説明

固体電解質二次電池

【課題】固体電解質二次電池において、合金系負極活物質を含有する負極活物質層とポリマー電解質との密着性を高め、充放電を繰り返しても出力特性を高水準で維持する。
【解決手段】固体電解質二次電池1が、リチウムを吸蔵および放出可能な正極活物質を含有する正極、合金系負極活物質を含有する負極および固体電解質または固体電解質を含浸させたセパレータを含む電池セル5と、電池セル5を加熱する加熱手段6と、電圧検知手段7と、放電時の電池セル5が所定温度以上になるように制御する制御手段9とを含むように構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体電解質二次電池に関する。さらに詳しくは、本発明は主に、固体電解質二次電池における負極活物質と固体電解質との密着性の改良に関する。
【背景技術】
【0002】
リチウムイオン二次電池は、エネルギー密度および出力が高く、かつ小型化が比較的容易なことから、たとえば、各種の携帯用電子機器の電源として汎用されている。また、最近では、電気自動車、ハイブリッド自動車などの主電源、補助電源などに適用するための研究が盛んに行われている。リチウムイオン二次電池は、たとえば、リチウムを吸蔵および放出可能な正極活物質を含有する正極と、リチウムを吸蔵および放出可能な負極活物質を含有する負極と、セパレータと、液状の非水電解質とを含んでいる。
【0003】
リチウムイオン二次電池は、安全性の面でも優れた性能を有しているが、液状の非水電解質を含んでいるため、非水電解質の漏液防止が必要である。しかしながら、漏液防止には、電池ケースの形状および材質、電池内部の構造、生産工程の変更といった様々な項目の検討が必要になる。このため、リチウムイオン二次電池にも、固体電解質の使用が試みられている。固体電解質としては、たとえば、非水電解質をポリマーにより固化させたポリマー電解質などが挙げられる。固体電解質は固形物であり、漏液のおそれがないため、電池構造、電池ケースの材質などの選択自由度が高まり、生産工程も簡略化できる。
【0004】
たとえば、固体電解質を含むリチウムイオン二次電池(以下「固体電解質二次電池」とする)が提案されている(たとえば、特許文献1参照)。特許文献1の固体電解質二次電池は、正極活物質としてリチウムと遷移金属との複合酸化物を含有する正極と、負極活物質として珪素、酸化錫などの合金系負極活物質を含有する負極と、ポリマー電解質とを含む。ここで、合金系負極活物質とは、リチウムと合金化することによりリチウムを吸蔵し、かつリチウムを可逆的に吸蔵および放出する物質である。合金系負活物質は、従来の炭素材料系負極活物質よりもさらに高容量であるため、電池の高容量化を期待できる。しかしながら、特許文献1の電池には、充放電回数の増加に伴って、出力特性が急激に低下するという問題がある。それと共に、電池の寿命が短くなるという問題もある。
【0005】
また、固体電解質二次電池における、活物質層とポリマー電解質との密着性を向上させるために、種々の提案がなされている。たとえば、液状化合物を含有するポリマー電解質を用いるとともに、正極または負極とポリマー電解質との間に液状化合物の層を設けることが提案されている(たとえば、特許文献2参照)。ここで液状化合物とは、アルキレンオキサイド繰返し単位を有するものである。
【0006】
しかしながら、特許文献2の電池に合金系負極活物質を利用すると、特許文献1の電池と同様に、充放電回数の増加に伴って、出力特性が急激に低下し、電池寿命が短くなる。また、合金系負極活物質には充放電に伴って、比較的大きな体積の膨張および収縮を可逆的に繰り返すという特性がある。そして、合金系負極活物質が充電時に膨張すると、液状化合物の層の形状維持が困難になる。その結果、液状化合物の電池外部への漏れが発生し、電池性能および電池の安全性が低下するおそれがある。
【0007】
また、活物質層とポリマー電解質とをカップリング剤を介して結合することにより、活物質層とポリマー電解質との密着性を高めることが提案されている(たとえば、特許文献3参照)。カップリング剤は共有結合などにより他の物質と結合するので、原子レベルでの結合強度は高い。しかしながら、特許文献3の電池に合金系負極活物質を利用すると、カップリング剤による結合だけでは、合金系負極活物質の体積膨張を抑制できない。また、充放電回数の増加に伴う、出力特性が急激に低下し、寿命が短くなるのを避けることができない。
【0008】
一方、二次電池、加熱手段、温度検知手段および制御手段を含む二次電池システムが提案されている(たとえば、特許文献4参照)。二次電池は、第1近接部と、第1近接部よりも温度が低くなる第2近接部とを有する電極体を含んでいる。加熱手段は、第1近接部および第2近接部のうちの少なくとも第2近接部を加熱する。温度検知手段は、第1近接部および第2近接部の温度を検知する。制御手段は、温度検知手段の検知結果に応じて、加熱手段による第1近接部および第2近接部の加熱を制御する。
【0009】
この二次電池システムは、主に寒冷地における電池の出力低下を防止することを目的としている。したがって、加熱すると言っても、たとえば、特許文献4の段落0052、表1から明らかなように、第1近接部および第2近接部の温度は氷点下である。また、上記のような氷点下の温度に加熱しても、ポリマー電解質が変形することはない。また、特許文献4の二次電池は、非水電解液を含む一般的なリチウムイオン二次電池であり、固体電解質二次電池ではない。さらに、特許文献4には、合金系負極活物質を含有する固体電解質二次電池を加熱することについて、一切記載がない。
【0010】
さらに、固体電解質電池、温度センサ、加熱素子、加熱素子制御手段および電力モード制御手段を含む電池制御システムが提案されている(たとえば、特許文献5参照)。温度センサは、固体電解質電池の温度を検知する。加熱素子は、固体電解質電池を加熱する。加熱素子制御手段は、温度センサの検知結果に応じて、セルを所定の温度に維持するように、加熱素子に供給する電流を制御する。電力モード制御手段は、電池からの電力需要を検出し、電池にまたは電池から供給される電力のレベルおよび/またはエネルギー量に応じて前記所定温度を設定する。また、固体電解質電池の具体例として、リチウムポリマー電解質電池が挙げられている。
【0011】
特許文献5では、固体電解質電池の作動温度が室温以上であることから、固体電解質電池を加熱し、その固体電解質電池が本来有している電池性能を十分に発揮させようとしている。しかしながら、特許文献5における加熱温度は40℃または60℃であり、このような加熱温度ではポリマー電解質を変形させるのは難しい。さらに、一般的な固体電解質電池を加熱しても、電池寿命が延びることはない。また、特許文献5にも、合金系負極活物質を含有する固体電解質二次電池を加熱することについて、一切記載がない。
【0012】
【特許文献1】特開2002−33130号公報
【特許文献2】特開2006−294605号公報
【特許文献3】特開2007−305453号公報
【特許文献4】特開2008−21569号公報
【特許文献5】特表2002−509342号公報
【発明の開示】
【発明が解決しようとする課題】
【0013】
本発明の目的は、合金系負極活物質を含有する負極活物質層とポリマー電解質との密着性を高め、充放電を繰り返しても出力特性が高水準で維持される固体電解質二次電池を提供することである。
【課題を解決するための手段】
【0014】
本発明者らは、上記課題を解決するために鋭意研究を行った。その研究過程において、合金系負極活物質とポリマー電解質とを含む固体電解質二次電池が、充放電回数の増加に伴って出力特性の著しい低下および寿命の減少を起こす原因について検討を重ね、次のような結論に至った。
【0015】
すなわち、合金系負極活物質は、リチウムの吸蔵および放出に伴って、体積が比較的大きく変化する。一方、ポリマー電解質はポリマーを主成分とすることから、応力を受けて変形すると、元の形状には戻り難い。したがって、充電時に合金系負極活物質が膨張してポリマー電解質を変形させると、放電時に合金系負極活物質が収縮してもポリマー電解質の形状は元に戻らないので、負極活物質層とポリマー電解質との接触が断たれる。このため、負極活物質層とポリマー電解質との界面では、充放電回数の増加に伴って、負極活物質層とポリマー電解質との接触面積が徐々に小さくなり、電池の出力特性が急激に低下するものと推測される。
【0016】
本発明者らは、このような知見に基づいてさらに研究を重ねた。その結果、放電時に合金系負極活物質の体積膨張により変形したポリマー電解質を、元の形状に復元させることにより、負極活物質層とポリマー電解質との密着性を高水準に維持し、出力特性の低下を防止するという着想を得た。本発明者らは、この着想に基づいてさらに研究を重ねた結果、放電時の固体電解質二次電池の温度を、所定温度以上に所定時間維持する構成を想到するに至った。
【0017】
そして、この構成によれば、ポリマー電解質からの非水電解液の漏出、電池性能の低下などを伴うことなく、ポリマー電解質の形状を復元でき、出力特性などが電池の使用寿命全般にわたって高水準で維持され、さらに使用寿命が延長されることを見出した。本発明者は、これらの知見に基づいて本発明を完成するに至った。
【0018】
すなわち本発明は、リチウムを吸蔵および放出可能な正極活物質を含有する正極、合金系負極活物質を含有する負極および固体電解質または固体電解質を含浸させたセパレータを含む電池セルと、放電時の電池セルが所定温度以上になるように制御する制御手段とを含む固体電解質二次電池に係る。
本発明の一実施形態では、電池セルの充電回数を検知する充電回数検知手段をさらに含み、制御手段は、充電回数検知手段による検知結果に応じて放電時の電池セルが所定温度以上になるように制御することが好ましい。
【0019】
また、別の実施形態では、電池セルの開回路電圧を検知する電圧検知手段をさらに含み、制御手段は、電圧検知手段による検知結果に応じて放電時の電池セルが所定温度以上になるように制御することが好ましい。
さらに別の実施形態では、電池セルの放電時間を積算する放電時間積算手段をさらに含み、制御手段は、放電時間積算手段による積算結果に応じて放電時の電池セルが所定温度以上になるように制御することが好ましい。
【0020】
また、前記した各実施形態において、電池セルの放電を制御する放電制御手段と、電池セルの放電残量を検知する放電残量検知手段とをさらに含み、制御手段は、放電残量検知手段による検知結果に応じて、電池セルが放電残量を放電するように放電制御手段を制御し、さらに電池セルを充電した後に、放電時の電池セルが所定温度以上になるように制御することが好ましい。
【0021】
また、前記した各実施形態において、電池セルを加熱する加熱する加熱手段をさらに含み、制御手段は、放電時の電池セルが所定温度以上になるように加熱手段を制御することが好ましい。
加熱手段は、通電により発熱する抵抗体または電気機器もしくは電子機器に含まれる発熱源であることが好ましい。
電気機器および電子機器に含まれる発熱源は中央演算処理装置であることが好ましい。
【0022】
固体電解質がポリマーを含有し、所定温度がポリマーの変形可能な温度であることが好ましい。
所定温度は60℃以上であることがさらに好ましい。
【0023】
合金系負極活物質は珪素または錫を含有する合金系負極活物質であることが好ましい。
珪素を含有する合金系負極活物質は、珪素、珪素酸化物、珪素窒化物、珪素含有合金および珪素化合物よりなる群から選ばれる少なくとも1つであることがさらに好ましい。
錫を含有する合金系負極活物質は、錫、錫酸化物、錫含有合金および錫化合物よりなる群から選ばれる少なくとも1つであることがさらに好ましい。
【発明の効果】
【0024】
本発明の固体電解質二次電池は、高容量を有し、高出力が可能である。また、本発明の固体電解質二次電池は、負極活物質層とポリマー電解質との密着性がその使用寿命全般にわたって好適な状態に保たれるので、充放電サイクル特性、特に出力特性の低下が非常に少ない。また、使用寿命自体が延長される。
【発明を実施するための最良の形態】
【0025】
図1は、本発明の実施形態の1つである固体電解質二次電池1の構成を簡略化して示すブロック図である。図2は、図1に示す固体電解質二次電池1の要部(電池セル5)の構成を簡略化して示す縦断面図である。
固体電解質二次電池1は、電池セル5、加熱手段6、電圧検知手段7、充電回数検知手段8および制御手段9を含む。固体電解質二次電池1は、補助電源として利用される図示しない外部機器10に装着され、所定の回路に接続されており、外部機器10の中央演算処理装置(以下「CPU」とする)が加熱手段6を兼ねている。したがって、外部機器10には固体電解質二次電池1を装着するスペースが設けられている。さらに、外部機器10において、電池セル5が装着される近傍にはCPUが配置されている。
【0026】
図2に示すように、電池セル5は、負極11、正極12、セパレータ13、シール材14、負極リード19aおよび正極リード19bを含む。なお、負極11と正極12との間にセパレータ13を配置し、電極群を構成している。セパレータ13には、図示しないポリマー電解質が含浸されている。
【0027】
負極11は、負極集電体15および負極活物質層16を含む。
負極集電体15には、多孔性または無孔の導電性基板を使用できる。多孔性導電性基板には、たとえば、メッシュ体、多孔質体、不織布などが挙げられる。無孔の導電性基板には、たとえば、金属箔、金属板などが挙げられる。導電性基板の材質としては、たとえば、銅、銅合金、ニッケル、銀、ステンレス鋼などが挙げられる。導電性基板の厚みは特に制限されないが、通常は1〜500μm、好ましくは1〜50μm、さらに好ましくは10〜40μm、特に好ましくは10〜30μmである。
【0028】
負極活物質層16は、負極集電体15の厚み方向の一方または両方の表面に設けられる。負極活物質層16は、合金系負極活物質を主成分として含有する。合金系負極活物質としては、公知のものを使用でき、たとえば、珪素を含有する合金系負極活物質、錫を含有する合金系負極活物質などが挙げられる。合金系負極活物質は1種を単独で使用できまたは2種以上を組み合わせて使用できる。
珪素を含有する合金系負極活物質としては、たとえば、珪素、珪素酸化物、珪素窒化物、珪素含有合金、珪素化合物などが挙げられる。
【0029】
珪素酸化物としては、たとえば、組成式:SiOa(0.05<a<1.95)で表される酸化珪素が挙げられる。珪素窒化物としては、たとえば、組成式:SiNb(0<b<4/3)で表される窒化珪素が挙げられる。珪素含有合金としては、たとえば、珪素とFe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、SnおよびTiよりなる群から選ばれる1または2以上の元素を含む合金が挙げられる。珪素化合物としては、たとえば、珪素、珪素酸化物、珪素窒化物または珪素含有合金に含まれる珪素の一部がB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、NおよびSnよりなる群から選ばれる1または2以上の元素で置換された化合物が挙げられる。
【0030】
錫を含有する合金系負極活物質としては、たとえば、錫、錫酸化物、錫含有合金、錫化合物などが挙げられる。
錫酸化物としては、たとえば、SnO2、組成式:SnOd(0<d<2)で表される酸化珪素などが挙げられる。錫含有合金としては、たとえば、Ni−Sn合金、Mg−Sn合金、Fe−Sn合金、Cu−Sn合金、Ti−Sn合金などが挙げられる。錫化合物としては、たとえば、SnSiO3、Ni2Sn4、Mg2Snなどが挙げられる。
これらの中でも、珪素、錫、珪素酸化物、錫酸化物などが好ましく、珪素、珪素酸化物などが特に好ましい。
【0031】
負極活物質層16は、たとえば、スパッタリング法、蒸着法、化学的気相成長(CVD)法などの公知の薄膜形成法に従って、負極集電体15の表面に形成できる。これらの方法で形成される負極活物質層16は、合金系負極活物質の含有率がほぼ100%であり、高容量化および高出力化が可能になる。また、薄膜形成法を採用すると、負極活物質層16の厚さを従来よりも薄くできるので、たとえば、携帯用電子機器の小型化、薄型化への対応が容易である。したがって、本発明では、スパッタリング法、蒸着法、化学的気相成長(CVD)法などで形成された負極活物質層16が好ましい。負極活物質層の厚みは、好ましくは3〜20μm、さらに好ましくは5〜15μmである。
【0032】
正極12は、正極集電体17および正極活物質層18を含む。
正極集電体17には、多孔性または無孔の導電性基板を使用できる。多孔性導電性基板には、たとえば、メッシュ体、多孔質体、不織布などが挙げられる。無孔の導電性基板には、たとえば、金属箔、金属板などが挙げられる。導電性基板の材質としては、たとえば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが挙げられる。導電性基板の厚みは特に制限されないが、通常は1〜500μm、好ましくは1〜50μm、さらに好ましくは10〜40μm、特に好ましくは10〜30μmである。
【0033】
正極活物質層18は、正極集電体17の厚み方向の一方または両方の表面に設けられる。正極活物質層18は正極活物質を含有し、必要に応じて、導電剤、結着剤などを含有してもよい。
正極活物質には、リチウム二次電池の分野で常用されるものを使用でき、たとえば、リチウム含有複合金属酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガンなどが挙げられる。これらの正極活物質の中でも、リチウム含有複合金属酸化物、オリビン型リチウム塩などを好ましく使用できる。
【0034】
リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物または該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、たとえば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bなどが挙げられ、Mn、Al、Co、Ni、Mgなどが好ましい。異種元素は1種でもよくまたは2種以上でもよい。
【0035】
リチウム含有複合金属酸化物の具体例としては、たとえば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、VおよびBよりなる群から選ばれる少なくとも1種の元素を示す。x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。)、などが挙げられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。
【0036】
また、オリビン型リチウム塩としては、たとえば、LiFePO4などが挙げられる。カルコゲン化合物としては、たとえば、二硫化チタン、二硫化モリブデンなどが挙げられる。正極活物質は1種を単独で使用できまたは2種以上を組み合わせて使用できる。
【0037】
導電剤としては、たとえば、天然黒鉛、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、アルミニウム粉などの金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、フェニレン誘導体などの有機導電性材料などが挙げられる。導電剤は1種を単独で使用できまたは2種以上を組み合わせて使用できる。
【0038】
結着剤としては、たとえば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ヘキシル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ヘキシル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロースなどが挙げられる。また、結着剤として、後に詳しく説明するポリマー電解質を用いてもよい。結着剤としてポリマー電解質を用いると、正極12表面から深部に至るまでイオンが容易に到達することができるため好ましい。結着剤は1種を単独で使用できまたは必要に応じて2種以上を組み合わせて使用できる。
【0039】
正極活物質層18は、たとえば、正極合剤スラリーを正極集電体17表面に塗布し乾燥させ、さらに必要に応じて圧延することによって形成でき、これにより正極12が得られる。正極合剤スラリーは、正極活物質および必要に応じて導電剤、結着剤などを分散媒に溶解または分散させることにより調製できる。分散媒としては、たとえば、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、N−メチル−2−ピロリドン(NMP)、ジメチルアミン、アセトン、シクロヘキサノンなどを使用できる。
【0040】
セパレータ13としては、たとえば、合成樹脂からなる多孔質体、不織布、織布、メッシュ体などを使用できる。合成樹脂としては、固体電解質二次電池の分野で常用されるものを使用できるが、その中でも、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。セパレータ13の空隙率は、好ましくは35〜45%である。また、セパレータ13の厚さは、好ましくは15〜25μmである。
セパレータ13には、ポリマー電解質が含浸されている。ポリマー電解質は、ポリマーおよび支持塩を含有し、さらに非水溶媒を含有してもよい。
【0041】
ポリマーとしては、固体電解質二次電池の分野で常用されるものを使用でき、たとえば、酸素含有ポリマー、フッ素樹脂などが挙げられる。酸素含有ポリマーとは、エーテル酸素、エステル酸素などの、電気陰性度が大きい酸素原子を分子中に含むポリマーである。電気陰性度が大きい酸素原子にリチウムイオンが配位することによって、該ポリマーにリチウム塩が溶解し、固体状の電解質でありながら、イオン伝導性を示すようになる。このように、ポリマー中に相対的に負に荷電したエーテル酸素やエステル酸素などが存在していることが、高い導電率を示すための条件となっている。
【0042】
酸素含有ポリマーとしては、エチレンオキシド単位および/またはプロピレンオキシド単位を有するポリマーが好ましい。その具体例としては、たとえば、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシドとプロピレンオキシドとの共重合体などが挙げられる。これらの中でも、ポリマー側鎖にエーテル酸素を有し、かつその鎖長を短くしたポリマーを用いるのが特に好ましい。これにより、負極界面におけるリチウムイオンの移動が非常に容易になる。また、フッ素樹脂としては、たとえば、ポリビニリデンフルオライド(PVDF)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などが挙げられる。
【0043】
支持塩としては、たとえば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiAsF6、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウム、LiN(CF3SO22、LiN(C25SO22などが挙げられる。支持塩は1種を単独でまたは2種以上を組み合わせて使用できる。
【0044】
非水溶媒としては、リチウムイオン二次電池の分野で常用されるものを使用でき、たとえば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが挙げられる。環状炭酸エステルとしては、たとえば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、たとえば、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、たとえば、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)などが挙げられる。非水溶媒は1種を単独でまたは2種以上を組み合わせて使用できる。
【0045】
ポリマー電解質は、公知の方法に従って調製できる。たとえば、ポリマーを非水溶媒に溶解し、得られたポリマー溶液と支持塩とを混合すればよい。また、ポリマー電解質は、ポリマーと非水電解質とを混合し、ポリマーを非水電解質中に溶解させることによっても調製できる。非水電解質は支持塩と非水溶媒とを含有している。ポリマーの溶解は、必要に応じて加熱下に行ってもよい。
【0046】
セパレータ13へのポリマー電解質の含浸は、液状物を固形物に含浸させる一般的な方法により行われる。たとえば、ポリマー電解質中にセパレータ13を浸漬する方法、セパレータ13にポリマー電解質を塗布する方法などが挙げられる。このとき、セパレータ13だけでなく、負極11および正極12にもポリマー電解質を含浸させ、負極11と正極12との間にセパレータ13を配置して積層し、加熱下に厚み方向に加圧して、電極群を作成してもよい。
【0047】
また、セパレータ13を使用せず、ポリマー電解質のみからなるポリマー電解質層を形成してもよい。たとえば、ポリマー電解質を負極活物質層16表面に塗布して乾燥させることにより、負極活物質層16表面にポリマー電解質層が形成される。また、ポリマー電解質をフィルム状に成形してポリマー電解質層を作製し、このポリマー電解質層を負極11と正極12との間に配置しても良い。
【0048】
シール材14には、電池分野で常用されるものを使用できる。たとえば、合成樹脂材料からなるシール材が挙げられる。
負極リード19aは、一端が負極集電体15に接続され、他端が外部接続用端子5aに接続されている。負極リート19aには、たとえば、ニッケル製リードを使用できる。また、正極リード19bは、一端が正極集電体17に接続され、他端が外部接続用端子5bに接続されている。正極リード19bには、たとえば、アルミニウム製リードを使用できる。外部接続端子5a、5bは、外部機器10の対応する電源端子と電気的に接続可能に配置されている。
【0049】
電池セル5は、たとえば、次のようにして作製される。まず、負極11、正極12およびセパレータ13にポリマー電解質を含浸させる。次いで、負極11と正極12との間にセパレータ13を配置して積層する。このとき、負極集電体15と正極集電体17とが直接対向する部分には、シール材14が配置される。但し、負極活物質層16、セパレータ13および正極活物質層17からなる積層部分と、シール材14との間には空隙を設ける。なお、活物質層を集電体の全面に形成する場合は、シール材14を配置しなくてもよい。
【0050】
この積層体を加熱しながら厚み方向に加圧し、乾燥させて電極群を作製する。得られる電極群の負極集電体15に負極リード19aの一端を接続し、正極集電体17に正極リード19bを接続する。この電極群を図示しない電池ケースに収納し、電池ケースの開口から、リード19a、19bの他端を電池ケース外部に導出し、外部接続用端子5a、5bに接続する。その後、電池ケースの内部を減圧にした状態で、電池ケースの開口を封口する。これにより、電池セル5が作製される。
【0051】
電池セル5は、その構成および形態についての制限はない。構成の具体例としては、たとえば、積層型、捲回型、バイポーラ型などが挙げられる。形態の具体例としては、たとえば、扁平型、コイン型、円筒型、角型、ラミネート型などが挙げられる。
【0052】
加熱手段6は、本実施形態では、固体電解質電池1が補助電源として装着される外部機器10のCPUである。固体電解質電池1は、電池セル5が加熱手段6の近傍に位置するように外部機器10に装着される。加熱手段6は電池セル5の近傍に配置され、制御手段9の制御を受け、放電時に、電池セル5の温度を所定温度以上に維持するように、電池セル5を加熱する。加熱手段6は、電池セル5が放電中でありかつ制御手段9が充電回数検知手段8の検知結果に応じて、電池セル5の温度を加熱する必要があると判定した場合には、外部機器10の図示しない主電源から電力の供給を受けて発熱し、その近傍にある放電中の電池セル5を所定温度以上に加熱する。
【0053】
ここで、電池セル5の放電時とは、電池セル5が放電可能な状態にあることを意味する。充電時および充電が必要な状態を除く。また、外部機器10のCPUは、外部機器10の動作中は主電源から電力の供給を受けて常に稼動し、発熱状態にあるが、その温度は電池セル5を加熱する所定温度には達していない。電池セル5の加熱手段6として機能する場合には、通常よりも大きな電圧が印加され、発熱量が大きくなるように構成されている。
【0054】
電池セル5の放電時には、合金系負極活物質は体積が収縮し、負極活物質層16とセパレータ13との間には隙間が形成される可能性がある。しかしながら、この時、電池セル5を加熱することにより、セパレータ13中のポリマー電解質が流動性を帯び、本来の形状に復元し、負極活物質層16とセパレータ13との密着性が電池組立時と同様の状態になる。その結果、負極活物質層16とセパレータ13との密着性が、長期にわたって高い水準に維持され、充放電サイクル特性、特に出力の低下が抑制される。
【0055】
加熱手段6は、上記したように、放電時の電池セル5を所定温度以上に加熱する。ここで、所定温度とは、ポリマー電解質が変形可能な温度であり、ポリマー電解質の種類に応じて広い範囲から適宜選択されるが、その一例を挙げると、60℃以上、好ましくは60〜80℃、さらに好ましくは65〜75℃である。また、加熱時間も加熱温度およびポリマー電解質の種類に応じて広い範囲から適宜選択されるが、その一例を挙げれば、通常1〜15分、好ましくは3〜10分、さらに好ましくは3〜5分である。
【0056】
本実施形態では、加熱手段6としてCPUを用いるが、それに限定されず、電気機器および電子機器に含まれる、CPU以外の発熱源も使用できる。また、通電により発熱する抵抗体なども使用できる。通電により発熱する抵抗体としては公知のものを使用でき、たとえば、セラミックヒータ、ニクロム線ヒータ、測温抵抗体、面発熱体などが挙げられる。また、市販の発熱器、恒温槽なども使用できる。なお、加熱手段6の近傍には図示しない温度検知手段が配置され、その検知結果は制御手段9に出力される。制御手段9は、温度検知手段による検知結果に応じて、加熱手段6への印加電圧値および電圧印加時間を調整する。温度検知手段には、たとえば、温度センサなどを使用できる。
【0057】
電圧検知手段7は、放電時および充電時の電池セル5の開回路電圧(Open circuit voltage、OCV)を測定する。電圧検知手段によるOCVの検知は、電池セル5が一定電圧以上で一定時間以上放電し、その放電が終了した時点で行われる。電圧制御手段7には、たとえば、電圧計などを使用できる。電圧検知手段7は制御手段9に電気的に接続され、その測定結果を制御手段9に出力する。制御手段9は、電池の放電時に、電池測定手段7による測定結果に応じて、電池セル5の充電が必要か否かを判定する。
【0058】
具体的には、次の通りである。制御手段9には予め電池セル5のOCVの基準値が入力されている。制御手段9は、電圧検知手段7による測定結果と基準値とを比較し、測定結果が基準値よりも低い場合には、電池セル5の充電が必要と判定し、その判定結果を図示しない表示手段により外部機器10の使用者に通知する。使用者は、キー操作などにより、制御手段8に電池セル5への充電を開始させる。または、制御手段8は、自動的に外部機器10の主電源に制御信号を送り、電池セル5への充電を開始させる。制御手段9による充電が必要か否かの判定は、電圧検知手段7からの測定結果の入力がある毎に実施される。本実施形態では、OCVの基準値は、3.15Vである。
【0059】
また、電池セル5の充電時には、制御手段9は、電圧検知手段7による測定結果に応じて、充電を解除するか否かを判定する。具体的には、次の通りである。制御手段9には予め電池セル5のOCVの基準値が入力されている。制御手段9は、電圧検知手段7による測定結果と基準値とを比較し、測定結果が基準値と同じかまたは基準値を超える場合には、電池セル5の充電解除が必要と判定し、その判定結果に基づいて、外部機器10の主電源に制御信号を送り、電池セル5への充電を停止させる。制御手段9による充電解除が必要か否かの判定は、電圧検知手段7からの測定結果の入力がある毎に実施される。本実施形態では、OCVの基準値は、4.10Vである。なお、制御手段9の詳細については、後記する。
【0060】
充電回数検知手段8は、電池セル5の充電回数を検知する。充電回数検知手段8は、本実施形態では、制御手段9に含まれている。1回の充電とは、電池セル5のOCV値の低下から電池セル5の充電が必要と判定され、電池セル5の充電が開始され、さらにOCV値から電池セル5が満充電状態になり、充電解除が必要と判定され、充電を終了するまでの一連の工程である。充電回数検知手段は、前記工程を充電回数1回と検知する。たとえば、充電用電源の断線などにより充電が途中で終了した場合には、充電回数1回とは検知しない。充電回数検知手段8による充放電回数の検知は、電池セル5の充電が開始されると同時に開始される。
【0061】
制御手段9には、たとえば、CPUを使用できる。CPUは、本実施形態では、マイクロコンピュータ、インターフェイス、メモリ、タイマーなどを含む処理回路である。また、本実施形態では、CPUは固体電解質二次電池1専用のものであるが、それに限定されず、固体電解質二次電池1が補助電源として装着される電気機器、電子機器などに搭載されているCPUで兼用してもよい。
CPUは、たとえば、記憶部、演算部および制御部を含む。
【0062】
記憶部には、たとえば、充電回数検知手段8、放電時間積算手段、電圧検知手段、放電制御手段などを実行するためのプログラム、各種制御を実行するための基準値などが入力されている。前記基準値とは、たとえば、電池セル5を充電および充電解除する基準になるOCV値、加熱手段6により電池セル5を加熱するための基準になる充電回数、放電時間、電池セル5の開回路電圧などである。さらに、記憶部には、充電回数検知手段、電圧検知手段などによる検知結果、放電時間積算手段による積算結果なども入力される。
【0063】
なお、充電回数検知手段8、放電時間積算手段、電圧検知手段などは、全てを実行してもよいが、これらのうちの少なくとも1つを実行してもよい。本実施形態では、充電回数検知手段8のみが実行される。記憶部には、この分野で常用される各種メモリを使用でき、たとえば、リードオンリィメモリ(ROM)、ランダムアクセスメモリ(RAM)、半導体メモリ、不揮発性フラッシュメモリなどが挙げられる。
【0064】
制御手段9は、上記したように、本実施形態では、記憶部、演算部および制御部を含むCPUである。また、本実施形態では、充電回数検知手段8による検知結果(電池セル5の充電回数)に応じて、加熱手段6による放電時の電池セル5の加熱を行うか否かを判定する。制御手段9の記憶部には、充放電回数の基準値が入力されている。基準値は、電池セル5の容量毎に、予め実験により設定され、データテーブルとして記憶部に入力されている。電池セル5の容量は、放電時における最高のOCV値に基づいて、制御手段9により判定される。また、制御手段9の記憶部には、充電回数検知手段8による検知結果が入力されている。この検知結果は、新しい検知結果が入力されると更新される。
【0065】
制御手段9の演算部では、充電回数検知手段8による検知結果と基準値とを比較し、検知結果が基準値と等しいかまたは基準値を超えている場合には、電池セル5の加熱が必要と判定する。検知結果が基準値よりも小さい場合は、電池セル5の加熱が不必要と判定する。演算部は、電池セル5の加熱が必要との判定結果を、制御手段9の制御部に出力する。制御部は、電池セル5の加熱が必要との判定結果に応じて、外部機器10の主電源に制御信号を送り、加熱手段6への電圧の印加を開始する。制御手段9による電池セル5の加熱が必要か否かの判定は、記憶部において充電回数検知手段8による検知結果が更新されるたびに実施される。
【0066】
加熱手段6の温度および加熱の調整は、上記したように、加熱手段6の近傍に配置される図示しない温度検知手段を利用して行なわれる。制御手段9の記憶部には、電池セル5の容量と、加熱温度および加熱時間との関係がデータテーブルとして予め入力されている。また、電池セル5の容量と、放電時におけるOCVの最高値との関係が予めデータテーブルとして入力されている。なお、これらのデータテーブルは、実験により求められる。また、これらのデータテーブルにおいて、電池容量は、範囲を持たせて分類しておくのが好ましい。さらに、制御手段9の記憶部には、温度検知手段による検知結果が入力されている。
【0067】
制御手段9の演算部は、まず、電池セル5の放電時におけるOCVの最高値から電池セル5の容量を判定する。この判定は、固体電解質二次電池1が外部機器10に装着された後、電池セル5の最初の充電が行われるまでに実施される。次に、演算部は、電池セル5の容量に相当する基準値と、温度検知手段による検知結果とを比較し、基準値と検知結果との大小関係を判定する。検知結果が基準値よりも低い場合は、その判定結果を制御部に出力し、制御部は主電源に対して印加電圧を高めるように制御信号を送る。検知結果が基準値よりも高い場合にも、その判定結果を制御部に出力し、制御部は主電源に対して印加電圧を低めるように制御信号を送る。この判定は、検知結果が基準値と異なる場合に実施される。
【0068】
また、制御手段9は、電池セル5の容量と、加熱温度および加熱時間との関係を示すデータテーブルに応じて、所定時間経過後に、加熱手段6による電池セル5の加熱を終了する。これにより、電池セル5内におけるセパレータ13と負極活物質層16との密着性が回復し、電池セル5の容量低下を防止でき、電池セル5の耐用寿命を延ばすことができる。
【0069】
本実施形態によれば、電圧検知手段7が制御手段9とは別個に存在するので、制御手段9として、固体電解質二次電池1が装着される電気、電子機器類に内蔵されるCPUなどを利用し易くなるという利点がある。すなわち、検知手段をCPU内部にプログラムする必要がなくなるので、固体電解質二次電池2の装着に合せて、電子、電気機器類のCPUを大幅に変更する必要がなくなり、最小限の変更で対応可能になる。
【0070】
本実施形態では、充電回数検知手段8の検知結果に応じて、加熱手段6により電池セル5を所定温度以上に加熱しているが、それに限定されず、たとえば、電圧検知手段7の検知結果を利用しても良い。制御手段9の記憶部には、電池セル5の容量と、基準OCV値との関係がデータテーブルとして入力されている。データテーブルは実験により求められる。ここで、基準OCV値に基づいて、制御手段9の演算部が、電池セル5の加熱を必要とするか否かを判定する。また、電圧検知手段7の検知結果が入力されている。記憶部の検知結果は、新しい検知結果が入力されるたびに更新される。
【0071】
制御部9の演算部は、電圧検知手段7による検知結果と基準OCV値との大小を判定する。この判定は、電池セル5を加熱中であるか否かに関係なく、記憶部において電圧検知手段7の検知結果が更新されるたびに実施される。演算部は、電圧検知手段7による検知結果が基準OCV値よりも低い場合には、電池セル5を加熱する必要があると判定し、この判定結果を制御部に出力する。また、演算部は、電圧検知手段7による検知結果が基準OCV値と等しいかまたは基準OCV値よりも高い場合には、電池セル5を加熱する必要がないと判定する。このとき、電池セル5を加熱中であれば、電池セル5を加熱する必要がないとの判定結果を、制御部に出力する。
【0072】
制御部9は、電池セル5を加熱する必要があるとの判定結果に応じて、外部機器10の主電源に制御信号を出力し、主電源から加熱手段6への電圧印加を制御する。また、制御部は、電池セル5を加熱する必要がないとの判定結果に応じて、外部機器10の主電源に制御信号を出力し、主電源から加熱手段6への電圧印加を停止させる。なお、この際にも、加熱手段6の温度制御が実施されている。加熱手段6の温度制御は、上記と同様にして実施できるが、データテーブルにおける電池容量と加熱温度との関係のみを利用するのが好ましい。これにより、電圧検知手段7の検知結果に基づく制御と同様の効果が得られる。なお、電圧検知手段7に代えて制御部9の内部に電圧検知手段を設け、同様の制御を実施しても良い。
【0073】
また、充電回数検知手段8による検知結果に代えて、放電時間積算手段による検知結果を利用して、電池セル5を加熱できる。放電時間積算手段は、制御部9に含まれている。放電時間積算手段は、電池セル5が所定電圧以上で放電するたびに、放電開始から放電終了までの時間をタイマーにより検知し、積算する。本実施形態では、たとえば、所定電圧は2.5Vである。
【0074】
積算結果は、記憶部に入力される。積算結果は、電池セル5の放電が行われるたびに新しい積算結果が加算されて更新される。すなわち、積算結果は、電池セル5の加熱が実施されるまで、加算されていく。また、積算結果は、電池セル5の加熱が終了するたびに、リセットされる。また、記憶部には、放電時間の基準値が予め入力されている。すなわち、電池セル5の容量と、それに対応する積算時間との関係がデータテーブルとして入力されている。データテーブルは、実験により求められる。
【0075】
演算部は、放電時間積算手段による積算結果と、放電時間の基準値とを比較し、電池セル5の加熱が必要か否かを判定する。この判定は、積算結果が更新されるたびに実施される。なお、電池セル5の加熱下に、積算結果が更新された場合には、判定は実施しない。演算部は、積算結果が放電時間の基準値を下回る場合には、電池セル5の加熱を実施しないと判定し、その時点で判定動作を終了する。また、演算部は、積算結果が放電時間の基準値に等しいかまたはそれを上回る場合には、電池セル5の加熱が必要と判定し、その判定結果を制御部に出力する。
【0076】
制御部は、充電回数検知手段8の検知結果に応じた電池セル5の加熱と同様にして、加熱手段6により電池セル5を加熱する。このとき、加熱手段6の温度制御も、同様にして実施される。電池セル5の加熱終了後は、記憶部に入力された積算結果がリセットされる。或いは、全ての積算結果をさらに積算した総積算結果を記憶部に書き込んでおき、総積算結果が大きくなるにつれて、電池セル5の加熱手段6による加熱時間および/または加熱温度を大きくするような補正を行ってもよい。また、総積算結果が大きくなるにつれ、電池セル5の加熱の基準になる積算時間を徐々に少なくしてもよい。
【0077】
放電制御手段は、充電回数検知手段8、電圧検知手段7または放電時間積算手段の検知結果または積算結果により、電池セル5の加熱が必要と判定された場合に、電池セル5を加熱する前に、電池セル5を強制的に放電させる。これにより、電池セル5の加熱効果が一層向上し、電池性能の回復の度合がさらに高まる。より具体的には、たとえば、活物質間の空隙を広げ、活物質間への固体電解質の再含浸を効果的に実施するために行なう。放電制御手段は、制御手段9に含まれる。
【0078】
制御部9の記憶部には、電池セル5が完全放電状態にあるか否かを判定するための基準OCV値が予め入力されている。詳しくは、電池セル5の容量と、完全放電状態のOCV値との関係が、データテーブルとして入力されている。データテーブルは、予め実験により求められる。制御部9の演算部は、検知結果または積算結果に基づいて、電池セル5の加熱が必要と判定すると、電池セル5のOCVを検知し、その検知結果から電池セル5が完全放電状態にあるか否かを判定する。
【0079】
電池セル5が完全放電状態である場合には、電池セル5の加熱が必要との判定結果を制御部に出力し、電池セル5を加熱する。一方、電池セル5が完全放電状態ではない場合には、放電制御手段を動作させ、完全放電状態になるまで電池セル5を強制放電させる。その後、電池セル5の加熱が必要との判定結果を制御部に出力し、電池セル5を加熱する。これにより、電池セル5の加熱が効果的に実施され、セパレータ13表面と負極活物質層16表面とが一層緊密に密着する。
【0080】
上記のようにして電池セル5を定期的に加熱することにより、セパレータ13(またはポリマー電解質層)と負極活物質層16表面との密着状態が、固体電解質二次電池1の使用初期の状態に回復する。その結果、固体電解質二次電池1の電池性能、たとえば充放電サイクル特性(特に出力特性)が使用初期に近い状態まで回復し、電池性能の低下が顕著に抑制される。
【0081】
図3は、本実施の別形態である固体電解質二次電池2の構成を簡略化して示すブロック図である。固体電解質二次電池2は、固体電解質二次電池1に類似し、対応する部分については図1と同様の参照符号を付して説明を省略する。固体電解質二次電池2は、電圧検知手段8を含む以外は、固体電解質二次電池1と同様の構成を有している。
【0082】
固体電解質二次電池2は、その内部に加熱手段6aを有していることを特徴とし、それ以外の構成は固体電解質二次電池1と同様である。加熱手段6aには、たとえば、通電により発熱する抵抗体を使用できる。通電により発熱する抵抗体としては公知のものを使用でき、たとえば、セラミックヒータ、ニクロム線ヒータ、測温抵抗体、面発熱体などが挙げられる。加熱手段6aは、制御部7による制御により、固体電解質二次電池2が装着される図示しない外部機器10の主電源から電圧の印加を受け、発熱する。
【0083】
固体電解質二次電池2においても、固体電解質二次電池1と同様にして、電圧検知手段7が電池セル5のOCV値を検知し、この検知結果に基づいて、制御手段9が電池セル5の加熱の必要性を判定し、判定結果に応じて電池セル5を加熱する。判定動作および加熱手段6aによる加熱の制御動作は、固体電解質二次電池1におけるのと同様である。電圧検知手段7に代えて、充電回数検知手段、放電時間積算手段などを設けてもよい。さらに放電制御手段を設けてもよい。
【0084】
図4は、本発明で使用する負極20の構成を模式的に示す縦断面図である。図5は、図4に示す負極20に含まれる負極集電体21の構成を模式的に示す斜視図である。図6は、図4に示す負極20の負極活物質層23に含まれる柱状体25の構成を模式的に示す縦断面図である。図7は、柱状体25を作製するための電子ビーム式蒸着装置30の構成を模式的に示す側面図である。
【0085】
負極20は、負極集電体21と、負極活物質層23とを含む。
負極集電体21は、図5に示すように、厚み方向の両方またはいずれか一方の表面に、複数の凸部22が設けられていることを特徴とする。
【0086】
凸部22は、負極集電体21の厚み方向の表面21a(以下単に「表面21a」とする)から、負極集電体21の外方に向けて延びるように設けられる突起物である。凸部22の高さは、凸部22が形成されている表面21aに対して垂直な方向において、表面21aから、凸部22の表面21aに対して最も遠い部分(最先端部分)までの長さである。凸部22の高さは特に制限はないが、好ましくは、その平均高さが3〜10μm程度になるように形成される。また、凸部22の表面21aに平行な方向における断面径も特に制限されないが、たとえば、1〜50μmである。
【0087】
凸部22の平均高さは、たとえば、負極集電体21の厚み方向における集電体1の断面を走査型電子顕微鏡(SEM)で観察し、たとえば、100個の凸部22の高さを測定し、得られた測定値から平均値を算出することによって決定できる。凸部22も断面径も、凸部22の高さと同様にして測定できる。なお、複数の凸部22は全て同じ高さまたは同じ断面径に形成する必要はない。
【0088】
凸部22は、その成長方向の先端部分にほぼ平面状の頂部を有する。成長方向とは、表面21aから負極集電体21の外方に向かう方向である。凸部22が先端部分に平面状の頂部を有することによって、凸部22と柱状体25との接合性が向上する。この先端部分の平面は、表面21aに対してほぼ平行であることが接合強度を高める上ではさらに好ましい。
【0089】
凸部22の形状は、本実施の形態では、円形である。ここでの凸部22の形状は、負極集電体21の表面21aとは反対側の表面が水平面と一致するように集電体21を載置した場合に、鉛直方向上方から見た凸部22の形状である。なお、凸部22の形状は円形に限定されず、たとえば、多角形、楕円形などでもよい。多角形は、製造コストなどを考慮すると、3角形〜8角形が好ましい。さらには、平行四辺形、台形、ひし形などでもよい。
【0090】
凸部22の個数、凸部22同士の間隔などは特に制限されず、凸部22の大きさ(高さ、断面径など)、凸部22表面に設けられる柱状体25の大きさなどに応じて適宜選択される。凸部22の個数の一例を示せば、1万〜1000万個/cm2程度である。また、隣り合う凸部22の軸線間距離が2〜100μm程度になるように、凸部22を形成するのが好ましい。
【0091】
凸部22表面に、図示しない突起を形成してもよい。これによって、たとえば、凸部22と柱状体25との接合性が一層向上し、柱状体25の凸部22からの剥離、剥離伝播などがより確実に防止される。突起は、凸部22表面から凸部22の外方に突出するように設けられる。突起は、凸部22よりも大きさの小さいものが複数形成されてもよい。また、突起は、凸部22の側面に、周方向および/または凸部22の成長方向に延びるように形成されてもよい。また、凸部22がその先端部分に平面状の頂部を有する場合は、1または複数の、凸部22よりも小さな突起が頂部に形成されてもよく、さらに一方の方向に長く延びる1または複数の突起が頂部に形成されてもよい。
【0092】
負極集電体21は、たとえば、金属箔、金属シートなどに凹凸を形成する技術を利用して製造できる。具体的には、たとえば、凸部22の形状、寸法および配置に対応する凹部が表面に形成されたロール(以下「凸部用ロール」とする)を使用する。負極集電体21に適する金属シート(金属箔も含む)の片面に凸部22を形成する場合は、凸部用ロールと表面の平滑なロールとをそれぞれの軸線が平行になるように圧接させ、その圧接部分に金属シートを通過させて加圧成形すればよい。この場合、表面の平滑なロールは、少なくとも表面が弾性材料で形成されていることが好ましい。
【0093】
また、金属シートの両面に凸部22を形成するには、2本の凸部用ロールをそれぞれの軸線が平行になるように圧接させ、その圧接部分に金属シートを通過させて加圧成形すればよい。ここで、ロールの圧接圧は金属シートの材質、厚み、凸部22の形状、寸法、加圧成形後の金属シートすなわち負極集電体21の厚みの設定値などに応じて適宜選択される。
【0094】
凸部用ロールは、たとえば、セラミックロールの表面における所定位置に、凸部22に対応する形状、寸法および配置を有する凹部を形成することによって製造できる。ここで、セラミックロールとしては、たとえば、芯ロールと、溶射層とを含むものが用いられる。芯ロールには、たとえば、鉄、ステンレス鋼などからなるロールを使用できる。溶射層は、芯ロール表面に、酸化クロムなどのセラミック材料を均一に溶射することによって形成される。溶射層に凹部が形成される。凹部の形成には、たとえば、セラミックス材料などの成形加工に用いられる一般的なレーザーを使用できる。
【0095】
別形態の凸部用ロールは、芯ロールと、下地層と、溶射層とを含む。芯ロールはセラミックロールの芯ロールと同じものである。下地層は、芯ロール表面に形成される。下地層表面には、凸部22に対応する凹部が形成される。下地層に凹部を形成するには、たとえば、片面に凹部を有する樹脂シートを成形し、該樹脂シートの凹部が形成された面とは反対側の面を芯ロール表面に巻き付けて接着すればよい。ここで合成樹脂としては機械的強度の高いものが好ましく、たとえば、不飽和ポリエステル、熱硬化性ポリイミド、エポキシ樹脂、フッ素樹脂などの熱硬化性樹脂、ポリアミド、ポリエーテルエーテルケトンなどの熱可塑性樹脂が挙げられる。溶射層は、酸化クロムなどのセラミック材料を下地層の表面の凹凸に沿うように溶射することによって形成される。したがって、下地層に形成される凹部は、溶射層の層厚を考慮して、設計寸法よりも溶射層の層厚分だけ大きめに形成される。
【0096】
別形態の凸部用ロールは、芯ロールと、超硬合金層とを含む。芯ロールはセラミックロールの芯ロールと同じものである。超硬合金層は芯ロールの表面に形成され、炭化タングステンなどの超硬合金を含む。超硬合金層は、芯ロールに、円筒状に形成した超硬合金を焼き嵌めするかまたは冷やし嵌めすることによって形成できる。超硬合金層の焼き嵌めとは、円筒状の超硬合金を暖めて膨張させ、芯ロールに嵌めることである。また、超硬合金層の冷やし嵌めとは、芯ロールを冷却して収縮させ、超硬合金の円筒に挿入することである。超硬合金層の表面には、たとえば、レーザー加工によって凸部22に対応する凹部が形成される。
【0097】
別形態の凸部用ロールは、硬質鉄系ロールの表面に、たとえば、レーザー加工によって凸部22に対応する凹部が形成されたものである。硬質鉄系ロールは、たとえば、金属箔の圧延製造に用いられる。硬質の鉄系ロールとしては、ハイス鋼、鍛鋼などからなるロールが挙げられる。ハイス鋼には、モリブデン、タングステン、バナジウムなどの金属が添加し、熱処理して硬度を高めた鉄系材料である。鍛鋼は、よう鋼を鋳型に鋳込んで造られた鋼塊またはその鋼塊から製造された鋼片を加熱し、プレスおよびハンマーで鍛造し、または圧延および鍛造することにより鍛錬成形し、これを熱処理することによって製造される鉄系材料である。
【0098】
さらに、凸部22表面の1または複数の突起は、たとえば、フォトレジスト法により凸部22表面にレジストパターンを形成し、該パターンに従って金属めっきを施すことによって形成できる。また、凸部22を設計寸法よりも大きい寸法で形成しておき、エッチング法により凸部22表面の所定箇所を除去することによっても、突起を形成できる。なお、凸部22自体の形成にも、フォトレジスト法とめっき法とを組み合わせた方法が利用できる。
【0099】
負極活物質層23は、好ましくは、図4および図6に示すように、凸部22表面から負極集電体21の外方に向けて延びる複数の柱状体25の集合体として形成される。柱状体25は、負極集電体21の表面21aに対して垂直な方向または前記垂直な方向に対して傾きを有して延びる。また、複数の柱状体25は、隣り合う柱状体25との間に間隙を有して互いに離隔しているので、充放電の際の膨張および収縮による応力が緩和され、負極活物質層23が凸部22から剥離し難くなり、負極集電体21の変形も起こり難い。
【0100】
柱状体25は、図6に示すように、8個の柱状塊25a、25b、25c、25d,25e、25f、25g、25hを積層してなる柱状物として形成されるのがさらに好ましい。負極活物質層23を形成するに際しては、まず、凸部22の頂部およびそれに続く側面の一部を被覆するように柱状塊25aを形成する。次に、凸部22の残りの側面および柱状塊25aの頂部表面の一部を被覆するように柱状塊25bを形成する。すなわち、図6において、柱状塊25aは凸部22の頂部を含む一方の端部に形成され、柱状塊25bは部分的には柱状塊25aに重なるが、残りの部分は凸部22の他方の端部に形成される。
【0101】
さらに、柱状塊25aの頂部表面の残りおよび柱状塊25bの頂部表面の一部を被覆するように柱状塊25cが形成される。すなわち、柱状塊25cは主に柱状塊25aに接するように形成される。さらに、柱状塊25dは主に柱状塊25bに接するように形成される。以下同様にして、柱状塊25e、25f、25g、25hを交互に積層することによって、柱状体25が形成される。なお、柱状塊の積層数は8に限定されず、2以上の任意の数にすることができる。
【0102】
負極活物質層23は、たとえば、図7に示す電子ビーム式蒸着装置30によって形成できる。図7では、蒸着装置30内部の各部材も実線で示す。蒸着装置30は、チャンバー31、第1の配管32、固定台33、ノズル34、ターゲット35、図示しない電子ビーム発生装置、電源36および図示しない第2の配管を含む。チャンバー31は内部空間を有する耐圧性の容器状部材であり、その内部に第1の配管32、固定台33、ノズル34およびターゲット35を収容する。第1の配管32は、一端がノズル34に接続され、他端がチャンバー31の外方に延びて図示しないマスフローコントローラを介して図示しない原料ガスボンベまたは原料ガス製造装置に接続される。原料ガスとしては、たとえば、酸素、窒素などが挙げられる。第1の配管32は、ノズル34に原料ガスを供給する。
【0103】
固定台33は板状部材であり、回転自在に支持され、その厚み方向の一方の面に負極集電体21を固定できるように設けられる。固定台33の回転は、図7における実線で示される位置と一点破線で示される位置との間で行われる。実線で示される位置は、固定台33の負極集電体21を固定する側の面が鉛直方向下方のノズル34を臨み、固定台33と水平方向の直線とが成す角の角度がα°である位置である。一点破線で示される位置は、固定台33の負極集電体21を固定する側の面が鉛直方向下方のノズル34を臨み、固定台33と水平方向の直線とが成す角の角度が(180−α)°である位置である。角度α°は、形成しようとする柱状体25の寸法などに応じて適宜選択できる。
【0104】
ノズル34は、鉛直方向において固定台33とターゲット35との間に設けられ、第1の配管32の一端が接続されている。ノズル34は、ターゲット35から鉛直方向上方に上昇してくる合金系負極活物質の蒸気と第1の配管32から供給される原料ガスとを混合し、固定台33表面に固定される負極集電体21表面に供給する。ターゲット35は合金系負極活物質またはその原料を収容する。電子ビーム発生装置は、ターゲット35に収容される合金系負極活物質またはその原料に電子ビームを照射して加熱し、これらの蒸気を発生させる。電源36はチャンバー31の外部に設けられて、電子ビーム発生装置に電気的に接続され、電子ビームを発生させるための電圧を電子ビーム発生装置に印加する。第2の配管は、チャンバー31内の雰囲気になるガスを導入する。なお、蒸着装置30と同じ構成を有する電子ビーム式蒸着装置が、たとえば、アルバック(株)から市販されている。
【0105】
電子ビーム式蒸着装置30によれば、まず、負極集電体21を固定台33に固定し、チャンバー31内部に酸素ガスを導入する。この状態で、ターゲット35において合金系負極活物質またはその原料に電子ビームを照射して加熱し、その蒸気を発生させる。本実施の形態では、合金系負極活物質として珪素を使用する。発生した蒸気は鉛直方向上方に上昇し、ノズル34を通過する際に、原料ガスと混合された後、さらに上昇し、固定台33に固定された負極集電体21の表面に供給され、図示しない凸部22表面に、珪素と酸素とを含む層が形成される。
【0106】
このとき、固定台33を実線の位置に配置することによって、凸部表面に図6に示す柱状塊25aが形成される。次に、固定台33を一点破線の位置に回転させることによって、図6に示す柱状塊25bが形成される。このように固定台33の位置を交互に回転させることによって、図6に示す8つの柱状塊25a、25b、25c、25d、25e、25f、25g、25hの積層体である柱状体25が形成され、負極活物質層23が形成される。
【0107】
なお、合金系負極活物質がたとえばSiOa(0.05<a<1.95)で表される珪素酸化物である場合、柱状体25の厚み方向に酸素の濃度勾配が出来るように、柱状体25を形成してもよい。具体的には、集電体21に近接する部分で酸素の含有率を高くし、集電体21から離反するに従って、酸素含有量を減らすように構成すればよい。これによって、凸部22と柱状体25との接合性をさらに向上させることができる。
なお、ノズル34から原料ガスを供給しない場合は、珪素または錫単体を主成分とする柱状体25が形成される。
【実施例】
【0108】
以下に実施例、比較例および試験例を挙げ、本発明を詳細に説明する。なお、実施例および比較例における各操作は、全て−30℃以下に露点管理された雰囲気中で実施した。
(実施例1)
(1)正極活物質の作製
NiSO4水溶液に、Ni:Co:Al=7:2:1(モル比)になるようにコバルトの硫酸塩およびアルミニウムの硫酸塩を加えて金属イオン濃度2mol/Lの水溶液を調製した。この水溶液に撹拌下、2mol/Lの水酸化ナトリウム溶液を徐々に滴下して中和することにより、Ni0.7Co0.2Al0.1(OH)2で示される組成を有する三元系の沈殿物を共沈法により生成させた。この沈殿物をろ過により分離し、水洗し、80℃で乾燥し、複合水酸化物を得た。得られた複合水酸化物の平均粒径を粒度分布計(商品名:MT3000、日機装株式会社製)にて測定した結果、平均粒径10μmであった。
【0109】
この複合水酸化物を大気中にて900℃で10時間加熱して熱処理を行い、Ni0.7Co0.2Al0.1Oで示される組成を有する三元系の複合酸化物を得た。ここでNi、CoおよびAlの原子数の和とLiの原子数とが等量になるように水酸化リチウム1水和物を加え、大気中にて800℃で10時間加熱して熱処理を行うことにより、LiNi0.7Co0.2Al0.12で示される組成を有するリチウムニッケル含有複合金属酸化物を得た。このリチウムニッケル含有複合金属酸化物を粉末X線回折にて分析した結果、単一相の六方晶層状構造であると共に、CoおよびAlが固溶していることが確認された。こうして、二次粒子の平均粒径が10μm、BET法による比表面積が0.45m2/gの正極活物質を得た。
【0110】
(2)正極の作製
上記で得られた正極活物質の粉末100g、アセチレンブラック(導電剤)3g、ポリフッ化ビニリデン粉末(結着剤)3gおよびN−メチル−2−ピロリドン(NMP)50mlを充分に混合して正極合剤ペーストを調製した。この正極合剤ペーストを厚み20μmのアルミニウム箔(正極集電体)の片面に塗布し、乾燥し、圧延して、正極活物質層を形成した。その後、30mm×180mmのサイズに正極を切り出した。得られた正極において、アルミニウム箔の片面に担持された正極活物質層は、厚み60μm、30mm×180mmのサイズであった。アルミニウム箔の正極活物質層が形成される面とは反対側の面に正極リードを接続した。
【0111】
(3)負極の作製
図8は、負極活物質層を形成するための蒸着装置40の構成を模式的に示す側面図である。蒸着装置40は、真空チャンバー41、集電体搬送手段42、原料ガス供給手段48、プラズマ化手段49、シリコンターゲット50a、50b、遮蔽板51および図示しない電子ビーム加熱手段を含む。真空チャンバー1は減圧可能な内部空間を有する耐圧性容器であり、その内部空間に、集電体搬送手段42、原料ガス供給手段48、プラズマ化手段49、シリコンターゲット50a、50b、遮蔽板51および電子ビーム加熱手段を収容する。
【0112】
集電体搬送手段42は、巻き出しローラ43、キャン44、巻き取りローラ45および搬送ローラ46、47を含む。巻き出しローラ43、キャン44および搬送ローラ46、47は、それぞれ軸心回りに回転自在に設けられる。巻き出しローラ43には長尺状の負極集電体21が捲回されている。キャン44は他のローラよりも大径であり、その内部に図示しない冷却手段を備えている。負極集電体21がキャン44の表面を搬送される際に、負極集電体21も冷却される。これによって、合金系負極活物質の蒸気が冷却して析出し、薄膜が形成される。
【0113】
巻き取りローラ45は図示しない駆動手段によってその軸心回りに回転駆動可能に設けられている。巻き取りローラ45には負極集電体21の一端が固定され、巻き取りローラ45が回転することによって、負極集電体21が巻き出しローラ43から搬送ローラ46、キャン44および搬送ローラ47を介して搬送される。そして、表面に合金系負極活物質の薄膜が形成された状態の負極集電体21が巻き取りローラ45に巻き取られる。
【0114】
原料ガス供給手段48は、珪素または錫の酸化物、窒化物などを主成分とする薄膜を形成する場合に、酸素、窒素などの原料ガスを真空チャンバー41内に供給する。プラズマ化手段49は、原料ガス供給手段48によって供給される原料ガスをプラズマ化する。シリコンターゲット50a、50bは、珪素を含む薄膜を形成する場合に用いられる。遮蔽版51は、キャン43の鉛直方向下方およびシリコンターゲット50a、50bの鉛直方向上方において、水平方向に移動可能に設けられている。遮蔽版51は、負極集電体21表面の薄膜の形成状況に応じて、その水平方向の位置が適宜調整される。電子ビーム加熱手段は、シリコンターゲット50a、50bに電子ビームを照射して加熱し、珪素の蒸気を発生させる。
【0115】
蒸着装置40を用いて、下記の条件で、負極集電体21表面に、厚さ5μmの負極活物質層(ここではシリコン薄膜)を形成した。
真空チャンバー41内の圧力:8.0×10-5Torr
負極集電体21:長さ50m、幅10cm、厚み35μmの電解銅箔(古河サーキットフォイル(株)製)
負極集電体21の巻き取りローラ45による巻き取り速度(負極集電体21の搬送速度):2cm/分
【0116】
原料ガス:供給せず。
ターゲット50a、50b:純度99.9999%のシリコン単結晶(信越化学工業(株)製)
電子ビームの加速電圧:−8kV
電子ビームのエミッション:300mA
【0117】
得られた負極を35mm×185mmに裁断し、負極板を作製した。この負極板について、負極活物質層(シリコン薄膜)の表面にリチウム金属を蒸着した。リチウム金属を蒸着することによって、負極活物質層に初回充放電時に蓄えられる不可逆容量に相当するリチウムを補填した。
【0118】
リチウム金属の蒸着は、アルゴン雰囲気下にて、抵抗加熱蒸着装置((株)アルバック製)を用いて行った。抵抗加熱蒸着装置内のタンタル製ボートにリチウム金属を装填し、負極活物質層がタンタル製ボートを臨むように負極を固定し、アルゴン雰囲気内にて、タンタル製ボートに50Aの電流を通電して10分間蒸着を行った。これによって、本発明で使用する負極板を得た。負極板の負極活物質層が形成されていない面に負極リードを接続した。
【0119】
(4)ポリマー電解質の調製
エチレンカーボネート(EC)とプロピレンカーボネート(PC)とを体積比1:1の割合で含む混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させ、非水電解液を調製した。この非水電解液にPVDFを添加し、80℃に加熱し、PVDFの15重量%溶液であるポリマー電解質を調製した。
【0120】
(5)固体電解質二次電池の作製
上記で得られた正極板、ポリエチレン製多孔質膜(セパレータ、商品名:ハイポア、厚さ20μm、旭化成(株)製)および上記で得られた負極板を、上記で得られたポリマー電解質中にそれぞれ浸漬し、ポリマー電解質を含浸させた。その後、ガラス板、正極板、セパレータ、負極板およびガラス板の順で積層し、一方のガラス板の上に、加圧力が0.5gf/cm2になるような錘を載せた。この状態で、80℃で10分間加熱し、正極板、セパレータおよび負極板を接合し、電極群を作製した。
【0121】
この電極群をラミネート外装シートに挿入し、該シートの開口から正極リードおよび負極リードを外部に導出し、開口を封着して電池セルを作製した。この電池セルを電池充放電システム(商品名:マルチスタット1470E型、(株)東陽テクニカ製)に装着した。電池セルの装着位置は該電池充放電システムのCPUの近傍とした。正極リードおよび負極リードは該電池充放電システムの外部接続端子に接続した。CPUには、電池セルの容量を検知するデータテーブル、充電回数検知手段のプログラムおよび電池セルの容量と充電回数の基準値との関係を示すデータテーブルを予め入力した。また、CPUは加熱手段としても兼用され、その最高到達温度を70℃に設定した。これにより、本発明の固体電解質二次電池を作製した。
【0122】
(実施例2)
負極の作製方法を次のように変更する以外は、実施例1と同様にして本発明の固体電解質二次電池を作製した。
(負極の作製)
径50mmの鉄製ロール表面に酸化クロムを溶射して厚さ100μmのセラミック層を形成した。このセラミック層の表面に、レーザー加工により、直径12μm、深さ8μmの円形の凹所である穴を形成し、凸部形成ロールを作製した。この穴は、隣り合う穴との軸線間距離が20μmである最密充填配置とした。この穴の底部は中央部がほぼ平面状であり、底部端部と穴の側面とが繋がる部分が丸みを帯びた形状であった。
【0123】
一方、全量に対して0.03重量%の割合でジルコニアを含有する合金銅箔(商品名:HCL−02Z、厚さ20μm、日立電線(株)製)を、アルゴンガス雰囲気中、600℃で30分間加熱し、焼き鈍しを行った。この合金銅箔を、2本の凸部形成ロールを圧接させた圧接部に線圧2t/cmで通過させて、合金銅箔の両面を加圧成形し、本発明で使用する負極集電体を作製した。得られた負極集電体の厚み方向の断面を走査型電子顕微鏡で観察したところ、負極集電体の表面には凸部が形成されていた。凸部の平均高さは約8μmであった。
【0124】
負極活物質層は、図7に示す電子ビーム式蒸着装置30と同じ構造を有する市販の蒸着装置((株)アルバック製)を用いて、負極集電体表面に形成された凸部に形成した。蒸着における条件は次の通りである。なお、寸法35mm×185mmの負極集電体を固定した固定台が、水平方向の直線に対する角度α=60°の位置(図7に示す実線の位置)と、角度(180−α)=120°の位置(図7に示す一点破線の位置)との間を交互に回転するように設定した。これにより、図6に示すような柱状塊が8層積層された柱状の負極活物質層を形成した。この負極活物質層は凸部の頂部および頂部近傍の側面から、凸部の延びる方向に成長していた。
【0125】
負極活物質原料(蒸発源):ケイ素、純度99.9999%、(株)高純度化学研究所製
ノズルから放出される酸素:純度99.7%、日本酸素(株)製、
ノズルからの酸素放出流量:80sccm
角度α:60°
電子ビームの加速電圧:−8kV
エミッション:500mA
蒸着時間:3分
【0126】
形成された負極活物質層の厚みTは16μmであった。負極活物質層の厚みは、負極の厚み方向の断面を走査型電子顕微鏡で観察し、凸部表面に形成された負極活物質層10個について、凸部頂点から負極活物質層頂点までの長さそれぞれを求め、得られた10個の測定値の平均値として求められる。また、負極活物質層に含まれる酸素量を燃焼法により定量したところ、負極活物質層を構成する化合物の組成がSiO0.5であることが判った。
【0127】
次に、負極活物質層の表面にリチウム金属を蒸着した。リチウム金属を蒸着することによって、負極活物質層に初回充放電時に蓄えられる不可逆容量に相当するリチウムを補填した。リチウム金属の蒸着は、アルゴン雰囲気下にて、抵抗加熱蒸着装置((株)アルバック製)を用いて行った。抵抗加熱蒸着装置内のタンタル製ボートにリチウム金属を装填し、負極活物質層がタンタル製ボートを臨むように負極を固定し、アルゴン雰囲気内にて、タンタル製ボートに50Aの電流を通電して10分間蒸着を行った。
【0128】
(実施例3)
実施例1と同様にして作製された電池セルおよび恒温槽(商品名:SU−241、エスペック(株)製)を、充放電システム(マルチスタット1470E型)に装着し、本発明の固体電解質二次電池を作製した。電池セルおよび恒温槽は、それぞれが近傍に位置するように装着した。電池セルの正極リードおよび負極リードは、充放電システムの外部接続端子に接続した。また、恒温槽は加熱手段であり、充放電システムのCPUにより制御を受けながら、発熱して電池セルを加熱するように構成した。恒温槽の最高到達温度は70℃に設定した。また、充放電システムのCPUには、電池セルの容量を検知するデータテーブル、充電回数検知手段のプログラムおよび電池セルの容量と充電回数の基準値との関係を示すデータテーブルを予め入力した。
【0129】
(試験例1)
実施例1〜3の固体電解質二次電池について、CPUによる加熱制御を実施しないように構成し、20℃環境下において140mA(0.7C)で4.2Vまで定電流充電した後、200mA(1C)で2.5Vまで定電流放電する工程を繰り返した。そして、100サイクル後に、40mA(0.2C)で4.2V〜2.5Vの範囲で定電流充放電を行い、放電容量を調べた。そして、初期の0.2C放電容量に対する100サイクル後の0.2C放電容量の比をサイクル容量維持率(%)として求めた。結果を表1に示す。
【0130】
(試験例2)
実施例1〜3の固体電解質二次電池において、電池セルに、50サイクル毎に70℃で5分間の加熱を行うように制御する以外は、試験例1と同様の方法にて試験を行った。結果を表1に示す。これは、充電回数の基準値を50回にしたことになる。
【0131】
(試験例3)
実施例1〜3の固体電解質二次電池において、電池セルに、10サイクル毎に70℃で5分間の加熱を行うように制御する以外は、試験例1と同様の方法にて試験を行った。結果を表1に示す。これは、充電回数の基準値を10回にしたことになる。
【0132】
(試験例4)
実施例1〜3の固体電解質二次電池において、電池セルに、10サイクル毎に70℃で5分間の加熱を行うように制御した。但し、CPU内で放電制御手段を入力し、加熱前に40mAで2.5Vまで定電流放電を行なうように制御した。結果を表1に示す。これは、充電回数の基準値を10回にしたことになる。
【0133】
【表1】

【0134】
表1から、合金系負極活物質を含む固体電解質二次電池において、充電回数に応じて電池セルを所定温度(ここでは70℃、5分)で加熱することにより、電池容量が顕著に向上することが明らかである。合金系負極活物質の膨張および収縮により、負極活物質層とセパレータとの接触状態が不十分になる。これに対し、本発明では、電池セルを加熱することにより、セパレータ中のポリマー電解質に流動性が生じるので、負極活物質層とセパレータとの全面が均一に接触する。その結果、電池の放電容量が向上する。
【産業上の利用可能性】
【0135】
本発明のリチウムイオン二次電池は、従来のリチウムイオン二次電池と同様の用途に使用でき、特に、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器、ビデオカメラなどの携帯用電子機器の電源として有用である。また、ハイブリッド電気自動車、燃料電池自動車などにおいて電気モーターを補助する二次電池、電動工具、掃除機、ロボットなどの駆動用電源、プラグインHEVの動力源などとしての利用も期待される。
【図面の簡単な説明】
【0136】
【図1】本発明の実施形態の1つである固体電解質二次電池の構成を簡略化して示すブロック図である。
【図2】図1に示す固体電解質二次電池の要部(電池セル)の構成を簡略化して示す縦断面図である。
【図3】本実施の別形態である固体電解質二次電池の構成を簡略化して示すブロック図である。
【図4】本発明で使用する負極の構成を模式的に示す縦断面図である。
【図5】図4に示す負極に含まれる負極集電体の構成を模式的に示す斜視図である。
【図6】図4に示す負極の負極活物質層に含まれる柱状体の構成を模式的に示す縦断面図である。
【図7】電子ビーム式蒸着装置の構成を模式的に示す側面図である。
【図8】別形態の蒸着装置の構成を模式的に示す側面図である。
【符号の説明】
【0137】
1,2 固体電解質二次電池
5 電池セル
6 加熱手段
8 電圧検知手段
9 制御手段

【特許請求の範囲】
【請求項1】
リチウムを吸蔵および放出可能な正極活物質を含有する正極、合金系負極活物質を含有する負極および固体電解質または固体電解質を含浸させたセパレータを含む電池セルと、放電時の電池セルが所定温度以上になるように制御する制御手段とを含む固体電解質二次電池。
【請求項2】
電池セルの充電回数を検知する充電回数検知手段をさらに含み、制御手段は、充電回数検知手段による検知結果に応じて放電時の電池セルが所定温度以上になるように制御する請求項1に記載の固体電解質二次電池。
【請求項3】
電池セルの開回路電圧を検知する電圧検知手段をさらに含み、制御手段は、電圧検知手段による検知結果に応じて放電時の電池セルが所定温度以上になるように制御する請求項1に記載の固体電解質二次電池。
【請求項4】
電池セルの放電時間を積算する放電時間積算手段をさらに含み、制御手段は、放電時間積算手段による積算結果に応じて放電時の電池セルが所定温度以上になるように制御する請求項1に記載の固体電解質二次電池。
【請求項5】
電池セルの放電を制御する放電制御手段と、電池セルの放電残量を検知する放電残量検知手段とをさらに含み、制御手段は、放電残量検知手段による検知結果に応じて、電池セルが放電残量を放電するように放電制御手段を制御し、さらに電池セルを充電した後に、放電時の電池セルが所定温度以上になるように制御する請求項1〜4のいずれか1つに記載の固体電解質二次電池。
【請求項6】
電池セルを加熱する加熱する加熱手段をさらに含み、制御手段は、放電時の電池セルが所定温度以上になるように加熱手段を制御する請求項1〜5のいずれか1つに記載の固体電解質二次電池。
【請求項7】
加熱手段が、通電により発熱する抵抗体または電気機器もしくは電子機器に含まれる発熱源である請求項6に記載の固体電解質二次電池。
【請求項8】
電気機器および電子機器に含まれる発熱源が中央演算処理装置である請求項7に記載の固体電解質二次電池。
【請求項9】
固体電解質がポリマーを含有し、所定温度がポリマーの変形可能な温度である請求項1〜8のいずれか1つに記載の固体電解質二次電池。
【請求項10】
所定温度が60℃以上である請求項9に記載の固体電解質電池。
【請求項11】
合金系負極活物質が、珪素または錫を含有する合金系負極活物質である請求項1〜10のいずれか1つに記載の固体電解質二次電池。
【請求項12】
珪素を含有する合金系負極活物質が、珪素、珪素酸化物、珪素窒化物、珪素含有合金および珪素化合物よりなる群から選ばれる少なくとも1つである請求項11に記載の固体電解質二次電池。
【請求項13】
錫を含有する合金系負極活物質が、錫、錫酸化物、錫含有合金および錫化合物よりなる群から選ばれる少なくとも1つである請求項11に記載の固体電解質二次電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−49968(P2010−49968A)
【公開日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2008−213841(P2008−213841)
【出願日】平成20年8月22日(2008.8.22)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】