説明

半導体レーザ及び光半導体装置

【課題】安定な単一縦モード発振を保ったまま、効率的に光出力を増大させることができる半導体レーザ及び光半導体装置を提供する。
【解決手段】基板1と、基板1の上に形成されている、半導体レーザ活性層2、位相シフト構造8を有する回折格子7が形成された回折格子形成層3、上部クラッド層4とを有しており、光の出射端面9と、レーザ後端面10とに無反射コーティング11,12が施されている半導体レーザにおいて、回折格子形成層3は、レーザ後端面10側の領域3Aに回折格子7が形成され、光の出射端面9側に回折格子7が形成されていない領域3Bを有している構成とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は回折格子を有する半導体レーザや、この半導体レーザと半導体光変調器とを同一基板上に集積した光半導体装置に関する。
【背景技術】
【0002】
現在の光通信の利用の爆発的な広がりのために、その光源として使用される半導体レーザの需要が、供給数、性能の両面において非常に高まっている。半導体レーザ光源の個数の増大に伴い、その消費電力も同様に増加していくため、エネルギーの消費を抑えつつ、従来と同様のコストで生産可能な半導体レーザ光源が必要である。
【0003】
このような半導体レーザなどの光半導体装置は、半導体混晶基板を用いて形成され、その基板上に結晶を成長する工程などを経て完成される。その結晶成長の際には、基板材料と格子定数が整合する材料を選択することが多いが、格子定数が異なった材料からなる歪量子井戸も使用されている。歪量子井戸層は、多元系材料の組成をバリア層や基板と格子整合しない条件にするとともに、その膜厚を薄くして、強制的に基板と同じ格子定数になるようにしたものである。このような歪量子井戸は、例えば半導体レーザの活性層に適用されており、歪が加えられることによってエネルギーバンド構造の状態密度が変化し、半導体レーザの特性を向上させる。
【0004】
また、光出力の向上のために複数の歪量子井戸を、バリア層を隔てて成長する多重量子井戸構造が、多くの半導体レーザで採用されている。この多重量子井戸に電流を注入すると、伝導帯の各量子井戸には電子が、価電子帯の各量子井戸には正孔(ホール)が捕獲され、伝導帯、価電子帯間でキャリアの再結合が発生し、発光が起きる。更に、光を効率的に閉じ込めるため、例えば上部クラッド層をエッチングして、いわゆるリッジメサ構造(光導波路構造)を形成することで、光が伝搬する方向を決定し、光ファイバ中のモードと似た形をもつモードに発振させる。
【0005】
量子井戸の材料には、光通信で用いられる1.3,1.5μm帯の発光が可能な、例えば、In1-xGaxAsyP1-yやIn1-x-yAlxGayAsなどが用いられ、所望の波長の発光をするように井戸層の厚さや歪量が決定される。しかし、通常、量子井戸からの発光スペクトルは非常に広く、そのまま光信号の伝送を行ってしまうと、多数の波長成分が含まれるため光ファイバの波長分散により波形の劣化がはげしくなる。そのため、より高品質な伝送を行うためには、共振器から取り出される光の波長(縦モード)を単一にすることが求められる。
【0006】
そのために、半導体レーザ中に回折格子を設けることで、単一縦モード発振をする半導体レーザが研究開発されてきた。この回折格子は通常、量子井戸層の上部又は下部にある半導体の薄膜を電子ビームにより描画したパターンにそって、光の進行方向に周期的な凸凹をつくることで形成される。通常この凸凹は化学薬品によるウェットエッチングによって形成する。 InP基板上に形成する半導体レーザの場合には、量子井戸層の下部又は上部に回折格子を形成する層を成長した後に回折格子を形成し、その上にさらに活性層、クラッド層を再成長する。
【0007】
この周期構造にそって伝搬する光は、周期構造による反射波と結合し、ブラッグの回折条件を満足する波長(ブラッグ波長)で強い反射を示すようになる。そのため、共振器のなかにはブラッグ波長の光が優先的に閉じ込められ、その波長でレーザ発振を起こすため、単一縦モード発振が可能となる。このとき、凸凹の深さが深いほど、大きな反射率を得ることができ、浅いほど反射率が小さくなる。また、この回折格子中に位相シフト領域を意図的に形成し、半導体レーザの両端面に無反射コーティングをほどこすことで、より安定的な単一縦モード発振が可能であることが広く知られている。(非特許文献1)
【先行技術文献】
【非特許文献】
【0008】
【非特許文献1】L.A. Coldren and S.W. Corzine, "Diode lasers and photonic integrated circuits," Wiley, 1995.
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、このような位相シフトが形成された回折格子を半導体レーザに用いると、半導体レーザの共振器内に光が強く閉じ込められ、共振器外に取り出される光(すなわち光出力)が小さくなってしまう。このように、位相シフトを用いることで安定的な単一縦モード発振を得ることはできるが、光出力が低下する。従って、光通信に必要な大きさの光出力を確保するためには、より大きな注入電流が必要となり、消費電力が増加する。
【0010】
また、光出力を増大する方法としては、位相シフトを導入せず、均一回折格子を形成し、光の出斜端面側を無反射コーティングし、後端面側を高反射コーティングする方法があるが、この方法では、端面の位相条件を制御することが困難であり、単一縦モード発振するレーザの割合が低下する。
【0011】
本発明はこのような問題に鑑みてなされたものであり、安定な単一縦モード発振を保ったまま、効率的に光出力を増大させることができる半導体レーザ及び光半導体装置を提供することを課題とする。
【課題を解決するための手段】
【0012】
上記課題を解決する第1発明の半導体レーザは、基板と、前記基板の上に形成されている、半導体レーザ活性層、位相シフト構造を有する回折格子が形成された回折格子形成層、上部クラッド層とを有しており、光の出射端面とレーザ後端面に無反射コーティングが施されている半導体レーザにおいて、
前記回折格子形成層は、前記レーザ後端面側の領域に前記回折格子が形成され、前記光の出射端面側に前記回折格子が形成されていない領域を有していることを特徴とする。
【0013】
また、第2発明の半導体レーザは、第1発明の半導体レーザにおいて、
前記回折格子が形成されている前記レーザ後端面側の部分と、前記回折格子が形成されていない前記光の出射端面側の部分とを、同一の電極で駆動する構成であることを特徴とする。
【0014】
また、第3発明の光半導体装置は、第1又は第2発明の半導体レーザと半導体光変調器とが同一の基板上に集積されており、前記半導体光変調器側の端面である光の出射端面と、前記半導体レーザ側の端面であるレーザ後端面に無反射コーティングが施されていることを特徴とする。
【発明の効果】
【0015】
本発明の半導体レーザによれば、基板と、前記基板の上に形成されている、半導体レーザ活性層、位相シフト構造を有する回折格子が形成された回折格子形成層、上部クラッド層とを有しており、光の出射端面とレーザ後端面に無反射コーティングが施されている半導体レーザにおいて、前記回折格子形成層は、前記レーザ後端面側の領域に前記回折格子が形成され、前記光の出射端面側に前記回折格子が形成されていない領域を有していることを特徴としているため、安定な単一縦モード発振を保ったまま、効率的に光出力を増大させることができる。
即ち、従来の半導体レーザでは回折格子形成層(半導体レーザ活性層と回折格子形成層から成る半導体レーザ活性領域)の全域に回折格子が形成(描画)されていたのに対して、本発明の半導体レーザでは回折格子形成層(半導体レーザ活性領域)の光の出射端面側において回折格子の形成を部分的に省き、半導体レーザの前後両端面に無反射コーティングを施したことにより、安定な単一縦モード発振を保ったまま、光出力、外部量子効率、温度特性に関する半導体レーザの性能を向上させることが可能になる。
また、本発明の半導体レーザは従来の半導体レーザと同工程で作製可能でありながら、消費電力を大幅に削減可能なため、光通信の更なる普及に大きな効果がある。
【図面の簡単な説明】
【0016】
【図1】(a)は本発明の第1実施形態例の半導体レーザの構造を示す斜視図、(b)は前記第1実施形態例の半導体レーザの構造を示す縦断面図(共振器方向断面図:(a)のA−A線矢視断面)である。
【図2】比較例である従来の半導体レーザの構造を示す縦断面図(共振器方向断面図)である。
【図3】比較例である従来の半導体レーザと半導体光増幅器を集積した素子の構造を示す縦断面図(共振器方向断面図)である。
【図4】(a)は前記従来の半導体レーザの電流対光出力依存性を示す図、(b)は前記従来の半導体レーザの発振スペクトルを示す図である。
【図5】(a)は前記第1実施形態例の半導体レーザの電流対光出力依存性を示す図、(b)は前記第1実施形態例の半導体レーザの発振スペクトルを示す図である。
【図6】本発明の第2実施形態例の半導体レーザの構造を示す斜視図である。
【図7】本発明の第3実施形態例の電界吸収型変調器集積半導体レーザの構造を示す縦断面図(共振器方向断面図)である。
【図8】本発明の第4実施形態例のマッハツェンダ型変調器集積半導体レーザの構造を示す平面図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態例を図面に基づいて詳細に説明する。
【0018】
<第1実施形態例>
図1(a)及び図1(b)に示すように、本発明の第1実施形態例の半導体レーザは、半導体混晶からなる基板であるn型のInP基板1と、このn型のInP基板1の上に形成されている、InGaAlAs歪量子井戸層を含む半導体レーザ活性層2、InGaAsP回折格子形成層3、コンタクト層を含むp型のInP上部クラッド層4とを有して成るものである。また、上部クラッド層4の上面にはp電極5が形成され、InP基板1の下面にはn電極6が形成されている(図1(a)では電極を図示省略:図1(b)参照)。
【0019】
半導体レーザ活性層2はフォトルミネッセンス(PL)ピーク波長で1.3μm付近の光を発光するような量子井戸構造であり、回折格子形成層3にはブラッグ波長が1.3μm程度になるような周期、深さをもつ回折格子7が形成されている。回折格子7中には、位相シフト構造8を形成した領域が存在している。また、レーザ前端面である光の出射端面9には無反射コーティング11が施され、レーザ後端面10には無反射コーティング12が施されている。
【0020】
そして、本第1実施形態例の半導体レーザにおける回折格子形成層3は、レーザ後端面10側の領域3Aに回折格子7が形成され、光の出射端面9側に回折格子7が形成されていない領域3Bを有していることを特徴としている。
【0021】
即ち、図2に示すように従来の半導体レーザでは、回折格子形成層3(隣接する半導体レーザ活性層2と回折格子形成層3から成る半導体レーザ活性領域)の全域に回折格子7が形成(描画)され、この回折格子7中に発振波長安定化のために位相シフト構造8が挿入されている。一方、図1(b)に示すように本発明の半導体レーザにおける回折格子形成層3(隣接する半導体レーザ活性層2と回折格子形成層3から成る半導体レーザ活性領域)では、光の出射端面9側において部分的に回折格子7が形成されていない領域3Bが存在し、レーザ後端面10側(領域3A)に部分的に形成されている回折格子7中に発振波長安定化のために位相シフト構造8が挿入されている。
【0022】
また、本発明の半導体レーザは、回折格子7が形成されているレーザ後端面10側の部分13Aと、回折格子7が形成されていない光の出射端面9側の部分13Bとを、同一の電極5,6で駆動する構成となっている。
【0023】
次に、本第1実施形態例に係る半導体レーザの製造方法を説明する。まず、n型のInP基板1の上に、半導体レーザ活性層2と、回折格子形成層3を成長させる。次に、ウェットエッチング又はドライエッチングにより、回折格子形成層3に回折格子7を形成する。このとき、回折格子7はレーザ後端面10側の領域3Aにだけ形成する。また、回折格子7中には位相シフト構造8を挿入する。回折格子7を形成した後、コンタクト層を含む上部クラッド層4を成長させる。次に、ウェットエッチング又はドライエッチングにより、図1(a)に示すようなリッジ型のメサを形成し、スパッタリングにより絶縁膜を表面につけた後、電極5,6を形成する。この電極形成プロセス後、へき開により長さ600μmの半導体レーザを作成し、このレーザ両端面9,10に無反射コーティング11,12を施すことにより、半導体レーザの完成となる。無反射コーティング11,12を実現する方法はいくつかあるが、ここではTiO2とSiO2の多層膜をレーザ両端面9,10に堆積した。
【0024】
本発明の構造の半導体レーザに対して電極5,6から電流を注入すると、回折格子7が形成されている部分13A(領域3A)には強く局在した光の定在波(縦モード)が形成され、その光はレーザ後端面10から出射されるか、回折格子7が形成されていない部分13B(領域3B)へと伝搬する。回折格子7が形成されていない部分13B(領域3B)も、回折格子7が形成されている部分13A(3A)と同様に電流が注入されているため、利得を持つことになり、そこへ伝搬した光は増幅され、レーザ前端面9から無反射コーティング11を介して出射される。このとき、無反射コーティング11,12の反射率は0ではないため、レーザの前後両端面9,10の間で一つの共振器が形成されることになり、安定な単一縦モードとして発振が可能となる。こうすることで、安定な単一縦モード発振を保ったまま、効率的に光出力を増大することが可能となる。
【0025】
なお、本発明の半導体レーザと似た構成をもつ素子として、図3に示すような半導体レーザ21と半導体光増幅器(SOA)22を同一の基板1上に集積した光源が挙げられる。この構造では、半導体レーザ21部で発生した光を、光の吸収が小さいパッシブ導波路23を通してSOA22へと伝搬させ、SOA22で光を増幅する。
【0026】
この構造の素子に対する本発明の半導体レーザの利点は、まず、作製の容易さにある。SOA22を集積する場合には、図3に示すように、光の吸収の小さいパッシブ導波路23を用いる必要があるので、半導体レーザ活性層2の結晶成長を行った後に、パッシブ導波路コア24の層を再成長しなければならない。また、SOA22の利得層2は、半導体レーザ活性層2と同一とすることも可能だが、SOA構造の最適化を行うために別構造とする場合には、その層2も再成長する必要がある。結晶の再成長には、再成長それ自体、及び、それに伴うフォトリソグラフィーによるパターニング、エッチングが必要であるため、素子作製の工程を大幅に増加させる。一方、本発明の半導体レーザでは、図1(b)に示すように、結晶の再成長は必要無い。また、本発明の半導体レーザにおいてパッシブ導波路を必要としないということは、素子の大きさを小さくできることも意味し、一つの半導体基板から作製することのできる素子数が増す。
【0027】
2つ目の利点は制御の簡便さにある。SOA22を集積する場合には、図3に示すように、半導体レーザ21とSOA22とを駆動するためにレーザ電極5AとSOA電極5Bとを別々に設けなければならないが、本発明の半導体レーザによれば、図1(b)に示すように、たった一つの電極5で駆動(制御)することが可能である。
【0028】
その他にも、適用する光通信のシステムによっては、そもそもSOAの使用が許されない場合も多く、このような場合でも本発明の半導体レーザであれば適用することができるという利点などがある。例えば、2010年に標準化された100ギガビットイーサネット(登録商標)用の光源にはSOAの使用は許されていないが、規格で要求されている光出力を可能なかぎり低い消費電力で得ることが求められる。このような要求にも本発明の半導体レーザであれば対応することができる。
【0029】
図4(a)と図4(b)には、共振器長(レーザ前端面9からレーザ後端面10までの無さ)を600μmとし、回折格子7を共振器全体(回折格子形成層3の全域)に形成し、共振器中心に4分の1波長分の位相シフト構造8を挿入した従来の半導体レーザにおける、光出力の注入電流依存性と、発振スペクトルとを示す。回折格子7の結合係数は35cm-1としている。波長1.3μmで単一縦モード発振し、光出力は注入電流100mAで9mW程度となっている。
【0030】
次に、図5(a)と図5(b)には、共振器長(レーザ前端面9からレーザ後端面10までの長さ)を600μmとし、回折格子7を共振器中心からレーザ後端面10まで形成し(回折格子7が形成されている領域3Aの長さが300μm)、その中心(レーザ後端面10から150μmの位置)に4分の1波長分の位相シフト構造8を挿入した本発明の半導体レーザにおける、光出力の注入電流依存性と、発振スペクトルとを示す。図5の場合にも、図4の場合と同様に波長1.3μmで単一縦モード発振しているが、図4の場合と比べて図5の場合には、光出力は大幅に改善され、注入電流100mAで19mWと2倍以上の光出力が得られていることがわかる。また、図4の場合と比べて図5の場合には、光出力9mWを得るために必要な注入電流は58mA程度であり、同じ光出力をだすために必要な消費電力がほぼ2分の1になることがわかる。
【0031】
なお、ここでは、共振器方向において、回折格子7が形成されている領域3Aの長さLgratingと、回折格子7が形成されていない領域3Bの長さLactiveとの比を1:1としているが、その比を変更しても同様な効果を得ることが可能である。但し、Lgratingの比が大きくなると、増幅するための半導体レーザ活性層2の長さが短くなるために、光出力の増幅倍率は小さくなる。また、Lactiveの比が大きくなると、増幅率は大きくなるが、半導体レーザが外部の要因(例えば戻り光)に対して弱くなり、発振の安定性が損なわれる。そのため、LgratingとLactiveの長さの比は大きすぎず、小さすぎないほうが良い。具体的には、Lgrating/Lactive = 0.3〜0.8くらいが良い。Lgratingの長さについては、結合係数κの大きさとの兼ね合いで決定されるが、通常、κLgrating = 0.7〜2.5程度が良い。また、位相シフト構造7を挿入する位置については、本第1実施形態例では回折格子7が形成されている領域3Aの真中にしているが、中央でなくても同様の効果を得ることができる。
【0032】
<第2実施形態例>
図6に示すように、本発明の第2実施形態例の半導体レーザは、半導体混晶からなる基板であるn型のInP基板1と、このn型のInP基板1の上に形成されている、InGaAlAs歪量子井戸層を含む半導体レーザ活性層2、InGaAsP回折格子形成層3、コンタクト層を含むp型のInP上部クラッド層4とを有し、更に、半導体レーザ活性層2と回折格子形成層3と上部クラッド層4の両脇を半絶縁性InPで埋め込んだ埋め込み部31を有して成るものである。また、上部クラッド層4の上面とInP基板1の下面には、p電極とn電極(図示省略)がそれぞれ形成されている
【0033】
そして、本第2実施形態例の半導体レーザにおいても、第1実施形態例と同様に回折格子形成層3は、図示は省略するが、レーザ後端面側の領域に回折格子が形成され、光の出射端面側に回折格子が形成されていない領域を有していることを特徴としている。回折格子中には位相シフト構造を有している。また、回折格子が形成されているレーザ後端面側の部分と、回折格子が形成されていない光の出射端面側の部分とを、同一の電極で駆動する構成となっている。従って、本第2実施の形態例の効果は、第1実施形態例と同様である。
【0034】
<第3実施形態例>
図7に示すように、本発明の第3実施形態例の電界吸収型変調器集積半導体レーザ(光半導体装置)は、半導体レーザ41と、半導体光変調器である電界吸収型変調器42とを同一の基板1上に集積したものであり、半導体混晶からなる基板であるn型のInP基板1と、このn型のInP基板1の上に形成されている、InGaAlAs歪量子井戸層を含む半導体レーザ活性層2、InGaAsP回折格子形成層3、コンタクト層を含むp型のInP上部クラッド層4、InGaAlAs歪量子井戸層を含む電界吸収型変調器吸収層43、エッチングストップ層44、InGaAsPコア層46、エッチングストップ層47とから成っている。
【0035】
即ち、半導体レーザ41は、n型のInP基板1と、このn型のInP基板1の上に形成されている、半導体レーザ活性層2、回折格子形成層3、上部クラッド層4と有して成るものである。また、上部クラッド層4の上面には、レーザ電極としてのp電極5が形成され、InP基板1の下面にはn電極6が形成されている。半導体レーザ活性層2はPLピーク波長で1.3μm付近の光を発光するような量子井戸構造であり、回折格子形成層3にはブラッグ波長が1.3μm程度になるような周期、深さをもつ回折格子7が形成されている。
【0036】
そして、本第3実施形態例においても、半導体レーザ41における回折格子形成層3は、レーザ後端面10側の領域3Aに回折格子7が形成され、光の出射端面9側に回折格子7が形成されていない領域3Bを有していることを特徴としている。回折格子7中には位相シフト構造8を有している。また、半導体レーザ41は、回折格子7が形成されているレーザ後端面10側の部分13Aと、回折格子7が形成されていない光の出射端面9側の部分13Bとを、同一の電極5,6で駆動する構成となっている。
【0037】
電界吸収型変調器42は、n型のInP基板1と、このn型のInP基板1の上に形成されている、変調器吸収層43、エッチングストップ層44、上部クラッド層4とを有して成るものである。また、上部クラッド層4の上面には、変調器電極としてのp電極45が形成されている。なお、変調器吸収層43には、PLピーク波長で1.24μm付近の光を発光するような量子井戸構造を用いている。InGaAsPコア層46は半導体レーザ活性層2と変調器吸収層43の間に介在し、エッチングストップ層47は回折格子形成層3とエッチングストップ層44の間に介在している。
【0038】
また、変調器42側の端面(前端面)である光の出射端面9には、無反射コーティング11が施されており、半導体レーザ41側の端面であるレーザ後端面10には、無反射コーティング12が施されている。
【0039】
この第3実施形態例の電界吸収型変調器集積半導体レーザでも、半導体レーザ41における回折格子形成層3は、レーザ後端面10側の領域3Aに回折格子7が形成され、光の出射端面9側に回折格子7が形成されていない領域3Bを有していることを特徴としているため、安定な単一縦モード発振を保ったまま、光出力の増大、もしくは、消費電力の低減が可能となる。特に、外部変調器と半導体レーザを集積した光源に関して、そこに用いられるレーザは高光出力で、低消費電力であるほど良いので、本発明による半導体レーザは外部変調器との集積光源への適用に関して大きな効果がある。
【0040】
<第4実施形態例>
図8に示すように、本発明の第4実施形態例のマッハツェンダ型変調器集積半導体レーザ(光半導体装置)は、半導体レーザ51と、半導体光変調器であるマッハツェンダ型変調器52とを同一の基板1上に集積したものである。
【0041】
図8中の黒の太線が光導波路53の存在する位置を示しており、半導体レーザ51の内部では1本の光導波路53が形成されており、マッハツェンダ型変調器52では光が2つの光導波路53に分けられ、その2つの光導波路53を導波する光に位相差をつけることにより光の変調動作を実現する。また、図示は省略するが、半導体レーザ51は、基板1と、前記基板1の上に形成されている、半導体レーザ活性層、回折格子形成層、上部クラッド層とを有して成るものである。
【0042】
そして、本第4実施形態例においても、半導体レーザ51における回折格子形成層は、レーザ後端面10側の領域3Aに回折格子7が形成され、光の出射端面9側に回折格子7が形成されていない領域3Bを有していることを特徴としている。回折格子7中には位相シフト構造8を有している。また、半導体レーザ51は、回折格子7が形成されているレーザ後端面10側の部分13Aと、回折格子7が形成されていない光の出射端面9側の部分13Bとを、同一の電極(図示省略)で駆動する構成となっている。
【0043】
また、変調器42側の端面(前端面)である光の出射端面9には、無反射コーティング11が施されており、半導体レーザ51側の端面であるレーザ後端面10には、無反射コーティング12が施されている。
【0044】
この第4実施形態例のマッハツェンダ型変調器集積半導体レーザでも、半導体レーザ51における回折格子形成層は、レーザ後端面10側の領域3Aに回折格子7が形成され、光の出射端面9側に回折格子が形成されていない領域3Bを有していることを特徴としているため、安定な単一縦モード発振を保ったまま、光出力の増大、もしくは、消費電力の低減が可能となる。
【0045】
なお、本明細書における各実施形態例においては、半導体レーザの活性層をInGaAlAsとしたが、これがInGaAsPでもGaInNAsでも同じ効果を得ることができる。また、基板をInPとしているが、GaAs基板でもサファイア基板でも、その他の半導体基板でも同様な効果を得ることができる。また、半導体レーザの長さは600μmとしているが、他の長さでも同様の効果を得ることができる。また、本明細書では、素子から出力される光の波長が1.3μm付近の光の例のみを示しているが、他の波長帯、例えば、1.55μm付近の光を発する半導体レーザについても同様の効果を得ることができる。
【産業上の利用可能性】
【0046】
本発明は半導体レーザ及び光半導体装置に関するものであり、歪量子井戸、もしくはバルク活性層と、回折格子形成層とを有する半導体レーザや、半導体レーザと半導体光変調器とを同一の基板上に集積した光半導体装置などに適用して有用なものである。
【符号の説明】
【0047】
1 基板
2 半導体レーザ活性層
3 回折格子形成層
3A 回折格子が形成されているレーザ後端面側の領域
3B 回折格子が形成されていない光出射端面側の領域
4 上部クラッド層
5 レーザ電極(p電極)
5A レーザ電極(p電極)
5B SOA電極(p電極)
6 n電極
7 回折格子
8 位相シフト構造
9 光の出射端面(レーザ前端面)
10 レーザ後端面
11,12 無反射コーティング
13A 回折格子が形成されているレーザ後端面側の部分
13B 回折格子が形成されていない光の出射端面側の部分
21 半導体レーザ
22 半導体光増幅器(SOA)
23 パッシブ導波路
24 パッシブ導波路コア
31 埋め込み部
41 半導体レーザ
42 電界吸収型変調器
43 電界吸収型変調器吸収層
44 エッチングストップ層
45 変調器電極(p電極)
46 InGaAsPコア層
47 エッチングストップ層
51 半導体レーザ
52 マッハツェンダ型変調器
53 光導波路

【特許請求の範囲】
【請求項1】
基板と、前記基板の上に形成されている、半導体レーザ活性層、位相シフト構造を有する回折格子が形成された回折格子形成層、上部クラッド層とを有しており、光の出射端面とレーザ後端面に無反射コーティングが施されている半導体レーザにおいて、
前記回折格子形成層は、前記レーザ後端面側の領域に前記回折格子が形成され、前記光の出射端面側に前記回折格子が形成されていない領域を有していることを特徴とする半導体レーザ。
【請求項2】
請求項1に記載の半導体レーザにおいて、
前記回折格子が形成されている前記レーザ後端面側の部分と、前記回折格子が形成されていない前記光の出射端面側の部分とを、同一の電極で駆動する構成であることを特徴とする半導体レーザ。
【請求項3】
請求項1又は2に記載の半導体レーザと半導体光変調器とが同一の基板上に集積されており、前記半導体光変調器側の端面である光の出射端面と、前記半導体レーザ側の端面であるレーザ後端面に無反射コーティングが施されていることを特徴とする光半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−146761(P2012−146761A)
【公開日】平成24年8月2日(2012.8.2)
【国際特許分類】
【出願番号】特願2011−2657(P2011−2657)
【出願日】平成23年1月11日(2011.1.11)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】