR層(第1のミラー層)22とDBR層(第2のミラー層)23とは、キャビティ層21を介して対向している。つまり、キャビティ層21は、対向するDBR層22,23間の距離を保持している。各DBR層22,23は、SiO、TIO、Ta、Nb、Al、MgF等からなる誘電体多層膜であり、厚さ0.1μm〜10μm程度の矩形膜状に形成されている。
【0019】
キャビティ層21は、シリコンの熱酸化処理によって形成されたシリコン酸化膜(SiO膜)であり、厚さ100nm〜数μm程度に形成されている。図1及び図2に示されるように、キャビティ層21は、一体的に形成されたフィルタ領域24、包囲領域25及び接続領域26を有している。
【0020】
フィルタ領域24は、一辺の長さが数mm程度の矩形膜状に形成されており、DBR層22,23によって挟まれている。より具体的には、フィルタ領域24の表面24aには、DBR層22が形成されており、フィルタ領域24の裏面24bには、DBR層23が形成されている。フィルタ領域24の裏面24bは、光の入射方向(光透過基板3と光検出基板4とが対向する方向)に垂直な面に略平行となっているのに対し、フィルタ領域24の表面24aは、当該面に対して傾斜している。これにより、フィルタ領域24の厚さは、分光センサ1の長手方向における一方の側に向かって100nm〜数μm程度の範囲で漸増している。
【0021】
包囲領域25は、外側の一辺の長さが数mm程度の矩形環状に形成されており、光の入射方向から見た場合に、フィルタ領域24から所定の距離d(例えば数μm〜1mm程度)をとってフィルタ領域24を包囲している。接続領域26は、フィルタ領域24と包囲領域25との間に配置されるように矩形環状に形成されており、フィルタ領域24の光検出基板4側の端部24eと包囲領域25の光検出基板4側の端部25eとを接続している。キャビティ層21には、フィルタ領域24、包囲領域25及び接続領域26によって、フィルタ領域24を包囲するように矩形環状に延在する幅dの溝Gが形成されている。
【0022】
図1に示されるように、包囲領域25の表面(光透過基板側の端面)25aは、フィルタ領域24の表面(第1のミラー層の形成面)24aのうち光透過基板3に最も近い部分24hと略同じ高さ、又は当該部分24hよりも光透過基板3側に位置している。また、接続領域26の表面(光透過基板側の端面)26aは、フィルタ領域24の表面24aのうち光検出基板4に最も近い部分24lと略同じ高さ、又は当該部分24lよりも光検出基板4側に位置している。一方、フィルタ領域24の裏面24b、包囲領域25の裏面25b及び接続領域26の裏面26bは、略面一になっている。なお、包囲領域25の側面25cは、光透過基板3の側面3c及び光検出基板4の側面4cと略面一になっている。ただし、光透過基板3の側面3cと光検出基板4の側面4cとの間に、例えば0〜100μm程度の範囲で段差が生じる場合もある。
【0023】
光透過基板3は、キャビティ層21に対してDBR層22側に配置されており、カップリング層(第1のカップリング層)11を介してキャビティ層21及びDBR層22に接合されている。光検出基板4は、キャビティ層21に対してDBR層23側に配置されており、カップリング層(第2のカップリング層)12を介してキャビティ層21及びDBR層23に接合されている。干渉フィルタ部20と光透過基板3との間に配置されたカップリング層11、及び干渉フィルタ部20と光検出基板4との間に配置されたカップリング層12は、原料ガスとしてTEOS(Tetraethyl Orthosilicate,Tetraethoxysilane)を用いた成膜処理によって形成されたシリコン酸化膜であり、厚さ数百nm〜10μm程度に形成されている。
【0024】
以上のように構成された分光センサ1では、光透過基板3の表面3aから光透過基板3に入射した光が、光透過基板3を透過して光透過基板3の裏面3bに到達すると、干渉フィルタ部20に入射させるべき所定の波長範囲の光のみが、光学フィルタ層5によって透過させられる。そして、光学フィルタ層5を透過した光が、干渉フィルタ部20に入射すると、干渉フィルタ部20においては、所定の波長範囲の光が、入射位置に応じて選択的に透過させられる。つまり、入射位置でのDBR層22,23の種類と厚さ及びキャビティ層21の厚さによって、光検出基板4の受光部6の各チャネルに入射する光の波長が一意に決定される。これにより、光検出基板4では、受光部6のチャネルごとに異なる波長の光が検出される。
【0025】
以上説明したように、分光センサ1では、キャビティ層21がシリコン酸化膜であるため、キャビティ層21が樹脂材料からなる場合に比べ、キャビティ層21の形状、光透過率、光屈折率等を安定化させることができる。また、カップリング層11,12がシリコン酸化膜であるため、カップリング層11,12が樹脂材料からなる場合に比べ、光透過基板3から干渉フィルタ部20に進行する光の透過特性、及び干渉フィルタ部20から光検出基板4に進行する光の透過特性を安定化させることができる。更に、キャビティ層21及びカップリング層11,12がシリコン酸化膜であるため、使用環境の温度変化や湿度の高さ等に起因する品質の劣化を防止することができる。具体的には、キャビティ層21及びカップリング層11,12が樹脂材料からなる場合に起こり得る水分の吸収を防止することができ、また、それらが樹脂材料からなる場合に比べ、熱膨張及び熱収縮を抑えて熱的に安定化させることができる。よって、分光センサ1は、極めて信頼性の高いものとなる。
【0026】
また、キャビティ層21が、シリコンの熱酸化処理によって形成されたシリコン酸化膜となっている。これにより、低コストで高品質のキャビティ層21が安定して得られている。
【0027】
また、カップリング層11,12が、原料ガスとしてTEOSを用いた成膜処理によって形成されたシリコン酸化膜となっている。これにより、低温、高速、低ストレスでのカップリング層11,12の形成が可能であるため、キャビティ層21及びDBR層22,23にダメージが与えられるのが防止されて、高品質のキャビティ層21及びDBR層22,23が得られている。
【0028】
また、DBR層22と対向するように光透過基板3上に光学フィルタ層5が形成されている。これにより、所定の波長範囲の光を効率良く干渉フィルタ部20に入射させることができる。
【0029】
加えて、分光センサ1では、キャビティ層21において、フィルタ領域24が所定の距離dをとって包囲領域25によって包囲されており、フィルタ領域24の端部24eと包囲領域25の端部25eとが接続領域26によって接続されている。これにより、光透過基板3と光検出基板4とが対向する方向に垂直な方向に何らかの外力が作用しても、当該外力が包囲領域25及び接続領域26によって緩衝されて、フィルタ領域24にダメージが与えられるのを防止することができる。
【0030】
また、包囲領域25の表面25aが、フィルタ領域24の表面24aのうち光透過基板3に最も近い部分24hと略同じ高さ、又は当該部分24hよりも光透過基板3側に位置している。これにより、光透過基板3と光検出基板4とが対向する方向に平行な方向に何らかの外力(例えば、後述するカップリング層11a,11b間やカップリング層12a,12b間のダイレクトボンディングの際に印加される外力)が作用しても、当該外力が包囲領域25によって受け止められて、フィルタ領域24にダメージが与えられるのを防止することができる。
【0031】
また、接続領域26の表面26aが、フィルタ領域24の表面24aのうち光検出基板4に最も近い部分24lと略同じ高さ、又は当該部分24lよりも光検出基板4側に位置している。これにより、光透過基板3と光検出基板4とが対向する方向に垂直な方向に何らかの外力が作用しても、当該外力が、DBR層22の形成面であるフィルタ領域24の表面24aに直接的に作用するのを防止することができる。
【0032】
次に、上述した分光センサ1の製造方法について説明する。まず、図3に示されるように、シリコン基板50の一方の主面50a及び他方の主面50bに熱酸化処理を施すことにより、シリコンからなるハンドル基板51の一方の主面51a及び他方の主面51bにシリコン酸化膜52を形成し、ハンドル基板51の一方の主面51a又は他方の主面51bに形成されたシリコン酸化膜52を表面層53とする。ここでは、ハンドル基板51の一方の主面51aに形成されたシリコン酸化膜52を表面層53とする。表面層53の厚さは、1000nm程度である。
【0033】
続いて、図4及び図5に示されるように、マトリックス状に配列された複数のキャビティ層21をエッチングにより形成するためのレジスト層54を表面層53上に形成する。そして、レジスト層54をマスクとして、ハンドル基板51上に設けられた表面層53をエッチング(エッチバック)することにより、マトリックス状に配列された複数のキャビティ層21を形成する(第1の工程)。
【0034】
続いて、図6に示されるように、1つの分光センサ1に対応する部分ごとに、キャビティ層21上にDBR層22を形成する(第2の工程)。DBR層22を形成するに際しては、イオンプレーティング法、蒸着法、スパッタ法等による成膜、並びに、ホトエッチ及びリフトオフ、或いはエッチングによるパターニングを行う。なお、ここでは、1つの分光センサ1が1つのキャビティ層21を備えることになるので、DBR層22を形成するに際しては、1つの分光センサ1に対応する部分ごとにパターニングを行わずに、全てのキャビティ層21を覆うように全面成膜を行ってもよい。続いて、図7に示されるように、原料ガスとしてTEOSを用いた成膜処理を施すことにより、DBR層22を覆うようにキャビティ層21上にシリコン酸化膜を形成し、その表面をCMP(Chemical Mechanical Polishing)により平坦化してカップリング層11aを形成する。
【0035】
なお、原料ガスとしてTEOSを用いた成膜処理は、プラズマCVD法、LP−CVD法、AP−CVD法等によって、低温(例えば成膜温度200℃以下)、高速、低ストレスの成膜を可能とする。プラズマCVD法の場合には、Heガスによるバブリング法或いはヒータによる加熱等によりTEOSを供給し、チャンバ内でプラズマアシストによる分解反応を発生させてOガスと反応させることで、シリコン酸化膜を形成する。
【0036】
その一方で、図8に示されるように、マトリックス状に配列された複数の光透過基板3を含む光透過ウェハ30を準備し、光透過基板3に対応する部分ごとに光透過ウェハ30上に(すなわち、光透過基板3上に)、光学フィルタ層5を形成する。光学フィルタ層5を誘電体多層膜で形成する場合には、イオンプレーティング法、蒸着法、スパッタ法等による成膜、並びに、ホトエッチ及びリフトオフ、或いはエッチングによるパターニングを行う。また、光学フィルタ層5を有機カラーフィルタで形成する場合には、ホトレジストのように露光・現像等でパターニングする。なお、ここでは、1つの分光センサ1が1つの光学フィルタ層5を備えることになるので、光学フィルタ層5を形成するに際しては、1つの分光センサ1に対応する部分ごとにパターニングを行わずに、光透過ウェハ30の全面を覆うように全面成膜を行ってもよい。続いて、図9に示されるように、原料ガスとしてTEOSを用いた成膜処理を施すことにより、光学フィルタ層5を覆うように光透過ウェハ30上にシリコン酸化膜を形成し、その表面をCMPにより平坦化してカップリング層11bを形成する。
【0037】
続いて、図10及び図11に示されるように、1つの分光センサ1に対応する部分ごとにDBR層22と光学フィルタ層5とを対向させて、カップリング層11aの表面とカップリング層11bの表面とをダイレクトボンディング(表面活性化接合等)し、ハンドル基板51と光透過ウェハ30とを接合する(第3の工程)。つまり、カップリング層11を介してDBR層22と光学フィルタ層5とが対向するように、DBR層22上に光透過基板3を接合する。なお、光透過ウェハ30上に光学フィルタ層5を形成しない場合には、平坦化層としてのカップリング層11bは不要である。
【0038】
続いて、図12に示されるように、ハンドル基板51の他方の主面51bに形成されたシリコン酸化膜52、及びハンドル基板51の他方の主面51b側の部分を研削して、ハンドル基板51を薄型化する。そして、図13に示されるように、ハンドル基板51に対してウェットエッチング或いはドライエッチングを施すことにより、キャビティ層21からハンドル基板51を除去する(第4の工程)。なお、ハンドル基板51の他方の主面51bに形成されたシリコン酸化膜52、及びハンドル基板51を、研削なしで、ウェットエッチング或いはドライエッチングによって除去してもよい。
【0039】
続いて、図14に示されるように、ハンドル基板51が除去されることにより露出したキャビティ層21上に、DBR層22と同様の方法でDBR層23を形成する(第5の工程)。これにより、1つの分光センサ1に対応する部分ごとに、DBR層22とDBR層23とがキャビティ層21を介して対向し、干渉フィルタ部20が形成される。そして、1つの分光センサ1に対応する部分が分光フィルタ基板9となって、マトリックス状に配列された複数の分光フィルタ基板9を含む分光フィルタウェハ90が製造される。なお、ここでは、1つの分光センサ1が1つのキャビティ層21を備えることになるので、DBR層23を形成するに際しては、1つの分光センサ1に対応する部分ごとにパターニングを行わずに、全てのキャビティ層21を覆うように全面成膜を行ってもよい。
【0040】
続いて、図15に示されるように、原料ガスとしてTEOSを用いた成膜処理を施すことにより、DBR層23を覆うようにキャビティ層21上にシリコン酸化膜を形成し、その表面をCMPにより平坦化してカップリング層12aを形成する。その一方で、図16に示されるように、マトリックス状に配列された複数の光検出基板4を含む光検出ウェハ40を準備する。そして、原料ガスとしてTEOSを用いた成膜処理を施すことにより、受光部6を覆うように光検出ウェハ40上にシリコン酸化膜を形成し、その表面を平坦化してCMPによりカップリング層12bを形成する。
【0041】
続いて、図16及び図17に示されるように、1つの分光センサ1に対応する部分ごとにDBR層23と受光部6とを対向させて、カップリング層12aの表面とカップリング層12bの表面とをダイレクトボンディングし、分光フィルタウェハ90と光検出ウェハ40とを接合する(第6の工程)。つまり、カップリング層12を介してDBR層23と受光部6とが対向するように、DBR層23上に光検出基板4を接合する。
【0042】
続いて、図18に示されるように、光検出ウェハ40の裏面に対して研削、研磨、エッチング等を施すことにより、光検出ウェハ40を厚さ10μm〜150μm程度に薄型化する。そして、表面配線に対応する部分にエッチングで貫通孔を形成して、貫通配線、裏面配線等を形成することにより、1つの分光センサ1に対応する部分ごとに配線7を形成する。更に、光検出ウェハ40の裏面に、1つの分光センサ1に対応する部分ごとにバンプ8を形成する。最後に、互いに接合された分光フィルタウェハ90及び光検出ウェハ40を、1つの分光センサ1に対応する部分ごとにダイシングし、複数の分光センサ1を得る。なお、配線7を構成する表面配線や裏面配線等のパッド部は、光検出ウェハ40(すなわち、光検出基板4)の表面や裏面に埋設される場合だけでなく、例えばその厚さ分だけ突出するように、光検出ウェハ40(すなわち、光検出基板4)の表面上や裏面上に設けられる場合もある。
【0043】
以上説明したように、分光センサ1の製造方法では、ハンドル基板51上に設けられた表面層53をエッチングすることによりキャビティ層21を形成する。このように、ハンドル基板51を用いてエッチングによりキャビティ層21を形成することで、高精度のキャビティ層21を安定して得ることができる。更に、光透過基板3側にキャビティ層21及びDBR層22,23を形成した後に、光検出基板4を接合する。これにより、キャビティ層21やDBR層22,23を形成するための各プロセスにおいて光検出基板4にダメージが与えられるのを防止することができる。よって、分光センサ1の製造方法によれば、信頼性の高い分光センサ1を得ることが可能となる。
【0044】
また、分光フィルタウェハ90の各分光フィルタ基板9の性能を検査した後に、分光フィルタウェハ90と光検出ウェハ40とを接合するので、分光フィルタウェハ90側の不具合に起因して光検出ウェハ40が無駄になるのを防止することができる。
【0045】
また、シリコンからなるハンドル基板51の一方の主面51aに形成されたシリコン酸化膜52を表面層53とするため、低コストで高品質のキャビティ層21を安定して得ることができる。しかも、シリコン基板50の一方の主面50a及び他方の主面50bに熱酸化処理を施すことにより、シリコンからなるハンドル基板51の一方の主面51a及び他方の主面51bにシリコン酸化膜52を形成するため、ハンドル基板51の反りが抑制される。従って、高精度のキャビティ層21を安定して得ることができる。
【0046】
また、光学フィルタ層5を光透過基板3上に形成しておき、DBR層22と光学フィルタ層5とが対向するように、DBR層22上に光透過基板3を接合する。これにより、所定の波長範囲の光を効率良く干渉フィルタ部20に入射させることができる。
【0047】
加えて、レジスト層54をマスクとして、ハンドル基板51上に設けられた表面層53をエッチングする際には、レジスト層54において溝Gに対応する部分が先行して除去されて、表面層53において溝Gに対応する部分が最初に露出することになる。表面層53において溝Gに対応する部分が露出すると、SiOからなる表面層53から酸素が離脱して、レジスト層54のエッチャントとして働くことになる。ここで、表面層53において溝Gに対応する部分は、表面層53においてフィルタ領域24に対応する部分を包囲している。そのため、ハンドル基板51上では、表面層53においてフィルタ領域24に対応する部分の全てに酸素が安定して供給され、その結果、表面層53においてフィルタ領域24に対応する部分の全てが安定してエッチングされることになる。
【0048】
このような酸素の供給がないと、ローディング効果等に起因してエッチャントの密度分布に偏りが生じてしまい(例えば、ハンドル基板51の周縁部で供給過多となる一方で、ハンドル基板51の中央部で供給不足となる)、エッチングによって形成されたフィルタ領域24の形状がハンドル基板51の場所によって変化してしまうことになる。特に、レジスト層54が有機材料からなる場合には、エッチャントとしての酸素の供給状態によってエッチングレートが大きく変化するため、上述したような酸素の供給は極めて重要である。
【0049】
また、互いに接合された分光フィルタウェハ90及び光検出ウェハ40を、1つの分光センサ1に対応する部分ごとにダイシングする際には、カップリング層11a,11b間やカップリング層12a,12b間のダイレクトボンディングによって、分光フィルタウェハ90及び光検出ウェハ40の全体が硬く一体化されているため、チッピング等が生じるのを防止することができる。
【0050】
次に、レジスト層54とキャビティ層21との関係について説明する。図19に示されるように、エッチング前のキャビティ層21(すなわち、表面層53)の平坦な表面(図19の実線参照)に、レジスト層54を形成する。レジスト層54は、形成すべきキャビティ層21(すなわち、エッチング後のキャビティ層21)の形状に対応した三次元形状を有している。このようなレジスト層54の形成は、場所に応じて透過率を調整したホトマスクの利用、場所に応じてドーズ量を調整した光リソグラフィやEBリソグラフィの利用、ナノインプリンティングの利用等によって、実現することができる。
【0051】
そして、レジスト層54の形状に基づいたエッチバック(全面エッチング)を行うに際しては、エッチング条件によってレジスト層54及びキャビティ層21のエッチングレートを調整することができる。これにより、一種類の形状のレジスト層54から、様々な形状のキャビティ層21を形成することが可能となる。図19に示される場合には、レジスト層54のエッチングレートがキャビティ層21のエッチングレートよりも2倍程度程速いため、エッチング後のキャビティ層21の表面(図19の一点鎖線参照)の傾斜は、レジスト層54の表面(図19の破線参照)の傾斜よりも緩やかになっている。
【0052】
次に、ハンドル基板51に設けられるモニタパターンについて説明する。図4に示されるように、ハンドル基板51上には、表面層53が略一定の厚さで形成されるが、その表面層53上には、図20に示されるように、複数のキャビティ層21をエッチングにより形成するためのレジスト層54の他に、モニタパターンとしてのレジスト層55が形成される。これらのレジスト層54,55は、上述したようなホトマスクの利用、光リソグラフィやEBリソグラフィの利用、ナノインプリンティングの利用等によって、一体的に形成される。
【0053】
モニタパターンとしてのレジスト層55は、複数(ここでは9パターン)ずつ纏められて、ハンドル基板51上の複数箇所(ここでは、周縁部4個所及び中央部1箇所)に配置されている。纏められたレジスト層55のそれぞれは、1つのレジスト層54の複数部分のそれぞれに対応する略一定の厚さで形成されている。例えば、纏められたレジスト層55のそれぞれは、フィルタ領域24の所定の部分に対応するレジスト層54の所定の部分の厚さ、包囲領域25の所定の部分に対応するレジスト層54の所定の部分の厚さ、及び接続領域26の所定の部分(すなわち、溝Gの底面)に対応するレジスト層54の所定の部分の厚さを有している。
【0054】
これにより、表面層53のエッチングの途中や完了後といった所定のタイミングで、モニタパターンとしてのレジスト層55が除去された部分の表面層53の厚さを光学式の膜厚計にて測定することで、対応するキャビティ層21の所定の部分の厚さを知得することができる。なお、測定のタイミングが表面層53のエッチングの途中であって、キャビティ層21の所定の部分にレジスト層54が残存している場合には、同様の方法により、当該部分に残存するレジスト層54の厚さを知得することができる。
【0055】
このようなモニタパターンとしてのレジスト層55の利用は、個々のキャビティ層21が小さく、しかも、フィルタ領域24の表面24aが傾斜していて、キャビティ層21の厚さを光学式の膜厚計にて直接的に測定することが困難であることから、極めて有効である。更に、モニタパターンとしてのレジスト層55がハンドル基板51上の複数箇所に配置されているので、ハンドル基板51上の表面層53全体でのエッチングの進行度合(進行分布)を評価することができる。
【0056】
また、次のように、フィルタ領域24の所定の部分に対応するキャビティ層21の厚さを知得することもできる。すなわち、表面層53のエッチングの途中や完了後といった所定のタイミングで、フィルタ領域24の所定の部分に対応するキャビティ層21の表面と溝Gの底面との段差をAFM(Atomic Force Microscope,原子間力顕微鏡)や触針式の段差計等にて測定する。その一方で、溝Gの底面に対応するモニタパターンとしてのレジスト層55が除去された部分において、表面層53の厚さを光学式の膜厚計にて測定する。そして、測定した「キャビティ層21の表面と溝Gの底面との段差」と「表面層53の厚さ」とを足し合わせることで、フィルタ領域24の所定の部分に対応するキャビティ層21の厚さを算出する。なお、測定のタイミングが表面層53のエッチングの途中であって、フィルタ領域24の所定の部分に対応する部分にレジスト層54が残存している場合には、同様の方法により、当該部分に残存するレジスト層54の厚さを知得することができる。
【0057】
以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、分光センサの各構成部材の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を適用することができる。
【0058】
また、分光センサは、所定の波長範囲の光を入射位置に応じて選択的に透過させる干渉フィルタ部を複数備えていてもよい。ここで、複数の干渉フィルタ部を備える分光センサについて説明する。図21に示されるように、分光センサ1は、複数の干渉フィルタ部20A,20Bを備えている。干渉フィルタ部20A,20Bは、光透過基板3と光検出基板4との間において分光センサ1の長手方向に沿って配列されている。
【0059】
図21及び図22に示されるように、キャビティ層21においては、干渉フィルタ部20A,20Bごとに形成されたフィルタ領域24が並設されており、各フィルタ領域24は、DBR層22,23によって挟まれている。包囲領域25は、光の入射方向から見た場合に、並設されたフィルタ領域24,24から所定の距離dをとって、並設されたフィルタ領域24,24を包囲している。接続領域26は、並設されたフィルタ領域24,24の光検出基板4側の端部と包囲領域25の光検出基板4側の端部とを接続している。
【0060】
なお、干渉フィルタ部20AのDBR層22と干渉フィルタ部20BのDBR層22とは、互いに異なる種類となっており、その境界は、互いに一部が重なっている場合、間隔が0で接触している場合、間隔が例えば5μm程度で離間している場合がある。また、干渉フィルタ部20AのDBR層23と干渉フィルタ部20BのDBR層23とは、互いに異なる種類となっており、その境界は、互いに一部が重なっている場合、間隔が0で接触している場合、間隔が例えば5μm程度で離間している場合がある。また、干渉フィルタ部20Aの光学フィルタ層5と干渉フィルタ部20Bの光学フィルタ層5とは、互いに異なる種類となっており、その境界は、互いに一部が重なっている場合、間隔が0で接触している場合、間隔が例えば5μm程度で離間している場合がある。
【0061】
以上のように構成された分光センサ1では、光透過基板3の表面3aから光透過基板3に入射した光が、光透過基板3を透過して光透過基板3の裏面3bに到達すると、各干渉フィルタ部20A,20Bに入射させるべき所定の波長範囲の光のみが、光学フィルタ層5によって透過させられる。そして、光学フィルタ層5を透過した光が、各干渉フィルタ部20A,20Bに入射すると、各干渉フィルタ部20A,20Bにおいては、所定の波長範囲の光が、入射位置に応じて選択的に透過させられる。つまり、入射位置でのDBR層22,23の種類と厚さ及びキャビティ層21の厚さによって、光検出基板4の受光部6の各チャネルに入射する光の波長が一意に決定される。これにより、光検出基板4では、受光部6のチャネルごとに異なる波長の光が検出される。
【0062】
また、光透過基板3の材料として、所定の波長範囲の光を透過させる色ガラスやフィルタガラスを用いてもよい。また、光学フィルタ層5と共に、或いは光学フィルタ層5に代えて、光透過基板3の表面3aに別の光学フィルタ層を形成してもよい。また、光検出基板4は、一次元センサに限定されず、二次元センサであってもよい。また、キャビティ層21の厚さは、二次元的に変化していてもよいし、或いはステップ状に変化していてもよい。また、DBR層22,23に代えて、ミラー層として、AL、Au、Ag等の単層の金属反射膜を適用してもよい。また、分光センサは、CSPとして構成されたものに限定されず、SMD(Surface Mount Device)として構成されたものであってもよい。
【0063】
また、キャビティ層21の材料(すなわち、エッチングの対象となる表面層53の材料)として、エポキシ、シリコーン、アクリル等の光学樹脂、TiO、Ta、Nb、Al、MgF等の誘電体、SiやGe等の半導体等を用いてもよい。
【0064】
また、カップリング層11,12は、シランガスを用いたプラズマCVD法、塗布式のSOG(Spin On Glass)法、蒸着法、スパッタ法等によって形成されたシリコン酸化膜であってもよい。また、カップリング層11,12による接合(すなわち、ダイレクトボンディング)に代えて、光学樹脂層による接合や分光センサ1の外縁部における接合を適用してもよい。光学樹脂層による接合においては、光学樹脂層の材料として、エポキシ系、アクリル系、シリコーン系の有機材料、或いは有機無機からなるハイブリッド材料等の光学樹脂を用いることができる。また、分光センサ1の外縁部における接合においては、スペーサによってギャップを保持しつつ、低融点ガラスや半田等によって接合することができる。この場合、接合部に包囲された領域はエアギャップとしてもよいし、或いは当該領域に光学樹脂を充填してもよい。
【0065】
また、原料ガスとしてTEOSを用いた成膜処理、シランガスを用いたプラズマCVD法、塗布式のSOG法、蒸着法、スパッタ法、LP−CVD法等によって、シリコンからなるハンドル基板の一方の主面にシリコン酸化膜を形成し、当該シリコン酸化膜を表面層としてもよい。また、熱酸化処理に代えて、LP−CVD法によって、シリコンからなるハンドル基板の一方の主面及び他方の主面にシリコン酸化膜を形成し、ハンドル基板の一方の主面又は他方の主面に形成されたシリコン酸化膜を表面層としてもよい。つまり、シリコン酸化膜であるキャビティ層は、シリコンの熱酸化処理によって形成されたものには限定されない。ただし、熱酸化処理によってシリコン酸化膜を形成すれば、上述した他の方法に比べ、キャビティ層について、比較的に緻密な膜になり、膜厚の均一性が向上し、不純物が少なくなり、光透過性や光屈折率等の光学特性が比較的安定するといったメリットがある。
【符号の説明】
【0066】
1…分光センサ、3…光透過基板、4…光検出基板、5…光学フィルタ層、20,20A,20B…干渉フィルタ部、21…キャビティ層、22…DBR層(第1のミラー層)、23…DBR層(第2のミラー層)、50…シリコン基板、50a…一方の主面、50b…他方の主面、51…ハンドル基板、51a…一方の主面、51b…他方の主面、52…シリコン酸化膜、53…表面層。

【特許請求の範囲】
【請求項1】
キャビティ層並びに前記キャビティ層を介して対向する第1及び第2のミラー層を有し、所定の波長範囲の光を入射位置に応じて選択的に透過させる干渉フィルタ部と、前記干渉フィルタ部に入射する光を透過させる光透過基板と、前記干渉フィルタ部を透過した光を検出する光検出基板と、を備える分光センサの製造方法であって、
ハンドル基板上に設けられた表面層をエッチングすることにより前記キャビティ層を形成する第1の工程と、
前記第1の工程の後、前記キャビティ層上に前記第1のミラー層を形成する第2の工程と、
前記第2の工程の後、前記第1のミラー層上に前記光透過基板を接合する第3の工程と、
前記第3の工程の後、前記キャビティ層から前記ハンドル基板を除去する第4の工程と、
前記第4の工程の後、前記ハンドル基板が除去された前記キャビティ層上に前記第2のミラー層を形成する第5の工程と、
前記第5の工程の後、前記第2のミラー層上に前記光検出基板を接合する第6の工程と、を備える、分光センサの製造方法。
【請求項2】
前記第1の工程の前に、シリコンからなる前記ハンドル基板の一方の主面にシリコン酸化膜を形成し、当該シリコン酸化膜を前記表面層とする、請求項1記載の分光センサの製造方法。
【請求項3】
前記第1の工程の前に、シリコン基板の一方の主面及び他方の主面に熱酸化処理を施すことにより、シリコンからなる前記ハンドル基板の一方の主面及び他方の主面にシリコン酸化膜を形成し、前記ハンドル基板の一方の主面又は他方の主面に形成された前記シリコン酸化膜を前記表面層とする、請求項1記載の分光センサの製造方法。
【請求項4】
前記第3の工程の前に、前記所定の波長範囲の光を透過させる光学フィルタ層を前記光透過基板上に形成しておき、
前記第3の工程では、前記第1のミラー層と前記光学フィルタ層とが対向するように、前記第1のミラー層上に前記光透過基板を接合する、請求項1〜3のいずれか一項記載の分光センサの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2013−80830(P2013−80830A)
【公開日】平成25年5月2日(2013.5.2)
【国際特許分類】
【出願番号】特願2011−220177(P2011−220177)
【出願日】平成23年10月4日(2011.10.4)
【出願人】(000236436)浜松ホトニクス株式会社 (1,479)
【Fターム(参考)】