説明

半導体処理のためのポンプ装置

本発明は半導体処理に使用するためのポンプ装置に関する。装置はほぼ分子圧からほぼ大気圧へ物質流れを移行させるように形状づけられた単一のポンプを有することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体処理に使用するためのポンプ装置に関する。装置はほぼ分子圧からほぼ大気圧へ物質を移行させるように形状づけられた単一のポンプを有することができる。
【背景技術】
【0002】
半導体ウエファは多数の異なる形式のデバイスを形成するために使用される。例えば、ウエファ又はウエファの一部はメモリーデバイス、マイクロプロセッサユニットデバイス又はこれら2つのデバイスの組合せを形成するために使用することができる。デバイスは極めて小さい(例えばほんの1ミクロン程度)ことがあり、従って、このようなデバイスはしばしば大きなバッチとして製造される。ある場合、単一のウエファはその上に製造された数百のデバイスを有することがある。
【0003】
ウエファ上にデバイスを製造するため、多数の別個の工程が遂行される。工程の数はデバイスの形式及び複雑さに大いに依存することがあるが、典型的な製造プロセスは初期の基体を提供する最初の工程とウエファから個々のデバイスを引き出し、それをパソコン、電話、携帯電話又は他の電子機器内に設置する最終工程との間に100個ないし300個のいずれかの工程を有することがある。
【0004】
半導体ウエファ処理におけるある工程は選択した材料をエッチングする工程と、選択した材料を蒸着する工程と、シリコンウエファ内に選択的な鉄の移植を遂行する工程とを有することができる。これらの工程の多くは特定の工程のために特殊に設計された工具により遂行されるが、いくつかの工程はまた単一の工具により遂行することができる。このような工程は種々の位置で遂行されるので、ウエファは頻繁に移動されることがある。例えば、ウエファは移植工具に配置されてそこから取り出され、カセットにより移送され、蒸着工具に配置されてそこから取り出され、エッチング工具に配置されてそこから取り出されるようなことがある。
【0005】
上述のように、エッチングはウエファ上で遂行できる処理の1つの形である。ウエファは多数の異なる理由のために多数の異なるレベルにおいて多数の異なる時間でエッチングされることがある。例えば、1つの形式のエッチング工程はウエファの領域上にフォトレジスト形式の材料を配置する工程を有する。次いで、ウエファ上のフォトレジストを特定の波長及び特定のパターンを備えた光源に曝すことができる。光源によるフォトレジストの露光は、化学物質が適用されたときに「硬化した」フォトレジストが残るようにフォトレジストが「硬化する」か又は化学物質が適用されたときにフォトレジストが除去されるようにフォトレジストが「軟化する」ような態様で、露光領域の化学組成を変更することができる。いずれの場合も、所望のフォトレジストパターンがウエファ上に残る。この残ったフォトレジストをマスクとして使用すると、ウエファの露光された部分をエッチング即ち除去するように化学物質を適用することができる。従って、所望のパターンをシリコンウエファ内に「エッチング」できる。
【0006】
ウエファ内にエッチングされるデバイス及び(又は)パターンはしばしば1ミクロン程度の寸法を有する。扱われている寸法がそのように小さいので、エッチングプロセスは特に汚染物質に影響されやすい。例えば、異物の分子はウエファ内にエッチングされたチャンネル内に滞留することがあり、このような欠陥の存在は、デバイス又はその一部が適正に働くのを阻止することがある。従って、このような欠陥を最少にするため、特にシステムにおける汚染物質の数を最小化するように作業することにより、エッチングを遂行するような方法に多くの注意が払われる。
【0007】
エッチングを制御する最も普通の方法は真空室内でのプラズマを使用するエッチングである。定義によれば、真空室は、例えばほぼ10−3ミリバールの圧力ないしほぼ10−1ミリバールの圧力の間の低圧力(例えば分子圧)に保たれる。ウエファをエッチングするために使用されるプラズマは過フッ化炭化水素即ちフルオロカーボン又はパーフルオロカーボンのような任意の数の物質の添加を含むことがあり、このような物質は、プラズマ内で、フッ素及びフッ素基のような一層小さな部分に分解することがある。このような一層小さな部分はウエファの露光された部分と反応し、揮発性の反応副産物の形成により、ウエファのその部分を「エッチング除去」する。エッチングすべき基体に応じて他の物質を使用することができる。真空下でのこの手順の遂行は、(存在する化学物質が通常システム内へ特別に導入されたもののみであるので)汚染物質がシステムへ入るのを実質上阻止し、分子密度が低いので反応速度を適度化する。
【0008】
多数の現代のエッチング手順においては、多量の反応物が例えば毎秒数千リットル程度の高速度でウエファを通過して搬送される。これは、真空室内の圧力を低く保つことにより汚染物質の数を最小化する希望に反することとなる。その結果として、高速ではあるが低圧で真空室を通してエッチング物質を通過させることが望ましく、従って、特殊化したポンプがしばしば望まれる。
【0009】
現在、低圧での大流量のエッチング物質を提供するために互いに関連して使用される2つの別個の完全に分離した一体化していないポンプが存在する。中でも、ポンプは別個のハウジング、別個のコントローラ、別個の電気接続部及び別個の流体接続部を有し、ウエファ処理設備の異なる室内で互いに長い距離を隔てて位置する。
【0010】
ある現在の形状においては、第1のポンプの入口は真空室の底部にボルト止めされ、低圧で流れる物質を真空室から受け取る。次いで、第1のポンプは(入口での)分子レベルから(出口での)ほぼ移行レベルへ物質流れの圧力を徐々に増大させる。次いで、物質流れはチューブ又はパイプを通して第2のポンプへ送られる。第2のポンプは典型的には、その最も顕著なものがその寸法、それが発生するノイズの量及びそのメンテナンスであるようないくつかの理由のため、ウエファ処理設備の別の室(例えば地下室)内に配置される。ポンプを接続する流れ経路(例えばチューブ)の長さは典型的には5ないし15メートルの間であり、最小長さは3メートル、最大長さは20メートルである。第2のポンプは(入口での)ほぼ移行レベルから(出口での)ほぼ大気圧へ物質流れの圧力を徐々に増大させる。次いで、第2のポンプは物質流れを排出する。
【0011】
現在の二重ポンプ構成に関連するある欠点が存在する。例えば、第1のポンプとは別の室内に第2のポンプを配置すると、しばしば空間の使用が効率的ではなくなる。更に、ポンプを接続する長いチューブを通して物質を流れさせることに関連する効率損失が存在する。
【特許文献1】米国特許第6,109,864号明細書
【特許文献2】米国特許第6,778,969号明細書
【特許文献3】米国特許第5,772,395号明細書
【特許文献4】米国特許第6,244,841号明細書
【特許文献5】米国特許第6,705,830号明細書
【特許文献6】米国特許第6,709,226号明細書
【特許文献7】米国特許第6,755,611B1号明細書
【特許文献8】米国特許第6,129,534号明細書
【特許文献9】米国特許第6,200,116号明細書
【特許文献10】米国特許第6,379,135号明細書
【特許文献11】米国特許第6,672,855号明細書
【発明の開示】
【発明が解決しようとする課題】
【0012】
従って、複数ポンプの代わりの構成及び(又は)形状が望まれる。
【課題を解決するための手段】
【0013】
次の説明において、本発明のある態様及び実施の形態が明らかとなろう。その広義の意味において、本発明は、これらの態様及び実施の形態の1又はそれ以上の特徴を有することなく、実施できることを理解すべきである。また、これらの態様及び実施の形態は単なる例示であることを理解すべきである。
【0014】
ここで具体化され、幅広く説明するような1つの態様は半導体処理に使用するための装置に関連することができる。
【0015】
本発明の例示的な実施の形態は半導体処理に使用するための装置を含むことができる。装置は約10−1ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを約100ミリバールに等しいか又はそれよりも大きな出力圧力に移行させるように形状づけられた単一のポンプを有することができる。
【0016】
本発明の種々の実施の形態は次の態様のうちの1又はそれ以上を含むことができる:単一のポンプは約10−3ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを約100ミリバールに等しいか又はそれよりも大きな出力圧力に移行させるように形状づけることができる;単一のポンプは物質流れを約1バールに等しいか又はそれよりも大きな出力圧力に移行させるように形状づけることができる;単一のポンプはたった単一の回転可能なシャフトを有することができる;単一のシャフトは実質的に単一の垂直軸を有することができる;単一のシャフトは連続的とすることができる;単一のポンプに関連する半導体処理工具を有することができる;物質流れの流量は毎秒約1,000リットルから毎秒約10,000リットルまでの範囲とすることができる;物質流れの流量は毎秒約1,600リットルから毎秒約3,000リットルまでの範囲とすることができる;単一のポンプは少なくとも1つの玉軸受を有することができる;少なくとも1つの玉軸受は100ミリバールに等しいか又はそれよりも大きい出力圧力を有する物質流れを排出する単一のポンプの部分に関連することができる;単一のポンプは少なくとも1つの磁気軸受を有することができる;少なくとも1つの磁気軸受は約10−2ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを受け取る単一のポンプの部分に関連することができる;単一のポンプはたった1つのモータを有することができる;単一のポンプはたった1つの軸受懸架ユニットを有することができる;単一のポンプは少なくとも1つの磁気軸受を有することができる;少なくとも1つの玉軸受は100ミリバールに等しいか又はそれよりも大きい出力圧力を有する物質流れを排出する単一のポンプの部分に関連することができる;及び、少なくとも1つの磁気軸受は約10−2ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを受け取る単一のポンプの部分に関連することができる。
【0017】
本発明の別の例示的な実施の形態は半導体処理に使用するための装置を含むことができる。装置はほぼ分子圧からほぼ大気圧へ物質流れを移行させるように形状づけられた単一のポンプを有することができる。
【0018】
本発明の更に別の例示的な実施の形態は半導体処理に使用するための装置を含むことができる。装置はターボ分子流れから大気流れへ物質を移行させるように形状づけられた単一のポンプを有することができる。
【0019】
上述の構造的な関係は別として、本発明は以下に説明するような多数の他の形を含むことができる。上述の説明及び以下の説明の双方は単なる例示であることを理解すべきである。
【発明を実施するための最良の形態】
【0020】
添付図面はこの明細書に組み込まれ、その一部を構成する。図面は本発明のいくつかの実施の形態を示し、説明と共に、本発明のある原理を説明するのに役立つ。
【0021】
ここで、本発明のある可能な実施の形態を詳細に参照し、その例は添付図面に示す。可能な場合は、同じ符号は同じ又は同様の部品を参照するために図面及び説明において使用する。
【0022】
図1−9は半導体処理に使用するための装置の例示的な実施の形態を示す。装置はターボ分子ステージ100、引き出し(drag)ステージ200及び乾燥ステージ300の各々のうちの1又はそれ以上を備えたポンプ1を有することができる。例えば、ポンプ1はターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300の3つすべてを有することができる。別の例においては、ポンプ1はターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1つのみを有することができる。更なる例においては、図9に示すように、ポンプ1はターボ分子ステージ100、複数の引き出しステージ200及び乾燥ステージ300を有することができる。ある例においては、ポンプ1は、例えば約5×10−3ミリバールの圧力を有するほぼ分子圧及び毎秒約1600リットルから毎秒約2000リットルまでの範囲の流量で物質流れを受け取り、ほぼ大気圧で物質流れを排出するように形状づけることができる。
【0023】
更に又は代わりに、ポンプ1は約10−2ミリバールに等しいか又はそれよりも小さい(例えば約10−3ミリバールの)入力圧力を有する物質流れを約100ミリバールに等しいか又はそれよりも大きい(例えば約1バールの)出力圧力に移行させるように形状づけることができ及び(又は)毎秒約1,000リットル(例えば毎秒約1,600リットル)から毎秒約10,000リットル(例えば毎秒約3,000リットル)までの範囲の物質流れの流量に順応するように形状づけることができる。
【0024】
ターボ分子ステージ100は、物質の分子が、他の物質分子内ではなく、ターボ分子ステージ100の少なくとも1つの内壁と一層衝突し易くなるように、ほぼ分子圧での物質のターボ分子流れを提供するように形状づけられたステージとすることができる。ターボ分子ステージ100は(例えば半導体処理室から)第1の圧力での物質の流れを受け取るように形状づけられた入口102と、第2の圧力での物質流れを例えば引き出しステージ200、乾燥ステージ300又は大気中のうちの1又はそれ以上へ排出するための出口103とを有することができる。図1に示すように、ターボ分子ステージ100は、例えば入口102を通過する入力流れがエッチング工具からのものである場合に、約10−3ミリバールの入力圧力から約10−1ミリバールへ物質流れを移行させるために一緒に回転するように形状づけられたブレード104を有することができる。更に又は代わりに、ターボ分子ステージ100は、入口102を通過する入力流れが例えば物理的な蒸気蒸着(「PVD」)のようなエッチング以外の応用に関連する工具又は他の構造体からのものである場合に、例えば約10−8ミリバールほども低い圧力のような低入力圧力で物質流れを移行させるために一緒に回転するように形状づけられたブレード104を有することができる。ターボ分子ステージ100は約1ミリバールないし約10ミリバールの第2の圧力に物質流れを移行させるように形状づけることができる。ある実施の形態においては、第2の圧力は約100ミリバールないし約1バールとすることができる。
【0025】
ブレード104は軸受を使用してターボ分子ステージ100内に位置させることができる。軸受は玉軸受又は中央シャフトのような機械的な軸受とすることができ又はターボ分子ステージ100内でブレード104を磁気的に浮揚させるように形状づけられた磁気軸受とすることができる。ある実施の形態においては、ターボ分子ステージ100は多数の形式の軸受を有することができる。例えば、入口102に近いブレード104は、(例えば入口を通る物質流れの流量が毎秒約200リットルから毎秒約300リットルまでの範囲にある場合)磁気軸受により懸架することができ、一方、出口103に近いブレード104は機械的な軸受により懸架することができる。磁気軸受は高速の物質流れにとって望ましいことがある。その理由は、このような軸受が振動を積極的に減少させるからである。
【0026】
図7、9に示す代わりの例においては、ブレード104はシャフト106上に配置することができる。入口102に近いシャフト106の頂部は磁気軸受により懸架することができ、出口103に近いシャフト106の底部は機械的な軸受により懸架することができる。しかし、種々の実施の形態において、シャフト106は任意の形式の任意の数の軸受により及び任意の組み合わせで(例えば2つの機械的な軸受又は2つの磁気軸受により)懸架することができる。
【0027】
隣接するブレード104は介在するステータ105により互いに離間させることができる。ステータ105は物質のポンピングプロセス中は実質上静止状態に維持することができ、ブレード104を取り囲む内壁101に固定することができる。
【0028】
ターボ分子ステージ100へ入る分子は実質上無秩序な運動を有することができる。これらの分子は、各ブレード104を去るときに、分子がブレード104の速度と実質上同じ速度を有すると共に、ブレード104のものと実質上同様の固有の熱速度を有するように、回転するブレードと衝突し、ブレード104の速度を吸収することができる。したがって、ブレード104の角度のため上流側ではなく下流側で一層大きな伝達可能性を提供するブレードとブレードの相対速度との組み合わせにより、圧縮を発生させることができる。静止のステータ105はまた、ガスの相対速度と、ステータブレードの角度のため上流側に比べて下流側で一層大きな伝達可能性を提供するステータ105との組み合わせにより圧縮を発生させるように、形状づけることができる。上流側及び下流側はポンプの出口103(例えば排気)に対するガスの運動を参照することができる。例えば、下流側は(例えば高圧領域の方へ移動し及び(又は)圧縮されている)ポンプの排気側へのガスの運動を参照することができ、一方、上流側は(例えば低圧領域の方へ移動し及び(又は)膨張している)ポンプの排気側から離れるようなガスの運動を参照することができる。ステータ105は、ステータ105及びブレード104により等しいポンピングを提供できるように、分子の基準からの相対速度を有することができる。
【0029】
ブレード104、介在するステータ105及び(又は)ターボ分子ステージ100の他の部分のうちの1又はそれ以上は低圧で物質を効率的に移動させるように形状づけることができる。ターボ分子ステージ100は典型的には、例えばポンプの下流側の流れ及び寸法に応じて、約10−1ミリバールから約10−8ミリバール(10−7ミリバール)までの範囲の入口圧力及び約0.1ミリバールから約1ミリバール又はそれ以下までの対応する出口圧力で、作動することができる。
【0030】
ブレード104及びステータ105を備えたターボ分子ステージ100の例示的な形状及びその種々の素子に関する付加的な詳細は米国特許第6,109,864号及び同第6,778,969号各明細書に記載されており、その全体を参照としてここに組み込む。
【0031】
ポンプ1は引き出しステージ200を有することができ、その例を図2に示す。引き出しステージ200は(例えばターボ分子ステージ100の半導体処理室又は出口103からの)第1の圧力での物質の流れを受け取るように形状づけられた入口204と、例えばターボ分子ステージ100、乾燥ステージ300又は大気中のうちの1又はそれ以上へ第2の圧力で物質流れを排出する出口205とを有することができる。第2の圧力はポンプ1により最終的に排気できる圧力に依存することができる。例えば、ある実施の形態においては、ポンプ1は大気圧へ排出せずに、ターボ分子ステージ100にのみ排出することができ、引き出しステージ200を使用することができる。
【0032】
引き出しステージ200は2又はそれ以上の同軸の中空シリンダ201、202を有することができる。各シリンダ201、202は例えば互いに隣接する2又はそれ以上の複数の円筒状部分で構成することができる(例えば、一方の円筒状部分は入口204の近くとすることができ、一方、別の円筒状部分は出口205に近くすることができ、両方の円筒状部分は実質上同じ寸法及び(又は)形状を有する)。このような円筒状部分は例えば、圧力に応じて異なる効率で引き出しステージ200の異なる部分を作動させるようにするのが望ましいことがある。
【0033】
シリンダ201、202の一方又は双方は他方のシリンダ201、202に対面するその表面上に設けた螺旋ネジ部203を有することができる。例えば、図2は外側のシリンダ201の内表面上のネジ部203を概略的に示す。更に、シリンダ201、202の一方又は双方は例えば約20000rpm又はそれ以上までの比較的高速で回転することができる。低圧においては、分子は回転する螺旋ネジ部203の表面に衝突し、分子に速度成分を与え、分子がその衝突する表面と同じ運動方向を有するような傾向を与えることができる。分子はこのような方法で引き出しステージ200を通して押圧することができ、それが進入する圧力よりも大きな圧力で引き出しステージ200から出る。螺旋ネジ部203は、圧力に応じて、例えば約0.1mmないし約0.5mmの間の、シリンダ202に対する相対近接クリアランスを有することができる。このような近接クリアランスは入口の方ではなくポンプの出口の方へ移動する分子の一層大きな可能性を提供することができる。
【0034】
引き出しステージ200は典型的には、例えば、ポンプの下流側の流れ及び寸法に応じて、約10−1ミリバールから約10−7ミリバールまでの範囲の(例えば約10−6ミリバールの)入口圧力及び約10ミリバールから約1ミリバール又はそれ以下までの対応する出口圧力で、作動することができる。シリンダ201、202、螺旋ネジ部203及び(又は)引き出しステージ200の他の部分(例えば出口205の近くに位置する部分)のうちの少なくともいくつかは高圧で物質を効率的に移動させるように形状づけることができる。例示的な引き出しステージ及びその種々の素子に関する更なる詳細は米国特許第5,772,395号明細書で見ることができ、その全体を参照としてここに組み込む。
【0035】
引き出しステージ200は例えば図9に示すような代わりの形状を有することができる。引き出しステージ200は螺旋ネジ部203を備えた数個の静止のシリンダ201及び数個の回転シリンダ202を有することができる。回転シリンダ202はブレード104と同じシャフト106に接続でき、それと実質上同じ回転速度で回転でき及び(又は)その上に位置することができる。各静止のシリンダ201及びそれぞれの静止のシリンダに対面する回転シリンダ202の表面は別個の引き出しステージ200を有することができる。ある引き出しステージ200は半径方向外方に対面し回転シリンダ202の実質上平坦な半径方向内向きの表面にも対面する螺旋ネジ部203を有する静止のシリンダ201の表面を含むことができる。ある引き出しステージ200は逆の形状を有することができる。各静止のシリンダ201はその半径方向外表面及び(又は)その半径方向内表面上に螺旋ネジ部203を有することができる。各回転シリンダ202はその半径方向外表面及び(又は)その半径方向内表面上に螺旋ネジ部203を有する静止のシリンダ201の表面に対面することができる。
【0036】
各引き出しステージ200は他の引き出しステージ200と流れ連通することができる。各引き出しステージ200は他の引き出しステージ200から半径方向内方又は外方に位置することができる。各引き出しステージ200は異なる形状を有することができる。例えば、各引き出しステージ200内の螺旋ネジ部203は他の引き出しステージ200内の螺旋ネジ部203とは異なる長さを有することができる。引き出しステージ200はターボ分子ステージ100から半径方向外方に位置することができる。各引き出しステージ200は、物質が引き出しステージ200を通って流れる間に、物質の圧力を増大させ、次いで、物質が例えばほぼ大気圧又は大気流れで最終の引き出しステージ200により乾燥ステージ300へ排出されるまで、一層半径方向外方の引き出しステージ200へ物質を排出するように形状づけることができる。
【0037】
ポンプ1は図3に示すような乾燥ステージ300を有することができる。乾燥ステージ300は、物質の分子がポンプの少なくとも1つの内壁305よりも互いに一層衝突し易くなるように、物質の移行流れ及び(又は)粘性流れを提供するように形状づけられたポンプとすることができる。乾燥ステージ300は(例えばターボ分子ステージ100又は引き出しステージ200の出口から)第1の圧力で物質流れを受け取る入口301と、(例えばほぼ大気圧の)第2の圧力で物質流れを排出させる出口302とを有することができる。その例を図3に示す1つの例示的な形式の乾燥ポンプ300は、介在するステータ304と共に高圧で作動するのに適するように、典型的にはターボ分子ポンプのものとは異なる幾何学形状を有する回転ブレード303を含むことができる。ブレード303及びステータ304は約1ミリバールないし約10ミリバール又はそれ以下の入力圧力(例えば約0.1ミリバールほども低い圧力)から約100ミリバールないし約1バール(例えば大気圧)へ物質流れを移行させるように形状づけることができる。ブレード303は軸受(例えば玉軸受、シリンダシャフト及び磁気軸受のうちの1又はそれ以上)を使用して乾燥ステージ300内に配置することができる。ステータ304はブレード303を取り囲む円筒状のハウジングに固定することができる。ブレード303及びステータ304はターボ分子ステージ100に関して上述したブレード103及びステータ104と実質上同様に作動でき、この場合、乾燥ステージ300は、物質が出口302を介して乾燥ステージ300を出る前に、入口301を介して乾燥ステージ300内へ入る物質の圧力を増大させることができる。乾燥ステージ及びその種々の素子の例は米国特許第6,244,841号、同第6,705,830号、同第6,709,226号及び同第6,755,611B1号各明細書に開示されており、その全体を参照としてすべてここに組み込む。乾燥ステージの他の適当な例は米国特許第6,129,534号、同第6,200,116号、同第6,379,135号及び同第6,672,855号各明細書に開示されており、その全体を参照としてここに組み込む。
【0038】
乾燥ステージ300は例えば図8A、8B、8C、8D及び9に示すような代わりの形状を有することができる。代わりの形状においては、乾燥ステージ300は再生ロータ350及び再生ステータ370を含むことができる。
【0039】
図8Aに示すように、再生ロータ350は再生ロータ350の表面から延びる複数の実質上円形の突起351を有することができる。突起351はそこから延びる複数のブレード352を有することができる。突起351及びブレード352の断面は図8Dに示す。
【0040】
図8Bに示すように、再生ステータ370はその間で複数のチャンネル372を画定する複数の突起371を有することができる。隣接するチャンネル372は介在するチャンネル373を介して接続することができる。突起371及びチャンネル372の断面は図8Dに示す。各チャンネル372は第1の部分372a及び第2の部分372bを有することができる。第1の部分372aは、例えばその間での物質の流れを阻止するように、突起351の幅よりも僅かに小さい幅を有することができる。従って、作動においては、いかなる物質をも第2の部分372b内に実質上収容することができる。第2の部分372bは物質流れを収容するために例えば湾曲形状又は卵形形状のような任意の適当な断面形状を有することができる。
【0041】
図8C及び9に示すように、各ブレード352は、突起351が第1の部分372a内に位置し、ブレード352が第2の部分372内へ延びるように、チャンネル372の1つ内に配置することができる。各組のブレード352及びチャンネル372は介在するチャンネル373と同じであるか又は同じではない対応する入口391及び出口392を有することができる。
【0042】
作動において、ブレード352はチャンネル372に関して回転することができる。物質は入口391を介してチャンネル372の第2の部分372bに入ることができる。次いで、ブレード352は、運動量を得て回転ブレード352に対して接線方向に運動するがチャンネル372により強制されるガスの結果として例えば実質上卵形及び(又は)螺旋形のパターンでのブレード352の回転と同じ方向に、物質を流れさせることができる。次いで、物質は出口392を介してチャンネル372の第2の部分372bから出ることができる。次いで、物質は別のブレード352とチャンネル372との組合せへ送ることができるか又はポンプ1から排出させることができる。
【0043】
図9に示すように、乾燥ステージ300は複数のブレード352とチャンネル372との組合せを有することができる。ブレード352とチャンネル372との各組合せはブレード352とチャンネル372との他の組合せの半径方向内方及び(又は)外方に位置させることができる。ロータ350はブレード352及びチャンネル372と同じシャフト106上に配置することができる。ブレード352とチャンネル372との各組合せは外方の組み合わせから半径方向内方に位置する組合せへ物質を排出させることができる。最内方の組み合わせはポンプ1から例えば大気中へ物質を排出させることができる。
【0044】
図4A及び4Bに示すように、ターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300は単一のハウジング10内に配置される。ポンプ1がターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上を有する場合、ステージ間の境界は外から認識できないことがある(すなわち、肉眼だけで装置の外部を見ている人間はターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300間の境界を視認できない)。ポンプはターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300の組をなすブレード、シリンダ又は他の素子を回転させるための単一の駆動モータを有することができる。ある実施の形態では、ポンプ1はターボ分子ステージ100、引き出しステージ200及び(又は)乾燥ステージ300のうちの1又はそれ以上のステージの1又はそれ以上の素子を駆動するように形状づけられた1又はそれ以上のモータを有することができる。
【0045】
ターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上は遷移部分を実質上有することなく互いに接続することができる。たとえば、ターボ分子ステージ100の出口103は引き出しステージ200の入口204と実質上同じにすることができる。別の例においては、引き出しステージ200の出口205は乾燥ステージ300の入口301と実質上同じにすることができる。更なる例においては、ターボ分子ステージ100の出口103は乾燥ステージ300の入口301と実質上同じにすることができる。
【0046】
ポンプ1のターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上は、例えば図5に示すように、半導体処理設備の単一の室3内に配置することができる。ポンプ1の1つの利点は、ポンプが従来のポンプよりも一層小型となることができ、空間を節約し、また、例えば半導体製造プロセスのような特定のプロセスのためのポンプ及び(又は)素子の数を減少させることである。
【0047】
図6の例に示すように、ポンプ1のターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上は、ターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上の各々を制御する共通のコントローラ90を有することができる。共通のコントローラ90はコントローラ接続部91によりターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上に接続することができる。ターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上は半導体処理工具2に関連することができる。
【0048】
ある例においては、ワイヤ接続を有する代わりに、ワイヤレスリンクが共通のコントローラ90とターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上との間の連通を提供することができる。
【0049】
ポンプ1のターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上は共通の接続部を共有することができる。例えば、ターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上は共通の動力接続部を共有することができる。動力接続部はターボ分子ステージ100、引き出しステージ200及び(又は)乾燥ステージ300に関連する1又はそれ以上のモータを駆動するようにターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上に電力を提供することができる。この接続部はまた、ポンプ1のターボ分子ステージ100、引き出しステージ200及び乾燥ステージ300のうちの1又はそれ以上に導かれる前に、動力をコンディショニングするように遠隔コントローラ90を介して給電することができる。種々の実施の形態においては、ポンプ1は例えば窒素接続部、水接続部及び(又は)乾燥空気接続部のような任意の適当な接続部を有することができる。
【0050】
本発明はいくつかの利点を有することができる。例えば、本発明は特定の範囲で物質流れを移行させるように形状づけられた複数のポンプよりも一層高い効率で作動することができる。別の例においては、複数のポンプの使用中に存在するコンダクタンス損失は、例えば物質流れ経路の長さの減少のため、最少化及び(又は)実質的に排除することができる。別の例では、本発明は複数のポンプよりも一層小さな空間を占めるだけで済み、一層少ないエネルギで済み、これは、空間及び動力消費が貴重であるような産業において重要な利点となる。更なる例においては、装置からの排出は約100ミリバールに等しいか又はそれ以上になることがあるため、いかなる亜大気漏洩もが内方で生じることができるので、装置の二重の閉じ込め即ち隔離を不要とすることができる。
【0051】
本発明はいくつかの問題を克服することができる。例えば、従来の機械における各ステージのための各ポンプは別個に配給することができる。配給する場合、これらの各ポンプの室内の圧力は大気圧とすることができる。室を作動させるためには、各室内の圧力は適正な作動圧力に下げることができる。1つのオプションは大きなモータを使用して各室内のロータを最初に駆動することであるが、このようなオプションはロータをオーバーヒートさせることがあるので望ましくない。別のオプションは室の圧力を減少させるために別のポンプ(例えばロックロードポンプ)を少なくとも最初に使用することである。各ポンプの室内の入口圧力が約100ミリバール以下(例えば約10ミリバール以下)になった後、ポンプは援助無しに作動することができる。ポンプの種々のステージを単一のポンプ内で一体化することにより、例えばポンプが大気圧中へ排出を既に行った場合に、付加的なポンプの必要性を排除することができ、完全に無援助でポンプを始動及び作動させることができる。代わりに、ポンプが大気圧よりも小さい圧力へ排出を行う場合は、従来の機械の各ステージのための1つのポンプと対照的に、1つの付加的なポンプのみが必要となる。
【0052】
別の例においては、従来のターボ分子ポンプ、従来の引き出しポンプ及び従来の乾燥ポンプ間の寸法の不一致が単一のポンプ内でのその組合せを妨げていた。例えば、従来のターボ分子ポンプ、従来の引き出しポンプ及び従来の乾燥ポンプ内のシャフトの寸法に大きな差があった。例えば図8A、8B、8C及び8Dに示す乾燥ステージのような乾燥ステージにおいてなされた進歩はターボ分子ステージ及び(又は)引き出しステージと一層容易に組み合わせられるように形状づけることのできる一層小型の乾燥ステージをもたらした。
【0053】
当業者なら、ここで説明した構造について種々の修正及び変更を行うことができることは明らかであろう。従って、本発明は明細書で説明し図面に示した要旨に限定されないことを理解すべきである。むしろ、本発明は修正及び変更を包含するものである。
【図面の簡単な説明】
【0054】
【図1A】本発明に係る装置の実施の形態の概略図である。
【図1B】装置の別の実施の形態の概略図である。
【図2】図1Bの装置の一部の概略図である。
【図3】図1Aの装置の一部の概略図である。
【図4】図1Aの装置の一部の概略図である。
【図5】半導体処理設備の単一の室内に位置する装置の更なる実施の形態の概略図である。
【図6】半導体処理工具に関連する装置の更に別の実施の形態の概略図である。
【図7】装置の更に別の実施の形態の一部の概略図である。
【図8A】装置の更に他の実施の形態の一部の斜視図である。
【図8B】装置の更に他の実施の形態の一部の斜視図である。
【図8C】図8Aの一部の概略図である。
【図8D】図8Bの一部の概略図である。
【図9】装置の更に別の実施の形態の概略図である。

【特許請求の範囲】
【請求項1】
半導体処理に使用するための装置において、
約10−1ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを約100ミリバールに等しいか又はそれよりも大きい出力圧力に移行させるように形状づけられた単一のポンプを有することを特徴とする装置。
【請求項2】
上記単一のポンプが約10−3ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを約100ミリバールに等しいか又はそれよりも大きい出力圧力に移行させるように形状づけられることを特徴とする請求項1に記載の装置。
【請求項3】
上記単一のポンプが物質流れを約1バールに等しいか又はそれよりも大きい出力圧力に移行させるように形状づけられることを特徴とする請求項1に記載の装置。
【請求項4】
上記単一のポンプがたった単一の回転可能なシャフトを有することを特徴とする請求項1に記載の装置。
【請求項5】
上記単一のシャフトが実質的に単一の垂直軸を有することを特徴とする請求項4に記載の装置。
【請求項6】
上記単一のシャフトが連続的であることを特徴とする請求項4に記載の装置。
【請求項7】
上記単一のポンプに関連する半導体処理工具を更に有することを特徴とする請求項1に記載の装置。
【請求項8】
上記物質流れの流量が毎秒約1,000リットルから毎秒約10,000リットルまでの範囲にあることを特徴とする請求項1に記載の装置。
【請求項9】
上記物質流れの流量が毎秒約1,600リットルから毎秒約3,000リットルまでの範囲にあることを特徴とする請求項8に記載の装置。
【請求項10】
上記単一のポンプが少なくとも1つの玉軸受を有することを特徴とする請求項1に記載の装置。
【請求項11】
少なくとも1つの玉軸受が約100ミリバールに等しいか又はそれよりも大きい出力圧力を有する物質流れを排出する上記単一のポンプの部分に関連することを特徴とする請求項10に記載の装置。
【請求項12】
上記単一のポンプが少なくとも1つの磁気軸受を有することを特徴とする請求項1に記載の装置。
【請求項13】
少なくとも1つの磁気軸受が約10−2ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを受け取る上記単一のポンプの部分に関連することを特徴とする請求項12に記載の装置。
【請求項14】
上記単一のポンプがたった1つのモータを有することを特徴とする請求項1に記載の装置。
【請求項15】
上記単一のポンプがたった1つの軸受懸架ユニットを有することを特徴とする請求項1に記載の装置。
【請求項16】
上記単一のポンプが少なくとも1つの磁気軸受を有することを特徴とする請求項10に記載の装置。
【請求項17】
少なくとも1つの玉軸受が約100ミリバールに等しいか又はそれよりも大きい出力圧力を有する物質流れを排出する上記単一のポンプの部分に関連することを特徴とする請求項16に記載の装置。
【請求項18】
少なくとも1つの磁気軸受が約10−2ミリバールに等しいか又はそれよりも小さい入力圧力を有する物質流れを受け取る上記単一のポンプの部分に関連することを特徴とする請求項16に記載の装置。
【請求項19】
半導体処理に使用するための装置において、
およそ分子圧からおよそ大気圧に物質流れを移行させるように形状づけられた単一のポンプを有することを特徴とする装置。
【請求項20】
半導体処理に使用するための装置において、
ターボ分子流れから大気流れに物質を移行させるように形状づけられた単一のポンプを有することを特徴とする装置。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図8D】
image rotate

【図9】
image rotate


【公表番号】特表2009−513861(P2009−513861A)
【公表日】平成21年4月2日(2009.4.2)
【国際特許分類】
【出願番号】特願2008−534575(P2008−534575)
【出願日】平成18年9月28日(2006.9.28)
【国際出願番号】PCT/US2006/038197
【国際公開番号】WO2007/044260
【国際公開日】平成19年4月19日(2007.4.19)
【出願人】(507400505)エドワーズ・バキューム・インコーポレーテッド (10)
【Fターム(参考)】