説明

制御スケジューリング・システム及び方法

【課題】異なった制御モード間で円滑な変更を行う。
【解決手段】装置の第1の作動モードと第2の作動モードとの間で装置の制御を変更するシステムにおいて、装置を第1の作動モードで制御するための制御信号を生成するための第1の作動モードと関連した利得係数を利用し、且つ装置を第2の作動モードで制御するための制御信号を生成するための第2の作動モードと関連した利得係数を利用する制御ループと、装置が第1の作動モードから第2の作動モードに移行するとほぼ同時に第2の作動モードと関連した利得係数を用いて制御ループを動作させる利得セレクタと、モードの変化中に、制御信号における突然の変化を最小化するスムーザとを備える、システム。

【発明の詳細な説明】
【技術分野】
【0001】
[背景]
1.発明の分野
本発明は、制御スケジューリングの分野、特に異なった制御モード間で円滑な変更を行う分野に関する。
【背景技術】
【0002】
2.関連技術の説明
人輸送装置は、人を表面上で移動させる働きをし、多くの異なった形態をとることができる。たとえば、ここで使用する人輸送装置は、車椅子、動力付きカート、自転車、オートバイ、自動車、ホバークラフトなどを含むことができるが、それらに制限されることはない。一部の形式の人輸送装置は、装置が倒れて輸送装置のユーザが負傷することがないようにするために、安定化機構を含むことができる。
【0003】
典型的な4輪形車椅子は、4つの車輪すべてで地面と接触する。車椅子およびユーザを合わせたものの重心が車輪間の面積の上方にあれば、車椅子は転倒しないはずである。重心が輸送装置の接地部材の外側の上方に位置する場合、輸送装置が不安定になってひっくり返るであろう。
【0004】
図1Aを参照すると、典型的な車椅子100が示されている。車椅子100およびユーザ102がフレーム(frame)を定めている。フレームは、表面106の垂直方向上方に配置された位置にある重心104を有する。ここで使用する用語「表面」は、人輸送装置が載ることができるすべての表面を指すものとする。表面の例として、平坦な地面、スロープなどの傾斜面、砂利道などがあり、互いに垂直方向に変位した2つのほぼ平行な表面を垂直に連結した縁石(道路縁石など)も含まれるであろう。
【0005】
表面106は、水平軸108に対して傾斜していてもよい。表面106が水平軸108からずれている角度をここでは表面ピッチと呼び、θsの角度で表す。
車椅子100の前輪112および後輪110は、距離dだけ離れている。2つの車輪間の距離dは、線(たとえば、直線)距離として測定することができる。システムの重心104が2つの車輪110及び112間の上方の位置にある場合、車椅子100は直立して比較的安定しているはずである。車輪110および112は一般的に、車椅子の他方側に反対の車輪(opposing counerparts)(図示せず)を有する。反対の車輪の各々は、それぞれ車輪110および112と軸を共有しているであろう。これらの4つの車輪が地面と接触する点(接地部分が点より多くを覆うような時、接地部分の外側部分)を結んだ多角形
によって囲まれる範囲が、車椅子が安定している時に重心104が位置することができる範囲である。以下の説明の様々な箇所で、この範囲を装置のフットプリント(footprint)と呼ぶであろう。ここで使用する用語としての「装置のフットプリント」は、車輪間の範囲(面積)を水平面上に投影した時の投影図によって定められる。重心がこの場所の上方にある場合、輸送装置は安定しているはずである。
【0006】
重心104が表面106の垂直方向上方でフットプリント(すなわち、車輪110および112間の範囲を水平面上に投影したもの)の外側に変位している場合、車椅子100の安定性が低下して、車椅子100が転倒するであろう。このことは、たとえば、車椅子が急勾配の表面上にある時に発生するであろう。急勾配にある時、重心104が後方へ移動して、車椅子100が後方へひっくり返るであろう。これは、重心104が車椅子100のフットプリントの外側の位置にある図1Bに示されている。重心104が、重心104を下方向に線形移動させる重力加速度ベクトル(g)を含めて示されている。車椅子100は、それが通行中の表面と接触するまで、後輪110の軸を中心に回転するであろう。
【0007】
ユーザ102は、車椅子100内で前傾することによって、重心104を車輪110および112の間の範囲の上方の位置に戻すことを助けることができる。重心104の位置をこのように限定的に制御できるとしても、車椅子などの人輸送装置が縁石または段差などの凹凸表面を通行する時に大きな困難に直面することは明らかである。
【0008】
別の形式の人輸送装置は、輸送装置を2つの車輪上で釣り合わせることができる制御機構を含むであろう。2つの車輪は、車輪の中心を通る単一軸に連結することができる。その軸は、装置の前後移動が軸に直交する方向になるようにして車輪を連結する。制御機構は、重心を車輪軸の上方位置に保持できるように車輪を前後方向に駆動することによって、装置およびユーザを安定的な直立位置に保持することができる。そのような装置はさらに、重心を車輪軸から前後方向に一定距離だけ変位させることができるようにし、重心をその位置に保持するように車輪を回転させることによって、移動を行うことができる。そのような装置の例が、米国特許第5,701,965号および第5,719,425号に開示されており、それらは参照として本明細書に援用される。
【発明の概要】
【課題を解決するための手段】
【0009】
本発明の実施形態によれば、装置の第1作動モードおよび第2作動モード間の転換を行うシステムが開示されている。この実施形態では、システムが、第1作動モードでシステムを制御するために第1作動モードと関連した利得係数を用い、第2作動モードで作動する時に第2作動モードと関連した利得係数を用いる制御ループを含む。本実施形態では、システムはさらに、装置が第1作動モードから第2作動モードに移行するのとほぼ同時に、第2作動モードと関連した係数を使用して制御ループを作動させる利得セレクタも含む。
【0010】
本発明の別の実施形態によれば、制御信号に応答する装置を円滑に作動させる方法が開示されている。この実施形態では、方法は、制御信号用の値を決定するステップと、制御信号を処理して修正された制御信号を生成するステップと、修正された制御信号を装置に印加するステップとを含む。
【0011】
本発明の別の実施形態では、マルチモジュラー装置(multi-modular apparatus)においてモード間の円滑な切り換えを行う方法が開示されている。この実施形態の方法は、モード変更が行われたかを決定するステップと、モードが変更されている場合にオフセット値を決定するステップとを含む。この実施形態の方法はまた、平滑化された制御信号を生成するために、制御信号を装置に印加する前に、制御信号にオフセット値の減衰バージョン
を加算するステップと、平滑化された制御信号を装置に印加するステップとを含む。
【図面の簡単な説明】
【0012】
【図1】図1Aおよび図1Bは従来型車椅子の例を示している。
【図2A】図2A〜図2Fは人輸送装置の様々な実施形態を示している。
【図2B】図2A〜図2Fは人輸送装置の様々な実施形態を示している。
【図2C】図2A〜図2Fは人輸送装置の様々な実施形態を示している。
【図2D】図2A〜図2Fは人輸送装置の様々な実施形態を示している。
【図2E】図2A〜図2Fは人輸送装置の様々な実施形態を示している。
【図2F】図2A〜図2Fは人輸送装置の様々な実施形態を示している。
【図3】図3は人輸送装置の別の実施形態を示している。
【図4】図4は、図2Aに示されている輸送装置の簡略形を示している。
【図5】図5Aおよび図5Bは、階段モードで作動中の人輸送装置のクラスタの相対向きを示している。
【図6】図6は、人輸送装置の可能な作動モードのブロック図を示している。
【図7】図7A〜図7Bは、輸送装置の簡略化した側面図である。
【図8】図8は、本発明の態様に従って実行することができる制御ループの一例を示している。
【図9】図9は、本発明の態様に従った切り換えモードに使用できる値の例をグラフで示している。
【図10】図10は、制御切り換え値を決定する1つの実施形態のデータ・フロー図である。
【図11】図11は、輸送装置の様々なサブモード間での移行時を決定する方法をフローチャートで示している。
【図12A】図12Aは、本発明と組み合わせて使用することができる制御ユニットの一例を示している。
【図12B】図12Bは、図12Aの制御ユニットの1つの実施形態の機能ブロック図を示している。
【図13】図13は、本発明に従って実行することができる制御ループを示している。
【図14】図14は、本発明の態様に従って使用することができる利得テーブルの一例を示す図である。
【図15】図15は、制御装置に印加する前に制御信号を平滑化するために実行されるシステムの一例を示している。
【図16】図16は制御信号を平滑化する方法のブロック図を示している。
【図17】図17Aは、本発明の態様に従って利得スケジューリング動作を実行するために構成された制御ループのブロック図を示している。 図17Bは、モード間で円滑に移行することができる制御システムの実施形態を示している。
【図18】図18は、本発明の態様に従ってフィードバック制御システムで実行される制御スケジューリング・プロセスのフローチャートを示している。
【図19】図19は、図17Aおよび図17Bに存在する様々な信号をグラフで示している。
【図20】図20は、輸送装置の車輪の位置を制御する制御ループの一例を示している。
【図21】図21は、輸送装置のクラスタの位置を制御する制御ループの一例を示している。
【図22】図22Aは、重心推定値を使用することができる制御ループの一例を示している。 図22Bは、重心の位置の推定値に基づいて所望の向きを生成するシステムのブロック図を示している。
【図23】図23は、輸送装置のフリー・ボディ(free body)図の一例を示している。
【図24】図24は、装置の重心の位置を推定するためのデータ・セットを生成する方法の一例を示している。
【図25A】図25A〜25Cは、図24の方法の各部分を図形で示している。
【図25B】図25A〜25Cは、図24の方法の各部分を図形で示している。
【図25C】図25A〜25Cは、図24の方法の各部分を図形で示している。
【図26】図26は、輸送装置の重心の位置を推定するために使用することができるデータ・セットのグラフを示している。
【発明を実施するための形態】
【0013】
[詳細な説明]
本発明の態様は、人輸送装置の作動のための様々な制御モードに関する。様々なモードの各々によって異なった形式の制御が可能である。一部の実施形態では、モードの一部ではユーザの入力コマンドに対する応答性が非常に高いが、別のモードは、輸送装置を、従ってユーザを直立した安定位置に保持しようとして、ユーザの入力コマンドを完全に無視するであろう。
【0014】
図2Aは、本発明の態様を実施することができる輸送装置200の一例を示している。本発明の様々な内容が様々な輸送装置に関連させて説明されているが、その説明の教示が人輸送装置での実施だけに制限されないことに注意されたい。たとえば、様々な制御モードは、図2Aに示されている輸送装置200に似ていない輸送装置にも適用可能である。また、様々なモード間での円滑な移行を可能にするシステムおよび方法は他の装置にも適用可能である。
【0015】
輸送装置200は、ユーザの人(図示せず)を支持するのに適したプラットフォーム202を含むことができる。プラットフォーム202は、図2Aに示されているものと同様な、ユーザが座る椅子形プラットフォームにすることができる。しかし、後述するように、プラットフォーム202は椅子形プラットフォームである必要はなく、ユーザの人を支持することができるいずれの形式のプラットフォームでもよい。たとえば、プラットフォームは、ユーザが立つプラットフォームにすることもできる。
【0016】
輸送装置200はまた、椅子のアームに似たアーム204を含む。アームは、ユーザが寄りかかったり、他の方法でユーザを支持する場所を提供することができる。アーム204は、ユーザから方向コマンド入力を受け取ることができるジョイスティックなどのユーザ・インターフェース206を含むことができる。ユーザ・インターフェースの他の形式として、ローラ・ボール、タッチ・パッド、息感知入力装置(breath sensitive input)、ユーザに、またはユーザが着用している衣類に取り付けられた位置通報センサ、音声認識システム、押しボタン制御装置などを含むことができるが、それらに制限されない。ユーザ・インターフェース206がこれらの入力コマンドを輸送装置200の制御ユニット240に中継することによって、輸送装置200の所望方向の移動を実施することができる。ユーザ・インターフェース206はまた、移動速度を決定する(effect)こともできる。
【0017】
輸送装置200はまた、接地部材208および210を含むことができる。図2Aに示されているように、接地部材208および210は車輪である。しかし、接地部材208および210は車輪に制限されないことに注意されたい。たとえば、接地部材は、キャスタ、剛直部材(たとえば、米国特許第5,791,425号の図22〜図24に示されている弓形部材)、トレッド(treads)または他の移動機構にすることができる。上記および他の接地部材を有する人輸送装置について以下に記載する。
【0018】
車輪208および210を含む実施形態では、車輪が表面と接触して、表面上を移動できるようにしている。車輪208および210は、モータ(図示せず)によって駆動することができる。また、各車輪208および210を輸送装置の他方側の同軸的な車輪(図示せず)と左右逆転配置することによって、通行中の表面と接触する4つの車輪を設けることができる。
【0019】
車輪208および210は、可動アーム212(またはクラスタ)に取り付けることができる。ここで使用する用語「可動アーム」および「クラスタ」は、接地部材を取り付けることができるアセンブリを指すものとする。また、クラスタは、文脈によっては接地部
材を含んでそれらを互いに連結したアセンブリ全体を指すことも時々あるであろう。クラスタ212は剛直部材でもよいが、様々な軸を中心に折り畳むことができる部材でもよい。たとえば、ここでクラスタ214が第1部分216および第2部分218を有するように示されている図2Bを参照すると、第1部分216および第2部分218は、ピボット点220で互いに回動するように取り付けられているであろう。クラスタ214は、2つの車輪222および224を含むであろう。2つの車輪222および224は、それぞれ接触点226および228で表面と接触することができる。クラスタが水平面上にあるために、本実施形態では接触点226と接触点228との間の距離が輸送装置のフットプリントの長さ(l)を定める。(もちろん、クラスタが傾斜上にある場合、フットプリントの長さは水平面上のLの投射図の長さに等しいであろう。本実施形態では、クラスタ214の第1部分216および第2部分218間のピボット点220のため、フットプリントの長さ(l)が可変である。クラスタ214の第1部分216とクラスタ214の第2部分218との間の角度θcが約180°の時、フットプリントの長さ(l)が最大である。
【0020】
1つの実施形態では、クラスタ214の第1部分216と第2部分218との間の角度θcが極めて小さくなるように、クラスタのフットプリントの長さを短くすることができる。そのような実施形態の一例が、図2Cに示されている。この実施形態では、車輪222および224の外周が重なるであろう。もちろん、この実施形態では、車輪222および224をZ軸に沿って互いにずらせることによって、車輪222および224が互いに接触して車輪の回転が妨害されることがないようにすることができる。
【0021】
再び図2Aに戻ると、クラスタ212は、プラットフォーム支持体230によってプラットフォーム202に取り付けることができる。プラットフォーム支持体230は、上側部分232と下側部分234とを含むことができる。(プラットフォーム支持体230を一体形部材にすることもできる。)
【0022】
1つの実施形態では、プラットフォーム支持体230の下側部分234をクラスタ212に回動可能に取り付けることができる。クラスタ214とプラットフォーム202の底部との間の高さHを調整するために、プラットフォーム支持体230の下側部分234をクラスタ連結部ピボット点236中心に回転させて、もっと垂直向きにすることができる。また、下側部分234を垂直向きに回転させる時、上側部分232も支持体ピボット点238を中心に回転させて、プラットフォームをさらに高くすることもできる。
【0023】
プラットフォーム202を降下させようとする時、下側部分234をクラスタ212に接近するように移動させる。また、上側部分232を下側部分234およびクラスタ212の両方に接近するように移動させることもできる。
【0024】
輸送装置200はまた、制御ユニット240(または電子機器ボックス)を含むことができる。一般的に、制御ユニット240は、輸送装置200を作動させるために輸送装置200内に含むことができる様々なモータにコマンドを送る。制御ユニット240は、傾斜センサ、速度センサ、加速度センサ、位置通報センサなどの様々なセンサを含むことができる。1つの実施形態では、制御ユニット200は、輸送装置200を安定させるために、車輪208および210の位置や、クラスタ212の角度向きを、またはその両方を調整することができる。また、制御ユニット240は、ユーザ・インターフェース206から受け取った入力コマンドに応答するために、クラスタ212および車輪208および210を回転させることができる。1つの実施形態では、制御ユニット240は様々なセンサ入力に基づいて、プラットフォーム202に対するクラスタ212の角度を調整することによって、クラスタ212を通る軸242および車輪208および210のそれぞれの車軸244および246を通行中の表面にほぼ平行にして、プラットフォーム202を
直立位置に保持することができる。輸送装置200が標準または強化モードで作動している時、このような向きが好ましい。標準モードおよび強化モードなどの様々なモードについてさらに詳細に後述する。
【0025】
図2Dは、人輸送装置200用のクラスタ248の変更実施形態を示している。この実施形態では、クラスタ248は、モータ(図示せず)によって駆動される第1車輪250を含む。モータを駆動するコマンドは、制御ユニット240(図2A)から受け取ることができる。クラスタ248は、モータで駆動されない第2車輪252も含むことができる。たとえば、第2車輪252は、クラスタ248に固定されたキャスタ形車輪でもよい。これまでの図面は前進方向が左から右方向であるように記載されているが、図2Dのクラスタ248はいずれの方向に向けてもよいことを理解されたい。すなわち、動力付き車輪250を前輪にしても、第2車輪252を前輪にしてもよい。
【0026】
図2Eは、輸送装置200の制御ユニット240に固定された非駆動(non-motorized)車輪254を含む輸送装置200の一例を示している。この実施形態では、1つの作動モードにおいて、後輪208が表面と接触したままであるが、前輪210が表面と接触しないようにクラスタ212を回転させることができる。不安定状態にならないと仮定して、クラスタ212の回転によるトルクによって、非駆動車輪254が表面と接触するまで輸送装置240が前方に傾くであろう。この作動モードは、輸送装置200が滑らかな平坦表面上で作動しているときに好ましいであろう。この向きでは、後輪212をモータで駆動するだけでよく、したがって、輸送装置200が消費する動力量を減少させることができることに利点がある。
【0027】
クラスタに取り付けられた車輪208および210の両方が表面と接触するようにクラスタ212を回転させた場合、非駆動車輪254が表面から持ち上がり、輸送装置が4輪駆動装置になるであろう。そのような配置の輸送装置200の一例が、図2Fに示されている。図2Fでは、車輪210および208が表面270と接触している。非駆動車輪254は表面270の上方に上昇している。この実施形態では、クラスタ212およびプラットフォーム202が表面270にほぼ平行である。以上に人輸送装置200の様々な実施形態を詳細に説明してきた。車輪208および210を、各々が個別のモータで駆動される動力付き車輪にしてもよいことに注意されたい。しかし、車輪208および210の両方を単一のモータで駆動してもよい。また、車輪の一方だけをモータで駆動してもよい。さらに、輸送装置200を側面図だけで示してきた。側面図で示されている構成要素を輸送装置200の他方側に左右逆配置することができることを理解されたい。たとえば、輸送装置は、輸送装置200の各側にクラスタを含むことができる。1つの実施形態では、クラスタを互いに固定連結して、それらが一体部材として移動するようにしてもよい。しかし、各クラスタが互いに独立的に作動するように、クラスタを回転またはその他の方法で平行移動できるようにすることも、本発明の範囲に入る。さらに、本発明は、上記の輸送装置で実現されることに制限されないことにも注意されたい。たとえば、本説明に含まれる教示の一部または全部は、ヘリコプター、航空機、自動車、オフロード車、原付自転車、オートバイなどの輸送装置でも実施することができる。本発明の教示を実施できる他の形式の輸送装置が、図3に示されている。
【0028】
図3は、ユーザが立つことができる人輸送装置300を示している。輸送装置は、立った姿勢のユーザの人304を支持するのに適したプラットフォーム302を含むことができる。1つの実施形態では、人304がプラットフォーム302上で所望の移動方向へ傾くことによって、装置300の移動を制御することができる。この実施形態では、プラットフォーム302がベース・ユニット306に回動可能に取り付けられている。ベース・ユニット306は、輸送装置300の移動と、おそらくは安定性とを制御することができる制御ユニット308を含むことができる。ベース・ユニット306はまた、車輪312
および314などの接地部材を含むクラスタ310も含むことができる。人輸送装置はまた、ユーザから所望の移動コマンドを受け取るためのジョイスティック316などの第2ユーザ入力装置も含むことができる。図3に示されているように、人輸送装置300は、傾斜プラットフォーム302およびジョイスティック316の両方を含む。
【0029】
さらに具体的に言うと、ユーザが輸送装置300の移動を指示することができるようにするために、プラットフォーム302またはジョイスティック316が制御ユニット308に入力を送る。ユーザ入力に応答して、制御ユニット308は車輪(312および314)およびクラスタ310のいずれか一方または両方を回転させることができる。また、制御ユニット308は、重心318を輸送装置300のフットプリントの垂直方向上方に保持するために、時にはユーザ入力に関係なく、クラスタ310の位置および車輪312および314の位置の両方またはいずれか一方を調整することができる。図3に示されているように、重心318は、車輪312および314の軸の間でクラスタ310の垂直方向上方に変位する。1つの実施形態では、制御ユニット308は、重心318をクラスタ310の中心点320の上方に維持する。重心318がクラスタ310の中心点320の上方に位置する時、輸送装置300は非常に安定しているであろう。
【0030】
便宜上、以下の説明の一部では、重心の位置が既知であるように述べるであろう。しかし、場合によっては、その位置は推定位置に基づく。重心を推定するシステムおよび方法については後述する。さらに、重心を基準量として記載するが、本説明の教示はそれに制限されず、輸送装置を効果的に安定させるために輸送装置の他の特性を考慮するだけでもよいことに注意されたい。たとえば、重心の位置の推定に依存する必要性の代わりに、(後述の)ピッチ率を考慮することもできる。
【0031】
図4は、図2AからFに示されている輸送装置200の簡略形を示している。この例では、輸送装置がいわゆる「均衡モード」で作動している(図2AからF〜図3の例のような他の実施形態も、均衡モードで作動することができる。)。(輸送装置が静止している)均衡モードでは、制御ユニットは、様々な入力に基づいて、接地車輪404を通る横軸402の上方に重心400を維持しようとする。このモードでは、重心400を接地車輪404の横軸402の垂直方向上方の位置に維持するために、接地車輪404を回転させることによって、安定化のほぼすべてが行われる。このために、クラスタ408は、プラットフォーム202の底部に対して固定位置に保持されるであろう。図4に示されている実施形態では、クラスタ408がほぼ垂直位置に保持されている。(クラスタを他の相対角度に保持することもできる。)
【0032】
繰り返すと、均衡モードにある輸送装置200は、重心400を輸送装置200が載っている接地車輪404の横軸402の垂直方向上方のいずれかの位置に変位させるように、プラットフォーム202の位置を制御することによって作動する。移動できるようにするために、装置が「FORE/AFT」方向に制御状態で落下を開始するように、重心400を接地車輪404の横軸402の前方または後方のいずれかにわずかに変位させることができる。重心400が横軸402に対して変位している時、本質的に重心400を軸402に対して比較的接近しているがずれた位置に保持するように、接地車輪404を駆動する。このようにして、装置は転倒しない。図4に示されているような輸送装置の均衡モードは、米国特許第5,701,965号に開示されている。均衡モードのこの実施形態では、輸送装置400の安定化を助けるために、クラスタ406が適所位置にロックされて、回転することはないであろう。このため、本実施形態では、均衡モードは一般的に、人輸送装置を動的に安定させる「車輪のみ」の方法("wheel only" approach)であると考えることができる。
【0033】
場合によっては、人輸送装置がユーザまたは他のいずれかの外的手助けの補助をほとん
ど、またはまったく受けないで、階段の昇降を行うことが望ましいであろう。このため、一部の人輸送装置は、階段を登る能力を発達させて、いわゆる「階段」または「傾斜」モードで作動する。そのような装置の例が、米国特許第5,701,965号および第5,791,425号に示されている。階段モードでは、車輪をクラスタに「連動(slaved)」させることができる。すなわち、車輪は、移動手段としてではなく、クラスタを回転させるためだけに運動することができる。
【0034】
図5Aおよび図5Bは、階段モードで作動している人輸送装置のクラスタ500の相対向きの2つの例を示している。階段モードで作動する時、階段をどちらの方向に進むか(すなわち、階段を登るのか、降りるのか)によって、後輪車軸または前輪車軸のいずれかの上方に重心が位置するように、クラスタ500を回転させることができる。車輪502が階段508の前縁部506と接触した時、車輪は階段に押し付けられた状態に保持される。重心が接触点514に向かって移動する時、クラスタ500は、図5Bに示されているように、上向きに回転し始めるであろう。クラスタ500が回転する時、連動車輪502はクラスタの回転に応じてクラスタ500に対して回転するので、車輪上の同一点が階段と接触点510で接触している。車輪502が移動できるとすると、クラスタの回転によって車輪502が階段から離れる方向に移動するため、輸送装置が転倒するであろう。
【0035】
第2車輪504が階段508の上縁部512と接触点514で接触するまで、クラスタ500が(本例では、時計回り方向に)回転する。輸送装置が階段の上部に達するまで、このプロセスが繰り返される。別の実施形態では、たとえば、輸送装置が大きい縁石を横切っている場合、上記プロセスを一度実行するだけでよいであろう。
【0036】
上記システムは、装置の均衡を効果的に維持するために、クラスタまたは車輪のいずれかを使用している。しかし、場合によっては、ユーザが転倒しないようにする位置に重心を保持するために、車輪およびクラスタの両方を使用する方が望ましいことが分かった。たとえば、凹凸表面を通過する時、プラットフォームを直立位置に保持するために、車輪およびクラスタが同時に回転することが望ましいであろう。
【0037】
このため、本発明の幾つかの実施形態の態様が、輸送制御の新しいモードに向けられている。この新しいモードをここでは強化モードと呼ぶ。1つの実施形態では、強化モードは、重心が輸送装置のフットプリントの上方に位置するか、それに非常に接近した位置にあるように(または、輸送装置のフレームピッチ(またはフレームピッチの関数)を所定範囲内のパラメータに保つなどの他の基準を満たすように)、輸送装置の車輪およびクラスタの両方を制御することによって、輸送装置の作動および安定化を制御する。
【0038】
図6は、人輸送装置の可能な作動モードを詳細に説明するブロック図である。1つの実施形態では、人輸送装置は、標準モード602、均衡モード604および階段モード606を含むことができる。本発明のある一定の実施形態の態様によれば、輸送装置は強化モード608も含むことができる。これらの様々な制御モードは、装置の移動を行うために制御ユニット内に収容されたソフトウェアおよびハードウェアによって使用される。各モードは、人輸送装置が異なったパラメータに従って作動できるようにする。人輸送装置は他の作動モードも含むことができることに注意されたい。たとえば、人輸送装置は、モード間の移行を行うモードや、システム故障を処理するモードを含むことができる。
【0039】
ここに説明した制御モードおよび関連のソフトウェアおよびハードウェアは、図3に関連して以上に説明した制御ユニットなどの制御ユニット内に包含することができる。しかし、ソフトウェアおよびハードウェアの様々な部分を制御ユニット以外の場所で使用することもできる。たとえば、プラットフォーム、クラスタ、車輪、または人輸送装置の作動を効果的に制御するために望ましいか、必要な他の場所に様々なセンサを配置することが
できる。
【0040】
均衡モード604および階段モード606は前述されており、例示のため、図6の実施形態が上記説明に従って作動するものと仮定することができる。しかし、均衡モード604および制御モード606の変更形が存在し、本説明に与えられている様々な制御計画に基づいて作動する輸送装置に完全に組み込むことができることに注意されたい。
【0041】
ここで使用する用語「標準モード」は、動的安定化がまったく生じない作動モードを指すものとする。標準モードでは、クラスタおよびプラットフォームが互いに固定関係のままである。たとえば、ユーザが椅子形プラットフォーム(図2AからF)を有する人輸送装置を標準モードで作動させている場合、クラスタに対するプラットフォームの角度を制御するモータは一定位置に保持される。輸送装置が傾斜を上っている時、プラットフォームは後方に傾斜する。しかし、傾斜が急になりすぎると、システムの重心が、輸送装置のフットプリントの外側の位置にあって、輸送装置が後方にひっくり返る可能性がある。
【0042】
標準モードでは、ユーザが輸送装置の移動を完全に制御することができる。すなわち、制御ユニットは、ユーザ入力に非常に敏感である。1つの実施形態では、ユーザ入力部から受け取った入力に高い利得係数(後述)を適用することによって、これを達成することができる。ユーザ入力部は、ジョイスティックか、ユーザが作動させる他の適当な入力装置にすることができる。また、輸送装置は、ユーザ入力部として機能する傾斜可能なプラットフォームを含むことができる。
【0043】
ある一定の実施形態によれば、標準モードは2つのサブモードを含むことができる。第1のサブモードは、図2Eに示されているようなシステムで実行されるであろう。このサブモードでは、非駆動車輪254を輸送装置200の制御ユニット240に固定することができる。少なくとも装置が前傾して非駆動車輪254が表面と接触するまで、クラスタ212が回転点213を中心に回転することができる。このモードでは、ユーザコマンドに応答して移動を行うために、後輪208を駆動するモータに電力が供給される。このように、クラスタ212の前駆動車輪(たとえば、車輪210)に取り付けられたモータへの電力供給が停止されているので、電力を温存することができる。この理由から、一般的に標準モードは、特にこのサブモードは、限られた電源(たとえば、充電式バッテリ)を有する輸送装置200を長時間にわたって作動させようとする時に特に魅力的である。また、このモードでは、エネルギを温存するために、輸送装置によって与えられるいずれのタイプの安定化も使用不能になるであろう。また、非駆動車輪がキャスタ形車輪で、高い操縦性を有することができるため、このモードでの旋回半径が最小になるであろう。また、クラスタ212の各側に連結された各車輪が独自の車輪モータを含むこともできる。両側の車輪の各々に異なった信号を送ることによって、輸送装置200は円を描いて旋回することができるであろう。これは、一方の車輪に正のトルクを、他方に負のトルクを与えることによって達成することができる。
【0044】
標準モードの別のサブモードは、図2Fに示されているように、4車輪すべてが表面と接触し、非駆動車輪254が地面から離れた状態に保持されるようにクラスタを回転させるモードを含む。このサブモードでは、輸送装置200は、4輪駆動輸送装置として機能することができる。しかし、ユーザが標準モードのこのサブモードを後述の強化モードと混同しないように、このモードでは車輪がユーザ入力コマンドに応答しないことが好ましい。
【0045】
前述したように、標準モードはプラットフォームをクラスタに対してほぼ一定の角度関係に保持することができる。この場合、標準モードのいずれのサブモードでも、クラスタをプラットフォームに対して位置決めするモータを使用不能にすることができる。
【0046】
図6に戻って説明すると、ユーザは、ユーザ・インターフェース上でユーザに提示されたオプションを選択することによって、モード間の移行を行うことができる。ユーザ・インターフェースは、たとえば、プラットフォーム202上に設けられたアーム204(図2A)に設けることができる。あるいは、モード移行を自動的に行うこともできる。たとえば、供給電力が低レベルになると、電力を節約するか、安全性を確保しようとして、輸送装置を自動的に均衡モードから標準モードに移行させることができる。
【0047】
輸送装置は、様々なモードから別のモードに移行することができる。たとえば、輸送装置は、矢印620で表されているように、標準モード602から均衡モード604に移行したり、戻ることができる。輸送装置はまた、矢印621で表されているように、均衡モード604から階段モード606に移行したり、戻ることができる。また、輸送装置は、矢印622で表されているように、標準モードから階段モード606に移行したり、戻ることができる。ユーザがユーザ入力装置からモード移行を選択した時、輸送装置は、矢印623で表されているように、標準モード602、均衡モード604または階段モード606から強化モード608に出入りすることができる。後述するように、強化モードは、輸送装置の他のいずれのモードより動的安定性を高くすることができる。そのため、輸送装置が現在の作動モードでは不安定になっていると制御ユニットが決定した場合、輸送装置は自動的に強化モードに入ることができる。
【0048】
幾つかの実施形態によれば、クラスタがほぼ垂直向きである時、強化モードに自動的に入ることが防止される。輸送装置の現在の向きの幾つかのパラメータが、モード変更を行った時に輸送装置が不安定になるような値でなければ、ほとんどいつでも強化モードから出ることができるであろう。
【0049】
やはり後述するように、強化モードは、自動的に切り換えられる複数のサブモードを含むことができる。また、後述する制御切り換えおよび利得スケジューリング・システムおよび方法によって、強化モードを円滑かつ効果的にサブモード間で切り換えることができる。
【0050】
図7Aは、強化モードで作動することができる輸送装置700の簡略化した側面図である。輸送装置700は一例として与えられているだけであって、ここに記載する強化モードの作動の応用を決して制限するものではないことに注意されたい。
【0051】
輸送装置700は、プラットフォーム702を含む。前述したように、このプラットフォームは、図2Aに示されているような椅子形のプラットフォームでもよいが、図3に示されているように、ユーザが立つプラットフォームでもよい。しかし、強化モードでの輸送装置の相対角度の説明は、いずれの構造または他の構造にも等しく当てはまる。以下の説明のため、図7Aでは、時計回り方向を指す矢印によって表された角度は正の値であり、反時計回り方向を指す矢印によって表された角度は負の値であるように、角度を測定する。たとえば、φc(重力に対するクラスタ位置)として示された角度は正の角度であり、θ3として示された角度は負の角度である。
【0052】
重心704は、システム全体の重心を表す。これは、輸送装置700、ユーザ(図示せず)およびユーザが持っていると思われる(やはり図示せず)いずれのペイロードも含む。また、重心は、輸送装置の安定性を決定するために、推定および試験の両方またはいずれか一方によって得ることができる輸送装置のパラメータの一例として与えられているだけであることに注意されたい。
【0053】
制御ユニット706が発生する制御信号は、重心704を輸送装置700のフットプリ
ントの上方に保持しようとする。繰り返すが、装置のフットプリントは、クラスタの端部点の間に存在するものと定義することができ、さらに好ましくは、前輪712および後輪714の横軸708および710の間にある。これらの車輪は、クラスタ716に取り付けられ、その一部にすることができる。1つの実施形態では、強化モードにおいて重心はクラスタ716の中心点718の上方に位置し続ける。
【0054】
プラットフォーム702は、プラットフォーム支持体720によって支持することができる。ここで用いられるプラットフォーム高さ(H)は、プラットフォーム702の底部と座部支持体720がクラスタ716に連結される場所との間の距離を指すものとする。
【0055】
プラットフォーム支持体720の上側部分722および下側部分724間の角度θhを変更することによって、座部高さHを調整することができる。上側部分722および下側部分724を回動式に連結するピボット点728にモータを設けることができる。このモータは、座部高さコマンドに基づいて、上側部分722および下側部分724間の角度θhを増減することができる。これは、ユーザが立っている人の目の高さまで上昇する(またはそれに近づく)ことができるようにするため、好都合である。1つの実施形態では、プラットフォーム726および上側部分722も、上側部分722の向きに関係なく、プラットフォーム702の底部がほぼ水平方向であるように角度θsを設定するモータを含むことができる。
【0056】
図9〜図11に開示され、本明細書に参照として援用される米国特許第5,791,425号の説明に関連した別の実施形態では、プラットフォーム・ホルダ720が、プラットフォームに対して、また互いに対して調整することができる上側および下側部分を有する関節式アームでもよい。この調整は、接触ピボット点726、728および730に位置する動力付き駆動装置によって行うことができる(そこにおいて、下側部分724は、クラスタ716に回動式に連結している。)。動力付き駆動装置を(たとえば、ベルトによって)互いに連結することによって、上側および下側部分間のピボット点728で連結された1つのモータの位置の変化が、プラットフォーム702および上側部分722間の角度θsに対応する変化を生じることによって、プラットフォーム702の底部がほぼ水平であるようにすることができる。
【0057】
座部高さが人輸送装置700の作動に重要である理由は少なくとも2つある。第1に、システム全体の重心704を推定するために、座部高さHを利用することができる。また、座部高さは、重心が重力(g)によって定められる垂直軸に対して移動する速度に影響するであろう。座部が高いほど、重心が外乱に応答して移動する速度が遅くなるであろう。このため、座部高さは、輸送装置の動的安定性を制御する時に考えられる変数であろう。たとえば、座部高さは、輸送装置を制御する、または他の方法で安定させるために使用される特定の利得係数(後述する)の大きさに影響を与える入力であろう。
【0058】
重心704がクラスタ716を通る垂直軸からずれる量を本説明では「フレームピッチ」と呼び、図7Aにθ1で表す。このフレームピッチは、角変位に基づいた「回転」ピッチにすることができる。図示のように、垂直軸は、クラスタ718の中心点718を通っている。しかし、強化モードでは、垂直軸が、車輪714または車輪712の中心を通る横軸の間に位置するクラスタのいずれかの部分(たとえば、フットプリント)を通ることができることに注意されたい。中心点718を通らないクラスタ716の部分を軸が通ることが望ましい場合、クラスタ716を通る垂直軸がクラスタ716の中心点718から離れている距離を考慮に入れるために、後述の安定化制御プロセスが変更されるであろう。
【0059】
重心704をクラスタ716の中心点718の上方に置くという制御目的は、輸送装置
の別の作動モードには適用できないこともあることに注意されたい。たとえば、均衡モードでは、制御目的は、重心704をクラスタ716の車輪の1つを通る横軸の上方に適当な関係で保持することであろう。
【0060】
前述したように、重心704の位置は、座部高さに依存した概算に基づくであろう。重心704の位置はまた、プラットフォームが重力に関して移動する割合に基づいて決定されるであろう。この割合を本説明ではピッチ率と呼ぶ。たとえば、輸送装置700上に配置された移動センサ(図示せず)によって、システムが高率で前傾していることを感知することができる。この移動が、場合によっては、輸送装置700のフットプリントから外れるように重心704を変位させるであろう。このため、装置のフットプリントを表面に対してピッチ率の方向に移動させて、フットプリントが重心704の下方に位置するようにする必要があるであろう。
【0061】
図7Aは、制御ユニット706も示している。制御ユニット706の作動については後述する。制御ユニット706は、システムのピッチ率などを決定する様々な動きセンサを含むことができる。センサは、いずれかの特定形式のセンサに制限されることはなく、たとえば、加速度計、位置センサ、「レベル」センサ等にすることができる。容易に理解できるように、ピッチ率は、測定または推定フレームピッチθ1を時間に関して微分することによって、経験的に決定することができる。制御ユニット706は、車輪712および714に取り付けられたモータ、並びにクラスタ716に取り付けられたモータを制御することができる様々なハードウェアおよびソフトウェアも含むことができる。また、制御ユニット706は、輸送装置700を安定化するように働く後述の様々な制御ループも含むことができる。
【0062】
1つの実施形態では、制御ユニット706にクラスタ716を回動可能に取り付けることができる。このため、垂線に対するクラスタ716の角度向きの変化が制御ユニット706の向きに同じ変化を生じることはないであろう。制御ユニット706の上部が水平線から変位している角度(制御ユニット角度θcで表す)とクラスタ716が垂線から変位している角度(φc、重力に対するクラスタ位置を表す)との差を本説明では相対クラスタ位置と呼び、角度θcで表す。角度θcは、重心704に対する制御ユニット706の上部の角度向きを表す。
【0063】
繰り返すと、強化モードの包括的目的は、重心704を輸送装置700のフットプリントにほぼ入る位置に配置しようとすることである。一部の実施形態では、強化モードは、重心704をクラスタ716の中心点718の上方に配置しようとする。この実施形態は、重心がクラスタ716の中心点718の垂直方向上方に位置した状態で輸送装置700の4つの車輪すべてを表面上に配置しようとする安定化であるとほぼ見なすことができる。この状態を満たした時、輸送装置700はほぼ安定した位置にある。また、プラットフォーム702の底部を水平線にほぼ平行に保持することが好ましいであろう。プラットフォーム702の底部が水平線にほぼ平行である場合、ユーザはより安定した感じを持ち、従ってより快適であろう。
【0064】
クラスタ716の長手方向軸740が水平線から角変位した状態に示されている。しかし、プラットフォーム702の底部は水平線にほぼ平行な状態のままである。この状態は、たとえば、輸送装置700が傾斜面を通る時に発生するであろう。重心704を輸送装置704のフットプリント内に保持するために、クラスタ716と下側部分724との間の角度を減少させる必要がある。この減少は、ピボット点730に連結されて、クラスタ716を反時計回り方向に回転させると共に下側部分724を前方を押し付けるモータによって行うことができる。
【0065】
前述したように、一部の状況では、垂線からのクラスタ変位量が小さすぎる(すなわち、φc=0)場合、クラスタ安定化ルーチンを設けるだけでは、輸送装置を効果的に釣り合わせることができない。一部の実施形態では、車輪の回転を使用して重心を装置のフットプリントの上方に(または、それに対して適当な関係に)配置することを助けることによって、均衡を維持することもできる。また、2つの車輪上で均衡をとることが、輸送装置の有用性を低下させる可能性があることがわかった。たとえば、2つの車輪上だけで均衡をとることによって、凹凸表面上をうまく進むことが困難になるであろう。たとえば、そのような2輪装置で縁石を越える場合、輸送装置を直接的に上方に実質的に持ち上げるために車輪に加える必要があるトルク量が過大になるであろう。車輪を垂直面で上昇させるためにすべてのトルクを加えた時、輸送装置をほぼ垂直位置に保持するために必要な制御が大きく妨げられるであろう。
【0066】
幾つかの実施形態によれば、強化モードがこの問題を処理することができる。強化モードは、重心を輸送装置のフットプリントを定める領域の垂直方向上方の位置に保持しようとして、車輪釣り合い技術と共にクラスタ釣り合い技術の両方の一部を利用する。クラスタおよび車輪釣り合いアルゴリズムの両方を利用することによって、輸送装置が凹凸表面を進む時、従来技術より本来的に安定した輸送装置が提供される。
【0067】
1つの実施形態では、この新しい強化モードが幾つかのサブモードを含むことができる。たとえば、強化モードは、車輪PD(「比例微分」)モード、車輪POC(カート上の振子(pendulum-on-a-cart))モード、および車輪均衡モードを含むことができる(ラベルとして使用されている名前は制限または説明を意図しているものではない)。これらの様々なサブモードの各々は、異なった状況で適用可能である。1つの実施形態では、輸送装置の現在の作動特性に応じて、本発明がこれらのサブモード間で移行する。
【0068】
これらの目的および図7Aで定められたパラメータ(すなわち、角度)が与えられると、制御ユニットは、輸送装置が多くの様々なタイプの異なった表面を進む時にそれを安定させることができる。1つの実施形態では、制御ユニットは、輸送装置の安定化を助けるための利得係数を実現する1つまたは幾つかの制御ループを含むことができる。別の実施形態では、制御ユニットは、各モード用に異なった制御アーキテクチャを含むことができる。
【0069】
図8は、本発明で実行することができる制御ループ800の一例を示している。制御ループ800は、たとえば、モータと、輸送装置の様々なパラメータを監視する複数のセンサとを含むプラント802を含むことができる。少なくとも1つ、場合によっては幾つかのパラメータをプラント802から制御ループ800にフィードバックすることができる。たとえば、人輸送装置のフレーム・ピッチ804およびピッチ率806をフィードバックすることができる。パラメータの各々に利得係数(たとえば、利得係数808aおよび808b)を掛けることによって、最終的に再びプラントに加えられる制御信号(加算器810の出力)を生成することができる。あるパラメータに掛ける係数の値が大きいほど、そのパラメータが制御信号の値に与える影響が大きい。輸送装置に適用することができる制御ループのさらなる例について詳細に後述する(図20および図21)。
【0070】
再び図7Aおよび図7Bの両方を参照すると、輸送装置の作動をモデル化する1つの方法は、システムをクラスタ・ピボット連結点730で回動する倒立振子としてモデル化することであろう。もちろん、システムを他の幾つかの方法でモデル化してもよい。システムの(位置エネルギおよび運動エネルギを含めた)全エネルギ(E)は以下のように表される。
【0071】
【数1】

【0072】
但し、Jは(輸送装置、ユーザおよびペイロードを含めた)フレーム慣性であり、θ1はフレーム・ピッチであり、θ1’はピッチ率(θ1の時間に対する導関数)であり、mはフレーム質量であり、gは重力であり、L1は重心704からクラスタ・ピボット連結点730までの距離である(L1はプラットフォーム高さHによって決まることに注意されたい)。この式は、余弦に小角近似値を使用して次のように簡略化することができる。
【0073】
【数2】

【0074】
輸送装置700は、全エネルギがゼロの時に最も安定している。このことは、少なくとも2つの場合に起きる。第1の場合では、フレーム・ピッチθ1およびピッチ率θ1’がゼロである。この場合、輸送装置700は完全に静止している。別の場合では、フレーム・ピッチθ1が負(図7B)である一方、重心704が前方へ移動中である。重心がフレーム・ピッチθ1に対抗することができる大きさのピッチ率θ1’で前方移動している場合、やはり全エネルギが再びゼロに戻るであろう。このため、上記等式がゼロになるように、フレーム・ピッチθ1およびフレーム率θ1’間の関係を定めることが望ましい。上記の簡略化したエネルギ等式をゼロに設定した場合、次の等式を導き出すことができる。
【0075】
【数3】

【0076】
この等式は、2つの場合の一方でゼロになるであろう。一方は、ピッチ項θ1(mgL1/J)1/2 をθ1’に加える時であり、他方は、ピッチ項をθ1’から減算する時である。正の解は、輸送装置が垂直方向に戻っていることを表し、負の解は、全エネルギがゼロのままであっても、装置が転倒し続けていることを表す。このため、均衡インディケータq0を決定するために正の解が選択され、このq0は次の等式で定めることができる。
【0077】
【数4】

【0078】
但し、ωnは倒立振子の固有振動数(mgL1/J)1/2 に等しい。以上から、q0=0の時、システムがうまく釣り合うことが明らかである。ゼロから上または下への変動は、輸送装置が完全には釣り合っておらず、様々な補正を加えなければならないことを表す。後述するように、q0の値は、輸送装置を強化モードの様々なサブモード間で移行させる値として使用することができる。もちろん、輸送装置をモデル化する仕方に応じて、q0以外の値を使用することもできる。
【0079】
強化モード
繰り返すと、輸送装置の1つの作動モードが「強化モード」である。強化モードは、スロープ、砂利道および縁石などの平坦でない地面を通行する能力を高めるために適用することができる(しかし、そうでなくてもよい)。動的安定性を与えるために、クラスタおよび車輪が一緒に使用される。強化モードはまた(あるいは代わりに)、何らかの理由から(すなわち、牽引力が失われることや、車輪が転動できなくなることなど)均衡モード
が安定性を維持できない場合に、動的安定性を取り戻そうとする方法として使用することができる。
【0080】
輸送装置の様々な状態に応じて、強化モード内の異なったサブモードを実行する必要があるであろう。これらのサブモードについて以下に説明する。
【0081】
第1サブモードは、車輪PDモードと呼ばれる。車輪PDは、ユーザの移動コマンドに応答するモードであって、静的に安定しており、通行中の表面の緩やかな変化に対応することができる。車輪PDモードでは、輸送装置はユーザコマンドに厳密に従うであろう。一部の実施形態では、これによってユーザがスロープを上り、適所で旋回し、小さいこぶなどの様々な障害物を越えることができるであろう。車輪PD制御器は、車輪PDモードである時の輸送装置がユーザ入力に対して非常によく応答することを特徴とするであろう。これによって、ユーザは輸送装置の移動をしっかり制御することができる。1つの実施形態では、これは、車輪に伝達されるユーザ入力コマンドに高い利得値を適用することによって達成されるであろう。ユーザ入力コマンドに高レベルの利得を適用すると、最大量のトルクを車輪に得ることができるようになるであろう。しかし、車輪利得のこの本来的な硬直性のため、車輪加速度の急激な変化(すなわち、急発進または急停止)によって重心が前後に傾くであろう。その結果、クラスタを回転させることによってシステムに補正トルクを加えようとする時、クラスタが1対の車輪を地面から持ち上げるであろう。そのようなトルクが加えられた時、車輪PDはおそらく不適当である。このため、装置は第2モードの車輪POCモードに切り換わるであろう。
【0082】
車輪POCの目的は、4つの車輪すべてが地面上にあり、重心がクラスタ上方でクラスタの2つの端部点の間に位置するように輸送装置を安定させることである。このモードでは、重心をフットプリントの内側の基準位置に配置しようとするために、車輪およびクラスタの両方が使用される。このモードでは、重心をフットプリントの上方の位置に平行移動させるために、車輪がピッチ情報を使用する。重心をクラスタ連結部の上方中央に置くように車輪に指令することは、時にはユーザが与えたコマンドと一致しないであろう。これを調整するために、車輪POCサブモードで制御ユニットが使用する利得またはアーキテクチャがピッチ及びピッチ率信号に大きい影響力を与え、ユーザコマンドに小さい影響力を与える。一般的に、車輪POCサブモードは、輸送装置の安定性が信頼できなくなっている時に働くだけであろう。たとえば、大きい障害物や凹凸が非常に激しい表面上を進む時、安定性を信頼できない状態が生じるであろう。
【0083】
当業者であれば容易にわかるように、重心がクラスタの端部点の間のほぼ中央に位置する時に輸送装置を安定させるには、クラスタのみの回転だけで有効であろう。ピッチ誤差(すなわち、重心がクラスタのほぼ中心の位置から変位する量)が大きくなって、重心が1組の車輪の上方に位置するほどになると、クラスタの有効性が低下し、安定化の主要手段として車輪を使用する必要があるであろう。このため、強化モードは、車輪均衡サブモードと呼ばれる第3のサブモードも含む。車輪均衡サブモードの目的は2つあり、ピッチ変動が大きい場合に輸送装置を安定させることと、重心およびクラスタを車輪PDまたは車輪POCサブモードのいずれかが有効である向きに戻すことである。前述したように、クラスタが水平に近い時、車輪PDおよび車輪POCの方が有効であろう。車輪均衡は、車輪作動の均衡モードに似ているが、クラスタを回転させる能力も含む。
【0084】
上記モードの各々は、制御ユニット内に含まれる単一の制御ループで実行することができる。強化モードのどのサブモードで輸送装置が現在作動中であるかに応じて、上記効果を達成するために様々な利得係数が制御ループに適用される。各サブモード用の利得は、たとえば、ユーザが輸送装置を制御する量や、輸送装置が自身の動的安定化を行う量を変化させることができる。また、各サブモードを個別制御アーキテクチャとして実行するこ
ともできる。
【0085】
前述したように、輸送装置の制御ユニットは、強化モードで輸送装置の制御および安定化を行うために、制御ループで様々な利得または制御アーキテクチャを実行することができる。強化モードのサブモード間の切り換え時(したがって、適当な実施形態では利得または制御アーキテクチャを切り換える時)を知るために、幾つかの基本的切り換え基準を定めなければならない。一部の実施形態では、モード間の切り換え時を決定する基準として、上記量q0を使用することができる。たとえば、q0を使用して、車輪PDおよび車輪POC間の切り換えを行うことができる。また、値φc(重力に対するクラスタ位置)も、車輪PDまたは車輪POCのいずれかから車輪均衡モードへ切り換えるために使用することができる。(もちろん、他の実施形態では、他のパラメータを追加して、または代わりに使用することもできる。)
【0086】
強化モード内の様々なモード間の切り換えは、重力に対するクラスタ位置φcによって決まるであろう。図9は、φcの様々な値のグラフ表示900を示している。繰り返すが、φcは、重力に対するクラスタ位置を表し、垂直のクラスタ位置でφcがゼロになり、水平のクラスタ位置でφcが90°になるように測定が行われる。図9のグラフ表示では、縦軸902が0°のφcを表し、水平軸904が90°のφcを表す。本実施形態では、角度φcが90°に近い時、輸送装置は車輪POCまたは車輪PDのいずれかに留まっているであろう。
【0087】
図9に示されているように、輸送装置が車輪POCまたは車輪PDのいずれかに留まる領域は、水平軸904と射線(ray)908との間に位置する領域906である。重力に対するクラスタ角度φcが射線908より下方にある場合、輸送装置は車輪POCまたは車輪PDのいずれかに留まるであろう。φcが射線910で表される値より高くなった場合、輸送装置は車両均衡モードに移行してそれに留まる。すなわち、φcは、縦軸902と射線910との間の領域912に留まる間、輸送装置は車輪均衡に留まるであろう。しかし、本実施形態の適当な作動モードの選択が困難な領域914が、射線910および908の間に存在する。この領域914では、輸送装置を車輪均衡モードにするか、残りのモードの一方にするかを決定するために、様々な他のファクタが考慮されるであろう。フレーム角およびピッチ率によって決定されるように、重心が装置のフットプリントに接近中か、その上方に位置する場合、輸送装置は車輪PDまたは車輪POCのいずれかに移行するはずである。しかし、重心が接地部材のいずれかのほぼ上方にある場合、輸送装置は車輪均衡モードに移行するはずである。射線910および908の位置の角度値の例をそれぞれ30°および60°にすることができる。
【0088】
1つの実施形態によれば、車輪PDから車輪POCへの、またはその逆の移行は、制御スイッチ値σに基づいて決定され、σはq0に関して次式で定めることができる。
【0089】
【数5】

【0090】
但し、A1はスケーリング定数であり、LPF(q0)は、q0の入力信号を与えられた一次ロー・パス・フィルタの出力である。φ’cは、通行中の表面の平滑さを大まかに表す。たとえば、凹凸表面では、クラスタ向きが急激に変化するために、φ’cが大きい。同様に、平滑な表面ではφ’cが小さくなるであろう。値が1.66のA1が、幾つかの実施例の有効値であることが経験的に決定されている。
【0091】
モード間のチャタリングを防止するために、モードの切り換え時にヒステリシス形の決
定を行うことができる。たとえば、σが入場値(たとえば、1)以上である場合、輸送装置は車輪POCに入る。σの値が、輸送装置が車輪PDに移行する点である退場値(たとえば、0.5)以下になるまで、輸送装置は車輪POCにあるであろう。もちろん、輸送装置の作動特性に応じて、入場値および退場値は変化するであろう。
【0092】
図10は、σの値を決定することができる1つの実施形態のデータ・フロー図を示している。外部入力は、データ・ブロック1002に含まれるピッチ率(θ1’)、データ・ブロック1004に含まれるフレーム・ピッチθ1、およびデータ・ブロック1006に含まれる重力に対するクラスタ速度φc’である。ブロック1006で、フレーム・ピッチθ1に倒立振子の固有振動数ωnを掛ける。加算ブロック1008で、データ・ブロック1002から受け取ったピッチ率にブロック1006の出力を加算する。加算ブロック1008の出力はq0である。次に、ブロック1010で値q0をロー・パス・フィルタに通す。次に、ブロック1012で、ローパス・フィルタリングされたq0信号の絶対値を決定する。次に、加算器1016で、データ・ブロック1006のクラスタ速度φc’をブロック1014でロー・パス・フィルタに通してから(ブロック1020で)絶対値を決定した後の値にブロック1012の出力を加算する。次に、加算器1016の出力をロー・パス・フィルタ1018に通し、そのロー・パス・フィルタ1018の出力が、上記等式に従ったσの値である。
【0093】
図11は、(本実施形態では)φcおよびσに基づいて強化モードのサブモード間での移行を行う時を決定する方法のフローチャートの1つの実施形態を示している。もちろん、輸送装置をモデル化する方法によって、様々な切り換え基準を使用することができる。処理は、φcおよびσの現在値を受け取るブロック1102で始まる。ブロック1104で、φcがWBonより小さいかどうかが決定される。変数WBonは、φcの、それ以下では輸送装置が常に車輪均衡モードでなければならない角度値を表す。これは、図9に射線910および縦軸902の間の領域912として示されている。
【0094】
φcがWBonより小さい場合、ブロック1106で、輸送装置が現時点で車輪均衡モードにあるかどうかが決定される。輸送装置が現時点で車輪均衡モードにある場合、それ以上の処理は必要なく、処理はブロック1102に戻る。しかし、輸送装置がその時に車輪均衡モードにない場合、ブロック1108で、輸送装置は車輪均衡モードに移行して、処理がブロック1102に戻る。
【0095】
φcがWBon以上である場合、ブロック1110で、φcがWBoffより大きいかどうかが決定される。WBoffの値は、θcの、それ以下では輸送装置が車輪POCモードまたは車輪PDモードのいずれかでなければならない値である。WBoffは、図9に射線908として示されている。φcがWBoffより大きい場合、処理は車輪PD/車輪POCヒステリシス処理セクション1112に移行する。φcがWBoff以下である場合、φcの値が図9の射線910および908の間の領域(たとえば、領域914)にあることがわかる。前述したように、この領域では、重心がクラスタの車輪の1つの軸に近い場合、輸送装置は車輪均衡モードに移行しなければならない。このため、ブロック1114で、重心が車輪軸の1つの近くにあるかどうかが決定される。重心が車輪軸の1つの近くにある場合、ブロック1116で、輸送装置は車輪均衡モードに移行し、処理がブロック1102に戻る。しかし、重心が車輪軸の1つの近くにない場合、処理は車輪PD/車輪POCヒステリシス処理ブロック1112に入る。前述したように、重心の位置は、モードの切り換え時を決定する時に考慮するのに好都合な量である。しかし、重心は実際には、輸送装置の作動特性に基づいた推定位置に過ぎないことに注意されたい。たとえば、重心は、輸送装置のフレーム・ピッチおよびピッチ率の両方またはいずれか一方の表示にすることができる。これらの量(他のものと同様に)は、輸送装置内に含むことができる位置、速度および加速度センサから求めることができる。
【0096】
ヒステリシス処理ブロック1112は、σの値に基づいた車輪POCおよび車輪PD間の移行に関する上記の機能を実行する。ブロック1112内で、輸送装置が現時点で車輪POCモードにあるかどうかがブロック1118で最初に決定される。輸送装置が車輪POCモードにある場合、ブロック1120で、σが0.5より大きいかどうかが決定される。輸送装置がすでに車輪POCにあることがすでに決定されているので、車輪PDモードに移行するためには、σの値が0.5より小さくなければならない。このため、ブロック1120でσが0.5より大きいと決定された場合、輸送装置は車輪POCモードに留まらなければならず、処理がブロック1102に戻る。しかし、σが0.5より小さくなっている場合、ブロック1122で輸送装置が車輪PDモードに移行して、処理がブロック1102に戻る。
【0097】
ブロック1118で、輸送装置が現時点で車輪POCにないと決定された場合、ブロック1124で、σが1より高くなっていないと決定されると、輸送装置は車輪PDモードに留まらなければならず、処理がブロック1102に戻る。しかし、σが1より高くなっている場合、ブロック1126で、輸送装置は車輪POCモードに移行し、処理がブロック1102に戻る。上記の切り換え用の値が例示にすぎないことに注意されたい。これらの値は、ユーザの重量、輸送装置の重量、輸送装置の様々なセンサの正確度などによって変わるであろう。
【0098】
上記の様々な切り換え処理は、各モード内の様々な安定化制御と共に、輸送装置の車輪およびクラスタの両方を駆動することによって実施することができる。各車輪を個別モータで独立的に駆動してもよい。あるいは、一部の車輪をモータで駆動しなかったり、共通軸に取り付けられた2つの車輪を単一のモータで駆動してもよい。また、クラスタは個別のモータを含むことができる。
【0099】
輸送装置がどのような構造であるかに関係なく、強化モードのいずれのモードにおいても輸送装置が安定しているように、車輪およびクラスタを制御するコマンドは、それぞれ電圧VwおよびVcとして表される、すなわち、
【0100】
【数6】

【0101】
電圧は、出力トルクを発生するために電気モータの駆動部に印加される電圧を表す。もちろん、駆動部は電気的である必要はなく、また、いずれにしても、電圧以外の値を使用してもよい。変数Xは、輸送装置の水平位置誤差を表し、輸送装置の水平位置と輸送装置の所望水平位置との差である。’(プライム)記号は、時間微分を表す。係数K1〜K8は、輸送装置が強化モードのどのサブモードで作動しているかによって変わる。
【0102】
各モードで制御ユニットが使用する利得係数K1〜K8の相対値の例が、次の表Aに示されている。どの利得を使用するかに応じて、制御ユニットは適用可能なサブモードに対応した様々な方法で輸送装置を制御するであろう。
【0103】
【表1】

【0104】
表Aに列記されている各利得値の相対強さおよび符号は、各サブモードを区別するのに十分である。表Aにおいて、++の値は+の値より大きい。ゼロ値は必ずしも正確にゼロでなくてもよく、むしろ非常に小さい値を表すことができる。
【0105】
図12Aは、本発明に関連して使用することができる制御ユニット1200のブロック図を示している。本実施形態の制御ユニット1200は、クラスタおよびクラスタに取り付けられた車輪の両方を上記のVcおよびVwの等式に従って制御するであろう。クラスタの主たる役割は、重力に対するフレーム動力学に基づいたトルクを加えることである(すなわち、プラットフォームを重力に対して所望のピッチ角に保持するようにクラスタが回転する)。強化モードでは、2つの基準を監視しながら、車輪がユーザからのコマンドに従うはずである。重力に対するクラスタ位置が変化している(すなわち、地面傾斜が変化している)か、q0が大きい場合、位置/速度制御の代わりに均衡化制御を使用することによって、車輪は、ユーザの制御から、クラスタがフレームを直立状態に保持するのを助けるように切り換わることができる。重力に対するクラスタの角度が減少する(すなわち、クラスタが垂直状態に接近していく)場合、目的は、移動距離を最小限に抑えながら、クラスタをより水平向きに降下させることである。これは、ユーザは輸送装置上に快適に支持されていることを確保するのに役立つ。
【0106】
制御ユニット1200は、車輪制御器1202とクラスタ制御器1204とを含む。車輪制御器1200は、(たとえば、ジョイスティックから受け取った)方向指示ユーザ入力と共に、輸送装置の現在の作動特性に関する様々な入力を受け取ることができる。入力から、車輪制御器1202は、車輪モータを制御する車輪制御電圧Vwを生成することができる。Vwの値によって車輪モータが輸送装置の様々な車輪にトルクを加えることによって、輸送装置を「駆動」して表面を進ませることができる。前述したように、輸送装置は、各車輪用にモータを含むことができ、各車輪のモータ用に個別の値Vwを生成することができる。このように、異なった車輪電圧を車輪に印加することによって、輸送装置の操縦を行うことができる。
【0107】
クラスタ制御器1204も、クラスタ特定情報と共に、一般的に輸送装置に関連した様々な位置入力を受け取ることができる。クラスタ制御器1204は、この情報をクラスタ・モータ制御電圧Vcに変換する。クラスタ・モータは、この信号Vcを受け取って、クラスタを軸中心に回転させる。
【0108】
1つの実施形態では、車輪制御器1202は、データ・ブロック1206からフレームのピッチ(θ1)を表すデータから入力を受け取ることができる。上記のデータは、確実
に値として述べられていることに注意されたい。たとえば、フレーム・ピッチは、角度値として表されている。しかし、輸送装置の方向制御および安定性の両方を制御するために使用される値はいずれも、あるパラメータが所望位置からどれだけ離れているかを表す誤差項として、または多くの他の方法で表現することができる。たとえば、フレーム・ピッチは、現在のフレーム・ピッチが所望ピッチから異なっている値として表すことができる。すなわち、誤差信号は、現在フレーム・ピッチと重心をクラスタの中心点の真上に配置するフレーム・ピッチとの差に等しいであろう。また、ここでは様々な角度を度で表しているが、各角度をラジアンか、輸送装置がそのような値を受け取った時に所望の応答を行うように目盛りを定めた「計数」(自然数値)で表現することもできる。
【0109】
車輪制御器1202はまた、データ・ブロック1208からフレーム率(frame
rate)指示を受け取ることができる。フレーム率は、フレームが移動している回転率(rotational rate)を表し、データ・ブロック1208のフレーム・ピッチの時間導関数として表すことができる。また、フレームが移動する率は、クラスタに対するプラットフォームの高さによって決まるであろう。座部が上昇している時、輸送装置を、また最終的にユーザを転倒しないようにするために、フレーム率情報に対してもっと望ましい応答を行うように、フレーム率入力に適用される利得(後述する)を変更することができる。
【0110】
車輪制御器1202はまた、データ・ブロック1210から、各車輪が回転している現在速度を受け取ることができる。この速度は、たとえば増分単位で表すことができるが、回転率に基づいてωwheelsとして表すこともできる。
【0111】
車輪制御器1202はまた、ジョイスティックなどのユーザ入力部からの幾つかの入力を受け取ることができる。一般的に、これらの入力は、データ・ブロック1212内に含まれる所望車輪速度として表される。所望車輪速度は、所望移動方向および移動速度を含むことができるが、それに制限されない。車輪制御器1202はまた、データ・ブロック1214から現在車輪位置の表示を受け取ることができる。ブロック1212で得られた所望車輪位置を車輪制御器1202で現在車輪位置と比較することによって、ユーザ入力コマンドに応答するために車輪を駆動すべき差分速度および方向を決定することができる。方向差分情報によって、異なった車輪に取り付けられた異なったモータが異なった車輪電圧Vwを受け取ることによって、輸送装置を旋回させることができる。
【0112】
クラスタ制御器1204も、ブロック1206からのフレーム・ピッチと、車輪制御器1202が受け取ったブロック1208からのフレーム率とを受け取る。クラスタ制御器1204はまた、データ・ブロック1216からクラスタ位置を受け取る。このクラスタ位置は、φcとして記載した。繰り返すと、クラスタ制御器1204は、重心を輸送装置のフットプリントの上方に保持できるようにクラスタを回転しようとすることができる。
【0113】
クラスタ制御器1204はまた、データ・ブロック1218からクラスタ速度を受け取ることができる。クラスタ速度は、クラスタがクラスタを水平方向に通る回転軸中心に回転する率として表される。このクラスタ率は、データ・ブロック1218から受け取ったクラスタ位置の時間に対する導関数であろう。位置および速度の両方は、輸送装置内に含まれる適当なセンサによって決定することができる。適当なセンサとして、加速度計、速度センサおよび位置通報センサがあるが、これらに制限されない。
【0114】
また、制御ユニットは、モード制御器1220を含むことができる。モード制御器1220は、様々なモードから別のモードへの移行を制御することができる。モード制御器1220は、個別の制御器でもよいが、車輪制御器1202およびクラスタ制御器1204のいずれか一方または両方に組み込むこともできる。
【0115】
モード制御器1220は、現在モード1222を出力することができる。現在モードは、データ・ブロック1224から受け取ったユーザ選択モードに基づくことができる。現在モードはまた、車輪制御器1202およびクラスタ制御器1204が受け取った入力のいずれか又はすべてに基づいて、輸送装置が入っているとモード制御器が決定した強化モードの特定のサブモードを指定することができる。また、現在モードを制御ユニット1200が使用して、それぞれ車輪およびクラスタ制御器1202および1204の両方またはいずれか一方の内部に存在する制御ループに加える適正利得を、またはどの制御アーキテクチャを選択すべきかを決定することができる。
【0116】
1つの実施形態では、計算された電圧VwおよびVcを使用して電気モータを駆動することができる。しかし、油圧アクチュエータや燃焼式エンジンなどの他の形式のアクチュエータを使用してもよい。そのような実施形態では、アクチュエータの様々な作動パラメータを考慮に入れることができる上記等式または同様な等式に従って、電圧以外の制御信号を計算してアクチュエータに供給することができる。
【0117】
VwおよびVcを使用して電気モータを駆動する実施形態では、電圧をバッテリ電圧で割り算することによって、車輪モータおよびクラスタ・モータの各々に取りつけられた増幅器に送るデューティサイクル・コマンドを生成することができる。
【0118】
図12Bは、制御ユニット1200の機能ブロック図である。制御ユニット1200は、マイクロプロセッサ1250を含む。 マイクロプロセッサ1200は、バス1256を介して車輪制御ループ1252およびクラスタ制御ループ1254に連結されてそれらと通信することができる。マイクロプロセッサは、車輪制御ループ1252およびクラスタ制御ループ1254から様々なセンサ入力を受け取って、これらの入力から、図7Aおよび図7Bに関連して説明した量のいずれも決定することができる。たとえば、マイクロプロセッサは、車輪およびクラスタ制御ループ1252および1254のいずれか一方または両方の速度センサから受け取ったデータに基づいて、輸送装置のピッチ率を決定することができる。これらの決定は、たとえば、マイクロプロセッサ1250内に含まれるソフトウェアまたはハードウェアによって行うことができる。また、マイクロプロセッサ1250は、後述するように、重心の位置と共に、それに基づいた所望の向きを決定する計算を実行することができる。
【0119】
マイクロプロセッサ1250は、電源1258(たとえば、バッテリ)から電力を受け取ることができる。一部の実施形態では、マイクロプロセッサ1250が、輸送装置の現在の作動モードなどに応じて、車輪およびクラスタ制御ループ1252および254が受け取る電力量を決定することができる。また、ユーザ入力をユーザ入力ブロック1260から受け取ることができる。これらのユーザ入力は、後述するように、輸送装置の特定の作動モードに応じて制御ユニット1200によって考慮量を変更して与えることができる。
【0120】
図13は、制御ユニット1302を含む制御ループ1300である。制御ユニット1302は、図12Aおよび図12Bの制御ユニット1200と同様にすることができる。この実施形態では、制御ユニット1302が様々な入力を受け取り、車輪およびクラスタ制御電圧VwおよびVcを出力する。
【0121】
制御ユニット1302は、ユーザ入力データ・ブロック1304からユーザ入力を受け取ることができる。前述したように、これらのユーザ入力は、ユーザ入力装置として機能するジョイスティックの方向偏差を感知することによって与えることができる。また、ユーザ入力は、前述のように、傾斜プラットフォーム上でのユーザの傾動を表すこともできる。制御ユニット1302はまた、車輪モータ1306およびクラスタ・モータ1308
からフィードバック情報を受け取ることができる。作動モード、ユーザ入力の値、および車輪モータ1306およびクラスタ・モータ1308から受け取った情報に基づいて、制御ユニット1302は、それぞれ車輪モータおよびクラスタ・モータが車輪およびクラスタの相対位置の変更を行うための値VwおよびVcを決定することができる。
【0122】
一部のモードでは、ユーザ入力を車輪モータ電流の制御より優先することが望ましい。そのようなモードの一例が、上記の標準モードである。そのようなモードでは、制御ユニット1302が、ユーザ入力コマンドに対して、利得テーブルまたは特定の制御アーキテクチャ1310から選択された高い感度を与える。このようにして、ユーザは輸送装置の大幅な制御を行うことができる。しかし、そのようなモードでは、輸送装置の安定性が低下する可能性がある。別のモードでは、輸送装置の安定性を高めることが望ましいであろう。そのようなモードでは、ユーザ入力に対する感度を低くして、安定化ルーチンに高い感度を与える。このように、制御ユニット1310内のソフトウェアまたはハードウェアのいずれかで具現できる制御パラメータに基づいて、輸送装置をさらに安定させることができる。
【0123】
図14は、本発明の態様に従って使用することができる利得テーブル1400の一例を示している。利得テーブル1400は、3モード、すなわち、第1モード1402、第2モード1404および第3モード1406を有する装置用にすることができる。本実施形態では、各モードが3つの利得係数C1、C2およびC3を含むことができる。図14の利得テーブル1400は、例示のためのものであって、好適な利得値を反映するものではないことに注意されたい。すなわち、図14の値およびモードは、必ずしも上記の様々なモードの各々の好適な係数を反映していない。
【0124】
これらの係数を制御ユニットが使用して、一部の実施形態では一定の入力の効果を増減させる。たとえば、係数C1に輸送装置の位置誤差項を掛け算することによって、位置誤差項が輸送装置の作動に与える効果を変化させることができる。
【0125】
図14の例では、係数C1は、クラスタ・モータから受け取った値によって決定されるクラスタ位置に適用される係数に対応するであろう。値C2は、車輪モータから受け取った車輪位置の値に適用される係数に対応するであろう。値C3は、ユーザ入力部から受け取った方向ベクトルに適用される係数であろう。利得テーブル1400において、特定係数に割り当てられた値が大きいほど、その利得が適用される入力が制御システム内で受け取る優先度が大きいであろう。たとえば、第1モードでは、クラスタ係数C1の値が1である。1のような低い値を有することは、第1モードではクラスタ位置が輸送装置の安定化にあまり利用されないことを意味するであろう。第1モードの係数C2の値は3である。このため、輸送装置の安定化において車輪がクラスタよりもっと活動的な部分である。同様に、第1モードのC3で値が7であることが示されている。C3がこのように大きい値であることは、第1モードがユーザ入力に非常によく応答することを意味する。このため、第1モードは、安定性があまりないモードであり、存在する安定性はすべて、車輪の回転によるものであって、ユーザの入力に対する応答に非常によく一致する。したがって、第1モードは、上記の標準モードに似たモードであろう。
【0126】
同様に、第2モードはクラスタ利得がゼロで、車輪利得が比較的小さく(C2=5)、C3が比較的大きい値である(C3=6)ため、ユーザ入力によく従う。このモードはまた、車輪が輸送装置の釣り合いの主たる責任を負い、クラスタが固定位置に留まる均衡モードに似ているであろう。ユーザ入力によって大きく妨害されることなく車輪が輸送装置を安定させるため、ユーザ入力C3に対する応答性は標準モード(すなわち、たとえば第1モード)より低い。しかし、均衡モードでは、車輪が輸送装置を釣り合わせてほぼ直立位置に維持しながら、ユーザが表面を通行できるようにすることが望ましいため、ユーザ入
力がゼロにセットされていない。
【0127】
第3モードのクラスタおよび車輪利得は、クラスタ位置および車輪位置が輸送装置の安定性に関連し、それの自動制御に使用されるようなレベルに設定されている。ユーザ入力利得C3が非常に低いレベルまで減少しており、ユーザはまだ輸送装置をある程度は制御できるが、主に安定化がクラスタおよび車輪によって自動的に行われる。そのようなモードは、たとえば、輸送装置が比較的不安定であると決定された時、強化モードにすることができる。そのようなモードでは、輸送装置の重心がクラスタの端部点の間に維持されるように、クラスタおよび車輪が回転する。
【0128】
制御スケジューリング
前述したように、強化モード制御器は、様々なモード間で切り換わることができる。モード間で切り換える理由の1つは、人輸送装置の安定化を図ることである。サブモード間の移行時に、制御ユニット内の制御ループに供給される利得を変化させるか、制御アーキテクチャ自体を変化させることができる。しかし、利得またはアーキテクチャを急激に変化させると、輸送装置の作動に急激な影響が生じるであろう。これによって、重心が急加速されて、輸送装置の乗り心地が悪くなるか、それが不安定さえなるであろう。また、急激な制御変化(利得またはアーキテクチャのいずれか)は、システムの摩耗を増加させるであろう。このため、モードの円滑な移行を行う何らかの方法が必要である。システムのモード間の円滑な移行を行うためにここに記載されたシステムおよび方法は、人輸送装置を制御する状況で効果的である。当業者であれば、円滑なモード間移行に関する教示が人輸送装置への適用に制限されることはなく、モード間の移行を行ういずれの多重モードシステムにも適用することができることを理解できるであろう。このため、以下の説明では、人輸送装置の代わりに「システム」と言う。一部の実施形態では、システムは、被制御装置からのフィードバックを含むシステムであるが、ここで説明するスケジューリングを制御するためにフィードバックは必要ない。
【0129】
他の状況でモード間の円滑な移行を行うために従来から使用されていた1つの方法は、利得が新しいモードの利得になるまで、最初のモードから利得をスルー変化させる(slew)ことであった。たとえば、第1作動モードで利得K1の値が4であるとする。第2モードでの利得係数K1が、たとえば、10であるとする。この新しい利得値を直接的に適用すると、モードの変更時にシステムに急な外乱が生じるであろう。急な外乱は、システムの作動に影響を与え、システムを不安定にするであろう。このため、従来技術では、利得係数(たとえば、K1)の値を繰り返し増加させることによって、利得値を4から10にゆっくりスルー変化させる。たとえば、時間T0で利得係数が4であり、時間T1で利得係数が5であり、時間T2で利得係数が6であるように、利得係数が最終的に10に達するまで続ける。
【0130】
しかし、このような作動では、所望の新しいモードに合わせる(commiserate with)ように応答しながら、システムの作動を安定させるために利得値が適正状態に達するのに時間がかかりすぎることがわかっている。また、利得が新しい値にスルー変化する前に、システムのモードが再び切り換わる可能性がある。そのような場合、システムは決して新しい作動モードに真に達することはなく、予測不能であるモード間の準モードに留まる。予測不可能性は、システムの有効性を低下させるシステム・エラーの原因になるであろう。
【0131】
また、システムがモード変更を行っていない時でも、システムの制御コマンドを平滑化することが望ましいであろう。たとえば、モータ制御器から受け取った制御信号に大きい電圧不連続性があると、モータ駆動システムに損傷を与える可能性がある。
【0132】
このため、1つの実施形態では、制御ユニットからの制御コマンドを、被制御装置に加
える前に平滑化する。平滑化は、たとえば、制御ユニットの出力部と制御ユニットによって制御される装置との間に配置されたスムーザによって行うことができる。スムーザは、たとえば、制御信号が変化する割合を制限するいずれかの形式のフィルタか、制御信号にオフセット値を加算する加算器にすることができる。
【0133】
図15は、制御信号を被制御装置1502に印加する前に平滑化するために実行することができるシステムの一例である。システムは、制御信号を生成する制御ユニット1504を含むことができる。制御信号は、被制御装置の動作を制御するために使用される。制御信号は、多くの理由から急激な値の変化を受けるであろう。制御信号の急激な変化の一例は、システムの作動モードの変化によるものであろう。スムーザ1506は、被制御装置1502に最終的に供給される制御信号(すなわち、スムーザ1506の出力)が変化する割合を制限することができる。
【0134】
スムーザ1506は、たとえば、フィルタ、オフセット値(おそらくは減衰オフセット値)を制御信号に加える加算器、ヒステリシス制御回路などであるが、それらに制限されることはない。
【0135】
図16は、制御信号を平滑化する方法のブロック図である。処理はブロック1660で始まり、ここで制御信号の値が決定される。制御信号は、ユーザ入力、制御ループ出力、プリセット値などによって生成することができる。制御信号の値は、電圧、電流、値のデジタル表示、アナログ信号などのいずれのタイプの単位にすることもできる。
【0136】
制御信号を決定した後、ブロック1602で移行処理が実行される。移行処理は、制御信号の平滑化、制御信号へのオフセットの加算、制御信号の変化率の決定、システムがモード間の移行を行ったかどうかの決定を含むことができるが、これらに制限されることはない。場合によっては、移行処理は、制御信号に何もしないステップを含むことができる。
【0137】
ブロック1602で制御信号を処理し、必要な変更をすべて制御信号に加えた後、変更制御信号を被制御装置システムに印加する。システムは、単一の被制御装置または幾つかの被制御装置を含むことができる。
【0138】
1つの実施形態では、本発明は、移行が円滑で、モード間の移行がほぼ瞬時であるようにモード間の移行を行うシステムおよび方法を含むことができる。1つの実施形態では、これは、第1係数を使用した時に被制御装置に印加される最後の制御信号(すなわち、変更された制御信号)と新しい係数を使用して生成された非変更制御信号との差を経時的に順次減衰させながら、新しい利得係数セットをシステムに瞬時にインストールすることによって達成することができる。別の実施形態では、システムが、モードの変化時に制御アーキテクチャを変化させて、制御信号の差を減衰できるようにする。オフセット(差)がどのように減衰されて制御信号に加えられるかについては詳細に後述する。
【0139】
図17Aは、円滑なモード間移行を行うために利得スケジューリング操作を実施するように構成された制御ループ1700のブロック図を示している。制御ループ1700は、フィードバックループの一部である制御ユニット1702を含む。制御ユニット1702は、データ・ブロック1710からユーザ入力を受け取ることができる。しかし、制御ユニットは、ユーザ入力を受け取る必要はなく、完全な自己調整式にすることができる。制御ユニットはまた、制御信号受信器1712から現在の作動特性を受け取ることができる。制御信号受信器1712は、入力信号に応答するいずれの装置でもよい。たとえば、制御信号受信器1712は、入力制御電圧のレベルに応じて回転する電気モータでもよい。この場合、制御信号は制御電圧であろう。
【0140】
制御ユニット1700は、第1作動モード用の利得係数1704と、第2作動モード用の利得係数1706とを含むことができる。これらの係数は単一の利得テーブル内に記憶してもよいが、独自の個別テーブルにしてもよい。係数は、フロッピー(登録商標)・ディスク、ROM、RAMなどのいずれのコンピュータ読み取り可能媒体に記憶してもよい。
【0141】
現在モード・データ・ブロック1714に表される現在作動モードに基づいて、セレクタ1708が第1モード用係数1704または第2モード用係数1706のいずれを適用するかを選択することができる。セレクタ1708は、適正な係数を選択して、それらを制御ユニット1702用の制御係数1716として印加する。制御係数は、たとえば、人輸送装置の作動に適用される現在モード利得係数を表すことができる。
【0142】
さらに具体的に言うと、制御係数は、ユーザから、または制御信号受信器1712から受け取られた様々な入力値に適用することができる。制御係数は、制御ユニット1702の制御サブシステム1718によって使用することができる。制御サブシステム1718は、制御係数1716を様々な入力に適用して制御信号を生成することができる様々な制御ループを含むことができる。たとえば、制御サブシステム1718は、上記のクラスタおよび車輪制御器を含むことができる。
【0143】
システムはまた、オフセット・データ・ブロック1720からオフセット値を受け取ることができる。オフセットの値は、システムがモードを切り換える直前に制御信号受信器1712に加えられた最後の制御コマンド(すなわち、最後の平滑化された制御信号)と、制御係数が変更された直後に生成された制御信号との値の差であろう。オフセット値をスムーザ1722が受け取って、オフセット・データ・ブロック1720から受け取った値の減衰バージョン(減衰したもの)に現在制御信号を繰り返し加算する。たとえば、平滑化された制御信号の、システムがモードを切り換える直前の値が100で、システムがモードを切り換えた直後の制御信号値が10である場合、システムがモードを切り換えた後に制御ループ1700を最初に通過する時、90の値を制御信号に加算する。制御ループ1700を次に通過する時、この値を一定量だけ減衰して、再び制御信号に加算する。オフセット値がゼロに比較的近くなるように減衰するまで、これを繰り返すことができる。第1モード中に加えられる平滑化された制御信号および第2モードの開始時に生成される新しい制御信号の値に応じて、オフセット値が正負のいずれの数値でもよいことに注意されたい。
【0144】
図17Bは、モード間の円滑な移行を行うことができる別の制御システムのブロック図を示している。この実施形態では、第1モードが第1制御アーキテクチャ1750を含み、第2モードが第2制御アーキテクチャ1752を含む。各制御アーキテクチャは、システムを異なった方法で制御する異なった制御信号を発生することができる。制御信号受信器(図示せず)からの入力(1754)が両制御アーキテクチャに加えられる。スイッチ1756は、現在モードに基づいて、システムを制御する第1または第2アーキテクチャを選択する。上記のものと同様にして、平滑化された制御信号を制御信号受信器(図示せず)に与えるために、スムーザ1758が減衰オフセットを加算する。
【0145】
前述したように、制御器スケジューリング技術によって、制御モード間の円滑な移行を行うことができる。輸送装置の作動を様々な形で参照しながら以上の説明を行った。しかし、制御スケジューリングに関する教示がいずれの制御システムにも適用可能であることは、容易に理解されるであろう。たとえば、航空機、ヘリコプター、電気モータ、油圧モータ、燃焼式エンジンまたはジェット・エンジンのモード移行を制御する時に、この形式の制御器スケジューリングを使用することができる。
【0146】
図18は、システムを制御するためにフィード・バック・システムで実行できる制御スケジューリング・プロセスのフローチャートである。処理は、判断ブロック1802で始まり、ここで、プロセスを最後に通過した後にシステムのモードが変更されているかどうかを決定する。モードが変更されている場合、ブロック1804でオフセット値を決定する。前述したように、オフセット値は、制御信号受信器(図17)へ送られた最後の制御信号からモード切り換え後に最初に生成された制御信号を引いた値に等しいであろう。しかし、処理は必ずしも新しいモードで最初に生成された制御信号を使用しなくてもよく、モード移行に近いある時点で生成された制御信号を使用してもよい。オフセット値を決定した後、ブロック1806で、減衰オフセット値を制御信号に加算する。減衰オフセットを生成する様々な方法を以下に説明する。
【0147】
ブロック1808で、平滑化された出力制御信号の値を記憶して、後に使用できるようにする。それから、処理はブロック1802に戻る。
ブロック1802で、モードが変更されていないと決定された場合、判断ブロック1810で、現時点でオフセット減衰があるかどうかを決定する。オフセットが減衰中である場合、ブロック1806で、減衰オフセットを制御信号に加算することが好ましい。しかし、オフセットが減衰していない場合、ブロック1808で処理が続く。オフセットが減衰しているかどうかを決定しなくてもよいことは、容易に理解されるであろう。その場合、判断ブロック1801を省き、ブロック1802で、モードが変更されていないことが決定された場合、処理が直接的にブロック1806に進む。
【0148】
オフセット値を減衰させることができる幾つかの異なった方法が存在するであろう。たとえば、オフセットの値にそれを減衰させる係数(たとえば、1未満の値)を掛けることができる。これは、先のオフセット値より小さい新しいオフセット値を生成する。この小さいオフセット値を更新して現在オフセット値にして、スムーザに送って次の制御信号に加算できるようにする。あるいは、オフセットから固定値を繰り返し減算することによって、オフセットを減衰することもできる。
【0149】
図19は、図17Aおよび図17Bの様々な位置に存在する様々な信号を示している。信号1902は、制御ユニットが生成すると考えられる制御信号を表す。時間t0で、制御信号の値はy1である。時間t1で、制御信号の値がy1からy2に急激に変化する。この変化は、システムのモード移行によって発生するであろう。信号1904は、制御信号1902に加算することができる減衰オフセット値を表す。t0で、オフセット値はほぼ0である。時間t1で、オフセット値がy1−y2のレベルまで上昇する。即ち、もちろん、y1は、時間t1にシステムに加えられた値に等しいとする。オフセット値は経時的に減衰して、時間t4でほぼ0になる。
【0150】
信号1906は、システムに加えられる平滑化された制御信号(すなわち、平滑化された制御信号)の値を表す。信号1906の値は、信号1902の値に信号1904の値を加えたものに等しい。信号1906は、制御信号が上昇し始める時間t2まで、信号1904と同様に減衰する。制御信号1902が上昇するため、信号1906も上昇するであろう。制御信号1902が平坦になり始める時間t3で、平滑化された出力信号1906が再び減衰オフセット信号1904に追従し始めて、減衰オフセット信号1904がほぼ0まで減衰する時間t4まで続く。時間t4では、点1908で示されているように、制御信号1902および平滑化された出力信号1906がほぼ同一である。
【0151】
システム動作
図20および図21は、輸送装置のクラスタおよび車輪の位置を制御する制御ループの例を示している。これらの制御ループの例は、人輸送装置を安定させるために使用するこ
とができる。容易に理解できるように、制御ループは、クラスタおよび車輪制御コマンドの両方を生成する単一の制御ループに統合してもよい。また、輸送装置の機能的能力に応じて、これらの制御ループの様々な部分を省略したり、別の部分を追加することができる。さらに、当業者であれば、図20および図21に関連して説明する様々な制御ブロックをハードウェアまたはソフトウェアのいずれか、またはその両方の組み合わせで実行できることも容易に理解できるであろう。
【0152】
図20を参照すると、車輪制御ループ2000は、フレーム制御サブループ2002、車輪制御サブループ2004、ヨー制御サブループ2006およびクラスタ速度監視制御サブループ2008を含む。図20の制御ループは、単一の車輪に関して与えられている。具体的に言うと、制御ループは、輸送装置の右車輪(RW)を作動させることができる。一部の実施形態では、輸送装置の各車輪に1つの制御器を設けることができる。しかし、単一の制御ループを使用して車輪のすべてを制御することもできる。
【0153】
フレーム制御サブループ2002は、基準フレーム関連値および実際フレーム関連値に基づいて、車輪の回転を制御することによってフレームの安定化を図る信号を生成する。たとえば、輸送装置が縁石から落下したためにフレームが前傾している場合、輸送装置のフットプリントの上方に重心を保持するために、フレーム制御サブループ2002は、車輪モータが車輪を高速で前方に駆動することができるようにする。
【0154】
車輪制御サブループ2004は、輸送装置の性能を所望のユーザ入力に一致させようとするために使用することができる。すなわち、車輪制御サブループ2004は、車輪がユーザ入力に厳密に従うことができるようにする。また、主たる安定化が車輪によって得られる車輪均衡モードおよび均衡モードにある時、車輪の位置が重要であろう。そのため、システムが車輪均衡モードである時、車輪制御サブループがユーザ入力2010から遮断されているであろう。
【0155】
輸送装置が確実に旋回できるようにするために、ヨー制御サブループ2006を実行することができる。車輪モータ速度差およびユーザ入力に基づいて、ヨー制御サブループ2006は、車輪モータの各々に異なった車輪制御電圧が印加されるようにする制御信号を発生することができる。
【0156】
クラスタ速度監視制御ループ2008は、クラスタの運動学的状態に関する情報を使用して、車輪の動作に影響を与える。クラスタの車輪が地面から持ち上がり始めた場合、L2(cosφc)(ブロック2078)にローパス・フィルタリングされたクラスタ速度(ブロック2080)を掛けた値がゼロ未満である。本例では、クラスタ速度監視制御サブループ2008が、重心をフットプリントの上方に保持するために車輪を加速する信号を発生するであろう。L2は、車輪軸からクラスタ・ピボットまでの距離である。
【0157】
車輪制御ループ2000は、輸送装置のユーザからのユーザ入力2010をより多く受け取ることができる。ユーザ入力は、たとえば、ジョイスティックから受け取ることができる。ユーザ入力2010は、指令されたFORE/AFT速度2012と、指令されたヨー(YAW)速度2014とを含む。輸送装置が装置のピッチを補正中であるか、車輪均衡サブモードに入っている時、指令されたFORE/AFT速度2012および指令されたヨー(YAW)速度2014の両方がそれぞれスイッチ2016および2018によって遮断されるであろう。ピッチ補正中および車輪均衡モードでスイッチ2016および2108を切る理由は、いずれの場合も装置の安定化がユーザ入力コマンドに対する応答より重要になるからである。
【0158】
たとえば、1組の車輪が地面から離れている強化モード(たとえば、図7Aを参照され
たい)にある輸送装置の簡略化モデルによって、ピッチ加速度をそれぞれクラスタおよび車輪トルクτcおよびτwの関数とした関係が示される。
【0159】
【数7】

【0160】
但し、L2は車輪軸からクラスタ・ピボットまでの距離であり、rwは車輪の半径である。クラスタ・トルクτcの前にある係数は、クラスタがピッチにどの程度の影響を与えるかをよく表している。輸送装置が釣り合い車輪から傾斜する程度が大きいほど、ピッチを正す際のクラスタの影響力が大きいであろう。反対に、重心が後輪の上方付近にある場合、L1sinθ1≒L2cosφcで、クラスタ・トルク係数がゼロに近くなる。車輪均衡制御器に入る基準は、クラスタ・トルク係数の大きさである。この係数が小さい時、車輪PDおよび車輪POCは、ピッチに影響を与える主要手段として車輪を使用する車輪均衡制御器ほど有効でないであろう。また、1組の車輪だけが地面上にある可能性が高くなるほどクラスタ角度を大きくしなければならない別の状態もある。このため、輸送装置を釣り合わせる主要手段は車輪である。したがって、ユーザ入力コマンドを考慮に入れた場合、輸送装置が輸送装置の安定化に対して有効でなくなるため、制御ループはユーザ入力コマンドを考慮に入れようとしない。
【0161】
再び図20に戻ると、車輪均衡でピッチ補正しない時、FORE/AFT速度コマンド2016は速度スルー(slew)・リミッタ2020を通り、それが前進速度の量を制限する。たとえば、プラットフォームが高い位置にある時、速度を低くすることが望まれるであろう。
【0162】
指令されたFOR/AFT速度2012を加算器2022で指令されたヨー(YAW)速度2012と加算することによって、各車輪の所望速度を決定することができる。この所望車輪速度を車輪制御サブシステム2004が使用して、車輪速度誤差、車輪位置誤差および車輪速度フィードフォワード入力を決定する。車輪速度誤差を決定するために、加算器2022の出力を加算器2024で現在車輪速度と組み合わされる。車輪速度誤差を誤差制限機能構成要素2026に通してから、フィルタ2028でローパス・フィルタリングする。次に、ローパス・フィルタリングされた車輪速度誤差の出力に車輪速度誤差利得定数2030を掛けることによって、車輪コマンドの一部を生成する。
【0163】
車輪位置誤差を決定するために、加算器2024の出力を積分器2032で積分してから、誤差リミッタ2034に通す。位置誤差に利得2036を掛けることによって、全車輪コマンドの一部を生成する。
【0164】
所望の速度値(加算器2022の出力)をロー・パス・フィルタ2038に通してから車輪速度フィードフォワード利得値2040を掛けることによって、車輪速度フィードフォワード値を決定することができる。車輪速度のフィードフォワードによって、制御システムは、大きい定常速度または位置誤差信号を処理しなくても、指令された速度に必要なモータ電圧を実質的に推定することができる。
【0165】
車輪制御サブ制御ループ2004内で生成された誤差信号の各々を加算器2042に送り、他のすべての誤差決定値(determinations)に加えることによって、車輪電圧Vwが生成される。
【0166】
車輪制御ループ200はまた、フレーム・ピッチ誤差およびピッチ率誤差を生成するフレーム・ピッチ・パラメータ関連サブ制御ループ2002を含むことができる。フレーム
・ピッチ誤差は、加算器2046で現在フレーム・ピッチを所望フレーム・ピッチと比較することによって生成される。所望フレーム・ピッチは、輸送装置のパラメータに基づいて推定することができる。1つの実施形態では、所望フレーム・ピッチ2044は、重心をクラスタの中心点の真上に配置することができるフレーム・ピッチである。この所望フレーム・ピッチは、以下の説明によって決定される重心の位置に基づくことができる。所望フレーム・ピッチと現在フレーム・ピッチとの間の差をロー・パス・フィルタ2048によってフィルタリングしてから、フレーム・ピッチ利得2050を掛けることによって、車輪コマンドの別の部分を決定することができる。
【0167】
ピッチ率誤差は、加算器2054で現在ピッチ率を所望ピッチ率2052と比較することによって決定することができる。1つの実施形態では、ピッチ率が0であり、これは輸送装置が完全に安定していることを表す。現在フレーム・ピッチと所望ピッチ率との差をロー・パス・フィルタ2056でフィルタリングしてから、ピッチ率利得2058を掛けることによって、車輪コマンドの別の部分を生成することができる。フレーム・ピッチおよびピッチ率誤差の両方が加算器2042に与えられる。
【0168】
輸送装置用のヨー誤差信号を制御するために、指令されたヨー(YAW)速度2018をヨー(YAW)サブ制御ループ2006に与えることができる。ヨー(YAW)速度制御サブループ2006で、ヨー(YAW)速度誤差およびヨー(YAW)位置誤差を決定することができる。(加算器2060によって決定される)指令されたヨー(YAW)速度2018と現在ヨー(YAW)速度との差をリミッタ2062およびロー・パス・フィルタ2064に通し、ロー・パス・フィルタ2064の出力にヨー(YAW)速度利得2066を掛けることによって、ヨー(YAW)速度制御信号が決定される。同様に、指令されたヨー(YAW)速度2018と現在ヨー(YAW)速度との差を積分器2068に通し、リミッタ2070で制限する。その制限信号にヨー(YAW)位置利得2072を掛けることによって、ヨー(YAW)位置コマンドを生成することができる。ヨー(YAW)速度コマンドおよびヨー(YAW)位置コマンドの両方が加算器2042に与えられる。
【0169】
車輪制御器200はまた、クラスタ速度監視制御サブループ2008を含み、これは、φcにロー・パス・フィルタ・クラスタ速度を掛けた値(ブロック2082で決定されるブロック2078および2080の積)がゼロ未満である場合、スイッチ2076によって遮断される。
【0170】
車輪コマンドのすべての部分をブロック2042で加算することによって、車輪制御電圧Vwが生成される。前述したように、平滑電圧制御信号Vwsを生成するために、この電圧をスムーザ2086によって平滑化する。減衰フィルタ・オフセット2088をロー・パス・フィルタ2090に通してから、スムーザ2086でVwに加算することによって、上記のVwsを生成することができる。Vwsはプラント2092へ送られる。プラントは、車輪モータおよびクラスタ・モータの両方を含むことができ、特に、現在フレーム・ピッチ、現在ピッチ率、右車輪(RW)速度、左車輪(LW)速度、クラスタ位置およびクラスタ速度を出力することができる。
【0171】
図21は、クラスタ制御ループ2100の一例を示している。車輪制御ループと同様に、クラスタ制御ループ2100は、フレーム・ピッチ誤差およびピッチ率誤差を生成するフレーム関連サブ制御ループ2102を含むことができる。このフレーム関連サブ制御ループ2102は、上記のものと同一の制御ループでもよいが、クラスタ制御ループ2100内に維持された個別の制御ループでもよい。
【0172】
また、クラスタ制御ループは、最大クラスタ位置サブループを含むことができる。このサブループは、強化モードで利用可能な最大クラスタ角度であるφc,stop angleの値を受
け取る。クラスタがφc,stop angleより大きい角度である場合、クラスタ位置制御器がスイッチ2106で遮断される。スイッチ2106が開くと、加算器2108で現在クラスタ位置をφc,stop angleから減算する。次に、加算器2108の出力(クラスタ位置誤差)にクラスタ位置利得2110を掛けることによって、クラスタ位置コマンドの一部を決定することができる。
【0173】
クラスタ制御ループ2100はさらに、クラスタ速度誤差を生成するクラスタ速度サブ制御ループを含むことができる。クラスタ速度サブ制御ループ2112では、加算器2116によって現在クラスタ速度を所望クラスタ速度2114から減算する。1つの実施形態では、所望クラスタ速度がゼロに設定されるであろう。加算器2116の出力をロー・パス・フィルタ2118に通した後、クラスタ速度利得2120を掛けてから、加算器2122に送る。それから、加算器2112の出力を前述したようにスムーザ2122で平滑化することによって、プラントに送られる信号Vcsを生成することができる。
【0174】
強化モードの使用例
1つの実施形態では、強化モードが、凹凸地面で使用するように構成されている。この実施形態では、輸送装置は4つの接地車輪を使用することができ、FORE/AFT面上の牽引力を増加するために、それらのすべてを動力付きにすることができる。輸送装置が一例の強化モードでいかに作動するかの例を以下に示す。
【0175】
表面の通行
強化モードでは輸送装置を安定させるために、クラスタおよび車輪の両方を使用することができるので、強化モードは凸凹の平坦でない表面上でうまく働くことができる。1つの実施形態では、4つの車輪すべてを個別のモータで駆動することができ、そのような実施形態では、輸送装置は滑りやすい表面もうまくこなすことができる。たとえば、車輪の1つの車輪速度が大幅に増加した場合、制御ユニットは、その車輪の速度が他の車輪の速度と同様になるまで、その車輪に供給される動力量を減少させる。
【0176】
障害物
一部の実施形態では、強化モードは、輸送装置が縁石または石などの障害物を越えることができるようにする。たとえば、縁石を越える時、ユーザは輸送装置に(ユーザ入力装置を用いて)縁石と接触するように命令する。車輪が縁石と接触している時でも、ユーザが輸送装置に前進を命令し続けると、車輪位置誤差項(図20を参照)が増加する。誤差項が増加すると、車輪に加えられるトルクによって前輪が縁石上に乗り上がる。前輪が縁石に上がった時、フレーム・ピッチをゼロ付近に保持するためにクラスタが回転する。上記動作がどの程度の速度で実施されるかによって、制御ユニットは車輪PDモードおよび車輪POCモード間で切り換わるであろう(クラスタが回転する率によって決まる)。後輪を縁石上に乗せるために、ユーザが前方向に駆動し続けると、クラスタが逆方向に回転する。
【0177】
1つの実施形態において、(たとえば)約15.24cm(6インチ)の縁石を登る場合、クラスタが回転するため、輸送装置は車輪均衡モードに切り換わる。移行が生じるので、輸送装置を安定化するために、車輪が逆方向に駆動されて縁石から離れる。このことは、越えようとしている縁石が大きすぎて回避すべきであることをユーザに気付かせる有効な方法であろう。
【0178】
縁石を降りるには、ユーザは縁石から離れるように輸送装置を簡単に駆動するだけである。ゆっくり行えば、輸送装置は車輪PDモードに保たれるであろう。ユーザが高速で縁石から離れる場合、クラスタ回転が非常に大きくなって、少なくとも4つの車輪すべてが再び地面に載るまで、輸送装置は車輪POCモードに移行する。縁石から高速で落下する
と、輸送装置を車輪均衡モードに入れるほど大きいクラスタ回転が生じるであろう。その時、輸送装置は、重心が装置のフットプリントの上方に位置するように車輪を十分に前方向に駆動するために、それ自体の制御を優先する(すなわち、ユーザ入力コマンドを無視する)。
【0179】
重心の推定
以上の説明で時々、重心の位置を参照してきた。一部の実施形態では、輸送装置は、直接的に重心の位置の推定値であろう。別の実施形態では、輸送装置は、重心の位置の推定値に基づいた所望の構成要素向きを使用するであろう。たとえば、図20では、(ブロック2046で)現在フレーム・ピッチと比較した所望ピッチ(たとえば、ブロック2044)は、重心の位置の推定値に基づくことができるフレーム・ピッチである。すなわち、所望ピッチは、輸送装置の一定の構成要素が一定の向きにある時に重心を輸送装置のフットプリントの上方に位置させることがわかっているフレーム・ピッチであろう。
【0180】
装置の構成要素の所望の向きを決定するために、装置の重心をどのように推定できるかについて、以下に詳細に説明する。人輸送装置の状況で重心に触れるが、重心の位置の推定に関連した本説明の教示が、輸送装置用の重心の推定に制限されないことは、容易に明らかになるであろう。そのため、以下の説明は、人輸送装置に当てはまるのに加えて、重心の推定が必要ないずれの装置にも当てはまるであろう。そのような装置を以下の説明でシステムと呼ぶ。
【0181】
図22Aは、重心推定値を使用することができる制御ループの一例を示している。制御ループ2200は、制御信号発生器2202と、幾つかの構成要素を有する装置2204とを含む。制御信号発生器2202は、装置2204内に含まれるアクチュエータ(図示せず)が装置2204の様々な構成要素の向きを変化させることができるようにする制御信号を発生する。制御信号発生器2202は、装置2204の構成要素の1つに包含してもよい。しかし、説明しやすくすると共に、構成要素の1つの向きを変更するために制御信号発生器2202が装置2204の少なくとも1つのアクチュエータに制御信号を与えることを明白に示すために、制御信号発生器2202を個別のブロックとして示している。制御信号発生器2202は、上記の輸送装置の制御ユニット(電子機器ボックス)と同様にすることができる。
【0182】
制御信号発生器2202への入力は、構成要素の1つの現在の向きと、所望の向き2206との差(すなわち、オフセット)である。オフセットは、オフセット値を生じるために現在の向きを所望の向き2206から減算する加算器2208の出力である。制御信号発生器2202は、オフセット値を受け取り、オフセット値に基づいて、オフセットを減少させるように装置が構成要素の向きを変更できるようにする制御信号を発生する。
【0183】
図22Bは、システムの構成要素の所望の向きを表す値を生じることができるシステムのブロック図である。所望の向き決定器2212が幾つかの入力を受け取って、出力として構成要素の所望の向きを生成する。所望の向きは、制御されているシステムの作動モード(データブロック2213)に応じて変化するであろう。1つの実施形態では、所望の向きは、システムを釣り合い状態にすることがわかっている(または、計算されている)構成要素の向きに等しいであろう。この情報は、データ・セット2214に含まれるであろう。データ・セットは、おおまかには重心の位置の推定値と呼ぶことができる。すなわち、装置の一定の構成要素が一定の向きにある時、装置の重心が特定位置にあると仮定することができる。これは、重心の位置の推定値と同じである。このデータ・セット2214を作成する方法については後述する。
【0184】
所望位置決定器2212は、システムの現在モード2213も受け取る。一部のシステ
ムには、重心の推定値を異なった方法で使用することができる異なった作動モードがある。たとえば、装置は、ユーザが輸送装置から落下しないようにするために自己安定化を行う人輸送装置にすることができる。そのようなシステムでは、重心の位置の推定値が、輸送装置を釣り合わせるように輸送装置を制御する際に使用されるであろう。再び図20を参照すると、ブロック2046の所望フレーム・ピッチを決定するために、重心の推定値を使用することができる。この推定値をどのように決定して使用するかについては後述する。
【0185】
図23は、重心2304が後輪2302の上方に変位している輸送装置の例を示している。重心の位置2304は、輸送装置、ユーザおよびユーザが持っているか、輸送装置に載置されている他のすべてのペイロードを含むシステム全体の重心の位置を表す推定量であろう。重心2304は、電子機器ボックス2305に対する座標値θ3と、クラスタ軸2306に対する長さL1とによって位置を定めることができる。一部の実施形態では、角度θ3が、使用される唯一の変数であろう。他の実施形態では、重心の位置を推定するためにθ3およびL1の両方が使用されるであろう。
【0186】
前述したように、電子機器ボックス2305(制御ユニット)は、クラスタ2308および電子機器ボックス2305の向きを測定することができる様々なセンサ、たとえば、ピッチセンサを含むであろう。また、クラスタ2308の向きは、クラスタ上か、電子機器ボックス2305内に配置されたクラスタ速度センサの出力を積分することによって決定するか、クラスタ・モータによって報告することができる。
【0187】
輸送装置は、中心点2310を有する接地部材2302(この実施形態では、車輪)を含むことができる。重心2304が中心点2310(または、安定性を与える接地部材上のいずれかの他の点)の上方に位置する時、輸送装置は釣り合う。
【0188】
図23では、時計回り方向を指す角度を表す矢印が正の値になるように、角度を測定する。たとえば、電子機器ボックスに対するクラスタ位置θcには正の値が割り当てられるであろう。
【0189】
角度θ3は、L1と電子機器ボックス2305との間の角度である。電子機器ボックス2305は、輸送装置の様々な構成要素の向きを決定する傾斜センサを含むことができる。これらの傾斜センサは、直接的に水平線に対する電子機器ボックスの角度θeを測定することができる。制御器(図示せず)が、電子機器ボックス2305に対するクラスタの角度を監視することができる。距離L2は、クラスタの中心2308から地面と接触している車輪2302の中心点2310までの距離である。L2は、使用中の特定の輸送装置によって決まる既知のパラメータである。1つの実施形態では、車両の作動中にL2が変化しないが、輸送装置が用いるクラスタの形式によっては、L2が変化するであろう。
【0190】
重心2304が接地車輪の中心点2310の上方にある時、輸送装置をモデル化する1つの方法が、
【0191】
【数8】

【0192】
である。この等式の項を展開して整理すると、次のようになる。
【0193】
【数9】

【0194】
この等式を解くことによって、たとえば、電子機器ボックス2305の所望の向き(θe)を決定することができる。L1およびθ3は非線形三角関数であり、電子機器ボックス2305内にあるマイクロプロセッサの処理能力は限られているであろうから、三角関数を用いてθeを直接的に計算することを避ける方が効率的であろう。そのような場合、ルックアップ・テーブルと曲線当てはめスキームとを使用して、θeの補正値を発生する。展開して整理した等式に基づいて曲線当てはめを行うために、展開式を簡単にすると、
【0195】
【数10】

【0196】
となり、項を整理すると、
【0197】
【数11】

【0198】
になり、ここで、
【0199】
【数12】

【0200】
であり、そしてhはプラットフォーム高さである。θeの2つの値がわかれば、この等式をK1(h)およびK2(h)について解くことができる。K1(h)およびK2(h)の値がわかれば、簡単な三角関数計算を使用して、L1およびθ3の両方の値を決定することができる。前述したように、L1およびθ3が与えられれば、重心の位置がわかる(もちろん、その位置は、輸送装置の場合、クラスタの中心点にすることができる基準位置を基準にしている。後述の曲線は、K1(h)およびK2(h)を、従ってL1およびθ3を決定するために使用されるθeの2つの値を決定する有効な方法を与える。
【0201】
あるいは、電子機器ボックスの角度を重力に対するクラスタ角度φcの関数として求めることができ、これによって次式が得られる。
【0202】
【数13】

【0203】
繰り返すと、輸送装置を上記等式によってφcに基づいてモデル化した場合、L1およびθ3を解くために、θeの2つの値が必要である。
輸送装置がどの作動モードで作動しているかに応じて、重心を推定するために電子機器ボックス角度またはクラスタ角度のいずれかを使用することができる。たとえば、階段モードで作動している時、φcに基づいた所望電子機器ボックス角度の推定値を使用することが好ましいであろう。
【0204】
図24は、重心の位置を推定するために使用することができる基準データ・セットを作成することができる実施形態のフローチャートである。図25A〜図25Cと関連させて図24を説明する。そのような基準データ・セットを作成する理由は少なくとも2つある。第1に、データ・セットを個々のユーザに対してカスタマイズさせることができる。第2に、データ・セットは、後述するように、輸送装置の構成要素の所望の向きの効率的な計算を可能にする。
【0205】
本方法はステップ2402で始まり、ここで装置(たとえば、輸送装置)の構成要素を特定配置に構成し、様々な構成要素の向きを記録する。たとえば、輸送装置のクラスタを第1向きに配置して、この値を記録することができる。図25Aは、クラスタ2502の可能な第1向きを示し、本例では、電子機器ボックス2504およびクラスタが互いに平行であるため、これはθc=0で表される。また、初期パラメータとして、座部高さを記録する。1つの実施形態では、プラットフォームの高さが可能な限り低いであろう。
【0206】
ステップ2404で、輸送装置を第1位置に移動させる。第1位置は、重心をクラスタの車輪の1つの上方に置く位置にすることができる。この時点で、重心は既知ではなくまたは推定されていないが、輸送装置を移動させている人によって安定化がほとんど、またはまったく必要とされない状態で輸送装置が均衡しているため、重心が車輪の軸の上方にあることは明らかである。
【0207】
ステップ2404で輸送装置を第1位置に置いた後、ステップ2406で構成要素の少なくとも1つの向きを記録する。向きの記録が行われる構成要素として、電気機器ボックスの向き(θ3)、重力に対するクラスタ位置(φc)および座部高さがあるが、これらに制限されない。角度を物理的に測定するか、あるいは電子機器ボックスのセンサを利用することによって、様々な向きの値を記録することができる。マイクロプロセッサからデータをサンプリングすることによって、または直接的にセンサの出力を読み取ることによって、センサを利用することができる。
【0208】
図25Bは、第1位置にある輸送装置を示している。本例では、重心2506が輸送装置の前輪2508の上方に位置している。電子機器ボックスの角度θeは正の値であって、これを記録することができる。
【0209】
ステップ2408で、輸送装置を第2位置に置く。第1位置と同様に、第2位置は、重心2506を輸送装置の後輪2510の上方に置いて、輸送装置を釣り合わせた位置(図25Cを参照)にすることができる。ステップ2410で、第2位置にある装置の構成要素の向きを記録する。
【0210】
たとえば初期クラスタ位置を異なった向きにして、上記のステップ2402〜2410のすべてを繰り返すようにして、上記処理を繰り返すことができる。また、処理を行う毎に、プラットフォームの高さも調整することができる。
【0211】
図26は、以上に概要を述べた処理を数回繰り返した結果のグラフである。重心を装置のフットプリント(すなわち、2つの車輪間)の上方に配置する場合について、横軸が相対クラスタ向き(θc)をラジアンで示し、縦軸が対応の電子機器ボックス向き(θe)をラジアンで示している。もちろん、θeをφcに関連させた同様なグラフを作成することができる。第1の線2602は、最低のプラットフォーム高さの場合の処理結果を表し、第2の線2604は、最高のプラットフォーム高さの場合の処理結果を表す。前述したように、これらの線は上記等式に比較的厳密に従う。そのため、これらの線をルックアップ・テーブルとして用いることによって、クラスタ向きに基づいてθeの2つの値を容易に決定することができる。前述したように、θeのこれらの2つの値によって、L1およびθ3
をすぐに計算することができる。さらに、最高および最低プラットフォーム高さの両方について曲線が作成されているので、すべてのクラスタ位置ですべての座部高さについてすべての所望電子機器ボックス向きを決定することができる。L1およびθ3をこれらの2つの値の間で線形推定することができることがわかった。
【0212】
再び図26を参照すると、現在クラスタ位置が2606である場合、記録された2つの電子機器ボックス位置は2608および2610である。これは、線2612(現在クラスタ位置)と2614および2616(可能な電子機器ボックス向き)とによってグラフに示されている。θeのこれらの2つの値を用いることによって、L1およびθ3について線形補間することができる。
【0213】
L1およびθ3の値は、例えば、システムが作動しているモードに応じて、様々な方法で使用することができる。たとえば、システムが輸送装置である場合、システムは、前述したように、均衡モード、階段モードおよび強化モードを含むことができる。強化モードでの電子機器ボックスの所望の向きをthetaref_fourwheelsと呼ぶ。θ3の値だけに基づいて、thetaref_fourwheelsについて解くことができる。図23を参照すると、重心をクラスタ2308の中心点2310の上方に置く等式は、
【0214】
【数14】

【0215】
である。このため、θ3を決定するだけで、所望電子機器ボックス角度が容易に計算される。一部の実施形態では、この所望の向きをブロック2044(図20)の所望ピッチ値として使用することができる。
【0216】
均衡モードにある時、L1およびθ3に基づいた重心の位置の推定値を使用して、車軸の重心を接地車輪の上方に置く電気機器ボックス向き(theta_balance)を決定することができる。θ3およびL1が与えられれば、等式
【0217】
【数15】

【0218】
を解くことによって、電子機器ボックス向きを計算することができる。
以上に本発明の少なくとも説明的な実施形態を示してきたが、当業者には様々な変更および改良を容易に考えることができると思われ、それらは本発明の範囲に入るものとする。したがって、以上の説明は例示にすぎず、制限的ではないものとする。本発明は、特許請求の範囲およびそれと同等のものに定義されているものとして制限されるだけである。

【特許請求の範囲】
【請求項1】
装置の第1の作動モードと第2の作動モードとの間で装置の制御を変更するシステムにおいて、
前記装置を第1の作動モードで制御するための制御信号を生成するための第1の作動モードと関連した利得係数を利用し、且つ前記装置を第2の作動モードで制御するための制御信号を生成するための第2の作動モードと関連した利得係数を利用する制御ループであって、当該制御ループが、少なくとも1つの装置パラメータを監視して、少なくとも当該少なくとも1つの装置パラメータに基づいて、当該装置を、第1の作動モードから第2の作動モードに転換させるものと、
前記装置が第1の作動モードから第2の作動モードに移行する、又はその逆、とほぼ同時に第2の作動モードと関連した利得係数を用いて、前記制御ループを動作させる利得セレクタと、
前記制御ループにより生成された制御信号が前記装置に与えられる前に、前記制御ループからの前記制御信号出力を平滑化することによって、モードの変化中に、前記制御信号における突然の変化を最小化するスムーザとを備え、
前記スムーザは、前記のモードの変化中に、減衰オフセット値を前記制御信号に加え、 前記オフセット値が、モード変化前のモードに対する前記制御信号と、モード変化後のモードに対する制御信号の間の差に対応する、
システム。
【請求項2】
前記利得セレクタは、前記装置の現在の動作モードが、前記第1のモードに、より近いか、又は、前記第2のモードにより近いかに基づいて、前記制御ループが、第1の作動モードと関連した利得係数、又は、第2の作動モードと関連した利得係数を利用するかを決定する請求項1記載のシステム。
【請求項3】
前記制御ループによりアクセスされ且つ動作の現在のモードと関連した利得係数を含む利得テーブルを更に備える請求項1記載のシステム。
【請求項4】
前記減衰オフセット値は、前記移行前に前記装置に印加された平滑化された制御信号と前記移行後に生成された制御信号とを比較することにより決定される請求項1記載のシステム。
【請求項5】
マルチモード装置のモード間を円滑に切り換える方法において、
少なくとも1つの装置パラメータを監視するステップと、
前記装置が、少なくとも前記少なくとも1つの装置パラメータに基づいて、第1の作動モードから第2の作動モードに転換すべきか否かを決定するステップと、
動作モードの変更が生じたかどうかを決定するステップと、
モードが変わった場合オフセット値を決定するステップであって、当該オフセット値が、モード変化前のモードに対する前記制御信号と、モード変化後のモードに対する制御信号の間の差に対応するものと、
制御信号が前記マルチモード装置に印加される前に前記オフセット値の減衰バージョンを前記制御信号に加えて、平滑化された制御信号を生成するステップと、
前記平滑化された制御信号を前記マルチモード装置に印加するステップと
を備える方法。
【請求項6】
前記オフセット値は、
(a) 現在のオフセット値に1より小さい数を乗算するステップと、
(b) ステップ(a)の乗算の結果に等しいように現在のオフセットを更新するステップと、
(c) 前記ステップ(a)及び(b)を繰り返すステップと
により減衰させられる請求項5記載の方法。
【請求項7】
ステップ(c)は、現在のオフセット値が下側スレッショルドに近づくまで繰り返される請求項6記載の方法。
【請求項8】
前記下側スレッショルドがほぼゼロである請求項7記載の方法。
【請求項9】
平滑化された制御信号を格納するステップを更に備える請求項5記載の方法。
【請求項10】
前記の格納された平滑化された制御信号と前記マルチモード装置がモードを変更した後に生成された制御信号との差を用いて前記オフセット値を決定する請求項9記載の方法。
【請求項11】
オフセット値が現在減衰しつつあるかどうかを決定するステップと、
前記マルチモード装置がモードを変更するとき、現在減衰しているオフセット値を新しいオフセット値と置換するステップと
を更に備える請求項10記載の方法。
【請求項12】
マルチモード装置のモードの間を円滑に切り換える方法において、
少なくとも1つの装置パラメータを監視するステップと、
前記装置が、少なくとも前記少なくとも1つの装置パラメータに基づいて、第1の作動モードから第2の作動モードに転換すべきか否かを決定するステップと、
モード変更が生じたかどうかを決定するステップを備え、
前記モードは、前記マルチモード装置の結果が不安定になるとき生じ、
モードが変わった場合オフセット値を決定するステップであって、当該オフセット値が、モード変化前のモードに対する前記制御信号と、モード変化後のモードに対する制御信号の間の差に対応するものと、
制御信号が前記マルチモード装置に印加される前にオフセット値を前記制御信号に加えて、平滑化された制御信号を生成するステップと、
前記平滑化された制御信号を前記マルチモード装置に印加するステップとを更に備える、方法。
【請求項13】
前記オフセット値は、
(a) 現在のオフセット値に1より小さい数を乗算するステップと、
(b) ステップ(a)の乗算の結果に等しいように現在のオフセットを更新するステップと、
(c) 前記ステップ(a)及び(b)を繰り返すステップと
により減衰させられる請求項12記載の方法。
【請求項14】
ステップ(c)は、現在のオフセット値が下側スレッショルドに近づくまで繰り返される請求項13記載の方法。
【請求項15】
前記下側スレッショルドがほぼゼロである請求項14記載の方法。
【請求項16】
平滑化された制御信号を格納するステップを更に備える請求項12記載の方法。
【請求項17】
前記の格納された平滑化された制御信号と前記マルチモード装置がモードを変更した後に生成された制御信号との差を用いて前記オフセット値を決定する請求項16記載の方法。
【請求項18】
オフセット値が現在減衰しつつあるかどうかを決定するステップと、
前記マルチモード装置がモードを変更するとき、現在減衰しているオフセット値を新しいオフセット値と置換するステップと
を更に備える請求項8記載の方法。
【請求項19】
前記被制御装置がモータである請求項12から18のいずれか一項に記載の方法。
【請求項20】
前記マルチモード装置が自動平衡人間輸送装置である請求項12から18のいずれか一項に記載の方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図2F】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25A】
image rotate

【図25B】
image rotate

【図25C】
image rotate

【図26】
image rotate


【公開番号】特開2011−222029(P2011−222029A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2011−110476(P2011−110476)
【出願日】平成23年5月17日(2011.5.17)
【分割の表示】特願2000−621191(P2000−621191)の分割
【原出願日】平成12年3月14日(2000.3.14)
【出願人】(594010009)デカ・プロダクツ・リミテッド・パートナーシップ (62)
【Fターム(参考)】