説明

圧縮強度測定方法及びその方法を用いた圧縮強度測定装置

【課題】精度高く圧縮強度を求めることが可能な圧縮強度測定方法を提供する。
【解決手段】測定対象となるコンクリート構造物の所定面における所定位置に送信探触子を設置する工程(S100)と、所定位置から所定距離離れた第1位置に受信探触子を設置する工程(S101)と、送信探触子で超音波振動を発生、受信探触子で振動に基づく波を検出し振動が到達する第1時間を測定する工程(S102)と、第1位置から第1距離離れた第2位置に受信探触子を設置する工程(S103)と、送信探触子で超音波振動を発生、受信探触子で前記振動に基づく波を検出し振動が到達する第2時間を測定する工程(S104)と、第1時間と第2時間と第1距離とから振動に基づく波の伝搬速度を算出する工程(S105)と、伝搬速度からコンクリート構造物の圧縮強度を求める工程(S106)とからなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンクリート構造物の圧縮強度を非破壊で測定するコンクリート構造物の圧縮強度測定方法及び圧縮強度測定装置に関するものである。
【背景技術】
【0002】
従来、コンクリート構造物の圧縮強度を非破壊で測定する方法としては、反発硬度法、超音波法、衝撃弾性波法などの手法が知られている。
【0003】
反発硬度法は、テストハンマーを用いてコンクリートの表面を打撃し、その反発硬度より圧縮強度を推定(測定)する方法である。この方法では、簡単ではあるが、表層部のコンクリートの圧縮強度しか測定できない。また打撃した箇所の表面状況に影響されやすく精度も問題がある。
【0004】
また、超音波法は、コンクリートの圧縮強度が高いほど、弾性波の伝播速度が速くなるとの原理を利用した方法であり、この超音波法を実際のコンクリート構造物に適用する上では次の透過法、表面法の2つが知られている。
【0005】
透過法は、図12に示すように、測定対象のコンクリートの一面側に設置した送信探触子から超音波パルスを発信し、この超音波パルスをコンクリート中に透過させて、超音波パルスが対向側に設置した受信探触子に到達するまでの所要時間と両探触子間の距離を測定して伝播速度を求め、この伝播速度から圧縮強度を推定する方法である。
【0006】
表面法は、図13に示すように、測定対象のコンクリートの一面側に、送信探触子及び受信探触子の双方を設置して、送信探触子で発信した超音波パルスを、受信探触子で受信することによって、測定を行う方法である。
【0007】
衝撃弾性波法は、図14に示すように、ハンマーなどを用いて測定対象のコンクリート表面を打撃し、衝撃弾性波を発生させ、2つセンサを用いて、衝撃弾性波が通過する時間差とセンサ間の距離を用いて伝播速度を求め、この伝播速度からコンクリートの圧縮強度を推定する方法である。この衝撃弾性波法については、例えば特許文献1(特開2001−12933号公報)に開示されている。
【特許文献1】特開2001−12933号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
超音波を用いた上記の透過法では、縦波の伝搬速度を正しく測定できるが、コンクリートの両端部に探触子を設置する必要があるため、使用できる場所が限定されている。
【0009】
また、超音波を用いた上記の表面法では、送受信探触子のコンクリートの設置面はある程度の広さを有しているために、当該設置面における発信位置と受信位置のピンポイント的な位置を特定することができず、測定により得られた伝播速度の精度が問題ある。また、一般的に測定においては、周波数が500kHzの超音波パルスを使用するが、この周波数の超音波パルスは減衰が大きいため送受信探触子間の距離を短くする必要があり、局部的な伝播速度しか測定することができず、そこから推定される圧縮強度はあくまで局所的な情報に基づくものとなってしまう。また、コンクリート表面から浅い位置、すなわちコンクリート表層部の伝播速度しか測定できず、測定により推定されるコンクリートの圧縮強度も表層部の情報に基づく圧縮強度でしかない。
【0010】
また、上記した衝撃弾性波法においては、コンクリート表面をハンマー打撃することで、表面波のほかに、縦波も発生する、この縦波は、コンクリートの厚さ方向に多重反射する(図14)。またこのような多重反射した縦波は、表面波にモード変換したりもするので、結局、センサで検出した波は、単純な表面波ではなく、多重反射の縦波とモード変換した表面波が混在することになり、伝播速度の計算に使う初動時間のスタットポイントの判断は困難になることで、伝播速度の測定精度が悪くなり、それを伴ったコンクリートの圧縮強度の推定精度も低下する。
【0011】
ハンマー打撃で発生する表面波(レイリー波)は、20kHz以下の低周波数であり、これを波長で換算すると、約100mm(表面波速度は2000m/sと仮定)以上となり、厚さ100mm以下のものは、測定困難になることがある。
【0012】
厚さ方向の圧縮強度を計測するには、測定対象コンクリートの厚さに応じて表面波の波長を変更する必要がある。しかし、ハンマーなど打撃することは、周波数の制御がとても困難である。計測したい測定対象の厚さに相応しい衝撃弾性波を作るのは、簡単ではない。
【0013】
衝撃弾性波法においては、測定精度を上げるため複数回測定を行った結果を加算平均するのが一般であるが、人の手によって衝撃を与えるため、ハンマーの打つ速度、力、打つ場所などは一定とすることができず、波形、初動時間など関係性なく、データの有効性を判断するのは難しく、精度の保証も困難である。
【0014】
また、この衝撃弾性波法においても、受信用の振動センサの設置面にある程度の広さがあるため、ピンポイント的な受信点の特定を行うことができず、測定精度の点で問題がある。また衝撃弾性波法では、コンクリートの振動だけではなく測定環境周囲の音による振動も受信してしまう可能性があり、測定環境の制限がある。
【課題を解決するための手段】
【0015】
この発明は、上記課題を解決するものであって、請求項1に係る発明は、測定対象となるコンクリート構造物の所定面における所定位置に送信探触子を設置する工程と、前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第1時間を測定する工程と、前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第2時間を測定する工程と、前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく波の伝搬速度を算出する工程と、前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法である。
【0016】
また、請求項2に係る発明は、請求項1に記載の圧縮強度測定方法において、前記波が縦波であることを特徴とする。
【0017】
また、請求項3に係る発明は、請求項1に記載の圧縮強度測定方法において、前記波が表面波であることを特徴とする。
【0018】
また、請求項4に係る発明は、測定対象となるコンクリート構造物の所定面における所定位置にモード変換部材付き送信探触子を設置する工程と、前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく表面波を検出し前記振動
が到達する第1時間を測定する工程と、前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく表面波を検出し前記振動が到達する第2時間を測定する工程と、前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく表面波の伝搬速度を算出する工程と、前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法である。
【0019】
また、請求項5に係る発明は、請求項1乃至請求項4のいずれかに記載の方法により圧縮強度を求めることを特徴とする圧縮強度測定装置である。
【発明の効果】
【0020】
本発明の圧縮強度測定方法及びその方法を用いた圧縮強度測定装置によれば、測定対象となるコンクリート構造物の一つの所定面に送信探触子と受信探触子の双方を設置して測定を行うために、所定面と対向する面に探触子を設置できないような場所での測定も行うことが可能となる。
【0021】
また、本発明の圧縮強度測定方法及びその方法を用いた圧縮強度測定装置によれば、第1位置で測定される第1時間と、第2位置で測定される第2時間の差分と、差分として正確に測定が可能な第1位置と第2位置との間の距離である第1距離とに基づいて、波の伝搬速度を算出し、この伝搬速度から圧縮強度を求めるので、精度高く圧縮強度を求めることが可能となる。
【0022】
また、受信探触子で超音波振動による表面波を検出する本発明の実施形態では、20kHzより高い表面波で測定を行うこととなるが、これは波長換算で約100mm以下に相当するので、厚さ100mm以下のコンクリート構造物の圧縮強度測定も実施可能となる。
【0023】
また、受信探触子で超音波振動による波を検出する本発明の実施形態では、人手によるハンマー打撃などに比べて、コンクリート構造物に正確な振動を与えることができるので、測定精度も向上する。
【0024】
また、受信探触子で表面波を検出する本発明の実施形態では、表面波のエネルギーや振幅は縦波より大きいために、送受信探触子間の距離を比較的長く設定することができ、比較的広範囲での伝搬速度の測定を行うことができるので、広範囲の情報に基づく圧縮強度を求めることが可能となる。
【0025】
また、受信探触子で超音波振動による表面波を検出する本発明の実施形態では、測定環境周囲の音による振動も受信する可能性が低く、多様な測定環境に対応することができる。
【0026】
また、受信探触子で表面波を検出する本発明の実施形態では、コンクリート構造物表面から比較的深い位置の伝播速度を測定することができ、測定により推定されるコンクリートの圧縮強度は、比較的深い位置での情報に基づく圧縮強度を求めることが可能となる。
【0027】
また、厚さ方向の圧縮強度を測定するには、測定対象コンクリートの厚さに応じて表面波の波長を変更する必要があるが、受信探触子で超音波振動による表面波を検出する本発明の実施形態では、ハンマー打撃などに比べて、周波数の制御が容易かつ自在であるので、測定したいコンクリート構造物の厚さに相応しい周波数の波を用いて、適切な圧縮強度測定を実施することができる。
【0028】
また、モード変換部材付き送信探触子で振動を発生させて、受信探触子で表面波を検出する本発明の実施形態では、コンクリートの厚さ方向での縦波の多重反射が発生することがないし、また、縦波から表面波へのモード変換も生じないので、伝播速度の測定精度が向上し、この伝播速度から求められる圧縮強度の推定精度も向上する。
【0029】
本発明によれば、送信探触子の超音波振動で、多波数の表面波超音波を印加することで、波のエネルギーが大きくすることができ、かつ、距離減衰も小さくすることができる。さらに、距離減衰よる周波数変化への影響が小さいため、より広範囲の測定が可能となる。また、本発明によれば、センサの配置、距離、数、入射周波数などのパラメーターを考慮し、画像化もできる測定装置を製作することで簡単に平面方向と厚さ方向の圧縮強度を一気に推定できる。
【図面の簡単な説明】
【0030】
【図1】本発明の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。
【図2】本発明の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。
【図3】コンクリート構造物における伝搬速度と圧縮強度との関係を示す図である。
【図4】伝搬速度と圧縮強度との関係を求めるための第1の方法を示す図である。
【図5】伝搬速度と圧縮強度との関係を求めるための第2の方法を示す図である。
【図6】本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。
【図7】本発明の他の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。
【図8】本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。
【図9】本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。
【図10】本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。
【図11】本発明の圧縮強度測定方法によって測定を行った結果を示す図である。
【図12】従来の圧縮強度測定方法を実施するための構成の概略を示す図である。
【図13】従来の圧縮強度測定方法を実施するための構成の概略を示す図である。
【図14】従来の圧縮強度測定方法を実施するための構成の概略を示す図である。
【発明を実施するための形態】
【0031】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図であり、図2は本発明の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。図1において、10は圧縮強度を測定する対象となるコンクリート構造物を示しており、100はこのコンクリート構造物10に超音波振動を与える送信探触子であり、200はコンクリート構造物の超音波振動を検出する受信探触子である。本実施形態では、送信探触子100がコンクリート構造物10に与える振動は20kHzより高い超音波振動が用いられる。送信探触子100の振動の周波数としては20kHzより高ければ任意の周波数を用いることができるが、数10kHz〜数100kHzの周波数帯が発明を実現する上で現実的な周波数である。また、受信探触子200としては、数10kHz〜数100kHzの周波数帯の振動を受信するセンサであればどのようなものを用いてもよい。なお、上記のような送信探触子100及び受信探触子200としては、いずれも従来周知のものを利用することができる。
【0032】
図2を参照しつつ、本発明の実施形態に係る圧縮強度測定方法による圧縮強度の測定工程について説明する。なお、以下において説明する本発明の圧縮強度測定方法は当業者であれば圧縮強度測定装置として装置化することができるものであり、本発明はこのような装置までを包含するものである。
【0033】
図2において、ステップS100では、コンクリート構造物10の所定の一面における位置Oに送信探触子100を設置する。
【0034】
次に、ステップS101では、位置Oから所定距離離れた位置Aに受信探触子200を設置する。なお、この間の距離L0は測定することは可能であるが、送信探触子100と受信探触子200のコンクリート構造物10の設置面はある程度の広さを有しているために、当該設置面における発信位置と受信位置のピンポイント的な位置を特定することができず、測定により得られた伝播速度の精度が問題あるので、本発明においては距離L0を用いての伝搬速度の算出を行わない。
【0035】
次のステップS102で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t1)の測定を行う。なお、本実施形態では、受
信探触子200はコンクリート構造物10中を縦波として伝搬した波の到達時間(t1
を検出している。
【0036】
続くステップS103では、位置AからL1離れた位置Bに受信探触子200を設置する。
【0037】
そして、ステップS104で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t2)の測定を行う。このときも、受信探触
子200は縦波として伝搬した波の到達時間(t2)を検出を行う。
【0038】
ステップS105では、縦波のコンクリート構造物10中の伝搬速度VをL1/(t2
−t1)により算出する。
【0039】
そしてステップS106では、この伝搬速度Vから圧縮強度Fを推定する。この推定には図3に示す伝搬速度と圧縮強度の相関図を用いる。
【0040】
上記のような圧縮強度測定方法によれば、測定対象となるコンクリート構造物の一つの所定面に送信探触子100と受信探触子200の双方を設置して測定を行うために、所定面と対向する面に探触子を設置できないような場所での測定も行うことが可能となる。
【0041】
また、上記のような圧縮強度測定方法によれば、第1位置A測定される到達時間(t1
)と、第2位置Bで測定される到達時間(t2)の差分と、差分として正確に測定が可能
な第1位置Aと第2位置Bとの間の距離である距離L1とに基づいて、波の伝搬速度VをL1/(t2−t1)によって算出し、この伝搬速度Vから圧縮強度Fを求めるので、精度高く圧縮強度を求めることが可能となる。
【0042】
また、受信探触子で表面波を検出する本発明の実施形態では、表面波のエネルギーや振幅は縦波より大きいために、送受信探触子間の距離を比較的長く設定することができ、比較的広範囲での播速度の測定を行うことができるので、広範囲の情報に基づく圧縮強度を求めることが可能となる。
【0043】
また、上記のような圧縮強度測定方法では、送信探触子100がコンクリート構造物10に与える振動は20kHzより高い超音波振動が用いられるが、これは波長換算で約1
00mm以下に相当するので、厚さ100mm以下のコンクリート構造物の圧縮強度測定も実施可能となる。
【0044】
また、上記のような圧縮強度測定方法では、送信探触子100で超音波振動を発生させるため、人手によるハンマー打撃などに比べて、コンクリート構造物に正確な振動を与えることができるので、測定精度も向上する。
【0045】
ここで、伝搬速度と圧縮強度の相関図の導出方法について説明する。図3はコンクリート構造物における伝搬速度と圧縮強度との関係を示す図である。図3において、点で示されるものが伝搬速度と圧縮強度の実測値であり、これらの実測値の点に基づいてフィッティングを行ったものが図中の直線である。本発明に係る圧縮強度測定方法では、図3に示すような伝搬速度と圧縮強度の関係図を予め用意しておき、この関係図から圧縮強度を求めるものであるが、このような関係図を求める方法としては次に示す第1及び第2の2通りの方法がある。
【0046】
図4は伝搬速度と圧縮強度との関係を求めるための第1の方法を示す図である。この方法では、ブロック形状のコンクリート構造物10と、このコンクリート構造物10と全く同じ条件(配合、骨材、養生法など)で作製されたテストピース10’を準備する。そして図4(A)に示すように、ブロック形状のコンクリート構造物を用いて本発明の方法により伝搬速度測定を求め、さらに図4(B)に示すように、当該コンクリート構造物と同条件で作製されたテストピース10’で破壊試験による圧縮強度測定を行い、圧縮強度値を求めて、これにより図3中の実測点を得るようにする。
【0047】
一方、図5は伝搬速度と圧縮強度との関係を求めるための第2の方法を示す図である。この方法では、伝搬速度測定及び圧縮強度測定の両方に同じテストピース10を用いる。図5(A)に示すように、テストピース10の一面側に設置した送信探触子100から超音波パルスを発信し、この超音波パルスをコンクリート中に透過させて、超音波パルスが対向側に設置した受信探触子200に到達するまでの所要時間によって伝播速度を求め、さらに図5(B)に示すように、伝播速度測定で用いたテストピースと同じテストピースで破壊試験による圧縮強度測定を行い、圧縮強度値を求めて、これにより図3中の実測点を得るようにする。なお、図4、図5のいずれの場合でもテストピースとしては、10cm×20cmの円柱試験体を用いている。
【0048】
次に、本発明の他の実施形態について説明する。図6は本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図であり、図7は本発明の他の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。
【0049】
先の実施形態においては、測定のために受信探触子200を設置した位置をA、Bの2箇所としたが、本実施形態では、受信探触子200の設置位置をA、B、Cの3箇所としている。なお、この実施形態では、3箇所としているが、本発明の圧縮強度測定方法では4以上の受信探触子200の設置位置で測定を行うようにしてもよい。図6において、図1と同様の参照符号が付された構成については同様の構成を示しているので、説明を省略する。
【0050】
図7を参照しつつ、本発明の実施形態に係る圧縮強度測定方法による圧縮強度の測定工程について説明する。図7において、ステップS200では、位置Oから所定距離離れた位置Aに受信探触子200を設置する。
【0051】
続く、ステップS201では、位置Oから所定距離離れた位置Aに受信探触子200を設置する。
【0052】
ステップS202では、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t1)の測定を行う。なお、本実施形態では、受信
探触子200はコンクリート構造物10中を縦波として伝搬した波の到達時間(t1)を
検出している。
【0053】
ステップS203では、位置AからL1離れた位置Bに受信探触子200を設置する。そして、ステップS204で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t2)の測定を行う。
【0054】
ステップS205では、位置BからL2離れた位置Cに受信探触子200を設置する。そして、ステップS206で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t3)の測定を行う。
【0055】
ステップS207では、位置A及び位置Bのデータに基づく伝搬速度V1をL1/(t2−t1)により算出し、ステップS208では、位置B及び位置Cのデータに基づくコン
クリート構造物10中の波の伝搬速度V2をL2/(t3−t2)により算出し、ステップ
S209で、伝搬速度の平均値VをV=(V1+V2)/2により算出する。
【0056】
ステップS210では、この伝搬速度Vから圧縮強度Fを推定する。この推定には図3に示す伝搬速度と圧縮強度の相関図を用いる。
【0057】
以上のような実施形態によれば、先の実施形態と同様の効果に加えて、受信探触子200を複数位置に設置し複数回データを取得するので、より精度の高い圧縮強度を求めることができる、という効果を奏するものである。
【0058】
次に、本発明の他の実施形態について説明する。図8は本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。図1及び図2で説明した実施形態では、受信探触子200が縦波を検出して縦波の伝搬速度を求めるようにしていたが、図8に示す実施形態では、受信探触子200は表面波の検出を行い表面波の伝搬速度を求めるようにしている。なお、本実施形態の圧縮強度測定方法でも、図2で説明した工程と同様の工程によって圧縮強度を求めるものである。伝搬速度を求める際に、本実施形態のように表面波を用いることで、先の実施形態と同様の効果の他に以下のような効果を奏することができるものである。
【0059】
まず、周波数500kHzの表面波のエネルギーや振幅は縦波より大きいために、表面波を用いる圧縮強度測定方法によれば、送信探触子100及び受信探触子200の間の距離を比較的長く設定することができ、比較的広範囲での伝搬速度の測定を行うことができるので、広範囲の情報に基づく圧縮強度を求めることが可能となる。
【0060】
また、受信探触子200で超音波振動による表面波を検出する本発明の実施形態では、測定環境周囲の音による振動も受信する可能性が低く、多様な測定環境に対応することができる。
【0061】
また、受信探触子200で表面波を検出する本発明の実施形態では、コンクリート構造物10表面から比較的深い位置の伝播速度を測定することができ、測定により推定されるコンクリートの圧縮強度は、比較的深い位置での情報に基づく圧縮強度を求めることが可能となる。
【0062】
さらに、厚さ方向の圧縮強度を測定するには、測定対象コンクリートの厚さに応じて表
面波の波長を変更する必要があるが、受信探触子200で超音波振動による表面波を検出する本発明の実施形態では、ハンマー打撃などに比べて、周波数の制御が容易かつ自在であるので、測定したいコンクリート構造物の厚さに相応しい周波数の波を用いて、適切な圧縮強度測定を実施することができる。
【0063】
なお、本発明によれば、送信探触子100の超音波振動で、多波数の表面波超音波を印加することで、波のエネルギーが大きくすることができ、かつ、距離減衰も小さくすることができる。さらに、距離減衰よる周波数変化への影響が小さいため、より広範囲の測定が可能となる。また、本発明によれば、センサの配置、距離、数、入射周波数などのパラメーターを考慮し、画像化もできる測定装置を製作することで簡単に平面方向と厚さ方向の圧縮強度を一気に推定できる。
【0064】
次に、本発明の他の実施形態について説明する。図9は本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。図9において、送信探触子100の101は送信探触子の本体部、102はモード変換部材を示しており、受信探触子200の201は受信探触子の本体部、202はモード変換部材を示している。
【0065】
本実施形態においては、送信探触子100の送信探触子本体部101にモード変換部材102を設けることによって、コンクリート構造物10に付与する振動を垂直方向から与えるのではなく、図示するようなモード変換部材102を介してコンクリート構造物10に振動を斜角で入射させるようにしている。なお、このモード変換部材102としては、ゴムなどの弾性材料や粘度などの粘性材料が用いられる。このようなモード変換部材102を用い、かつ振動の入射角度を、縦波臨界角と横波臨界角より大きく設定すれば、送信探触子本体部101の振動を表面波の形態でコンクリート構造物10に付与することが可能となる。このとき、理論的にはコンクリート構造物10中には縦波と横波が発生することがないので、送信探触子本体部101からの振動は効率的にコンクリート構造物10に表面波として入力されることとなる。
【0066】
また、受信探触子200にもモード変換部材202が設けられており、これによれば表面波を効率的に受信探触子本体部201に入力することが可能となる。なお、受信探触子200側にモード変換部材202を設けることは必須の構成ではなく、これまで説明した実施形態と同様の受信探触子200を用いることもできる。図10は、先の実施形態と同様の受信探触子200を用いた構成の概略を示す図である。
【0067】
図9に示す実施形態でも、図2で説明した工程と同様の工程によって圧縮強度を求めるものである。伝搬速度を求める際に、本実施形態のようにモード変換部材102が設けられた送信探触子100を用いることで、これまで説明した実施形態と同様の効果の他に、コンクリートの厚さ方向での縦波による多重反射が発生することがないし、また、縦波から表面波へのモード変換も生じないので、伝播速度の測定精度が向上し、この伝播速度から求められる圧縮強度の推定精度も向上する。
【0068】
次に、本発明の実施例について説明する。図11は本発明の圧縮強度測定方法によって測定を行った結果を示す図である。図1で説明した実施形態、図8で説明した実施形態、図9で説明した実施形態の3つの方法により、それぞれ伝搬速度を求めた。また、それぞれの伝搬速度を、透過法で測定した縦波の伝搬速度(4424m/s)を基準として、どの程度の差異が生じたかを求めた。送信探触子100と位置Aの間の距離L0は、200mmとした。実施例を測定するための系においては、従来の表面法による測定では、結果を得ることができなかったが、本実施形態による方法によれば、いずれの実施形態でも高い感度と、精度で測定結果を得ることができ、本発明の有効性が実証された。
【0069】
なお、以上、種々の実施形態について説明したが、任意の実施形態を適宜組み合わせて構成される実施形態についても本発明の範疇となるものである。
【符号の説明】
【0070】
10・・・コンクリート構造物、100・・・送信探触子、101・・・送信探触子本体部、102・・・モード変換部材、200・・・受信探触子、201・・・受信探触子の本体部、202・・・モード変換部材

【特許請求の範囲】
【請求項1】
測定対象となるコンクリート構造物の所定面における所定位置に送信探触子を設置する工程と、
前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第1時間を測定する工程と、
前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第2時間を測定する工程と、
前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく波の伝搬速度を算出する工程と、
前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法。
【請求項2】
前記波が縦波であることを特徴とする請求項1に記載の圧縮強度測定方法。
【請求項3】
前記波が表面波であることを特徴とする請求項1に記載の圧縮強度測定方法。
【請求項4】
測定対象となるコンクリート構造物の所定面における所定位置にモード変換部材付き送信探触子を設置する工程と、
前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく表面波を検出し前記振動が到達する第1時間を測定する工程と、
前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく表面波を検出し前記振動が到達する第2時間を測定する工程と、
前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく表面波の伝搬速度を算出する工程と、
前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法。
【請求項5】
請求項1乃至請求項4のいずれかに記載の方法により圧縮強度を求めることを特徴とする圧縮強度測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2010−169494(P2010−169494A)
【公開日】平成22年8月5日(2010.8.5)
【国際特許分類】
【出願番号】特願2009−11498(P2009−11498)
【出願日】平成21年1月22日(2009.1.22)
【出願人】(000002299)清水建設株式会社 (2,433)
【Fターム(参考)】