説明

塗布方法及び塗布装置

【課題】ノズルと基板表面の距離(ギャップ)を精度良く制御することを可能とする。
【解決手段】実施形態にかかる塗布方法は、測定により、基準となるノズルの位置情報である基準情報を検出し、前記基準情報測定の後に、前記ノズルを洗浄し、前記洗浄後に、測定により、前記ノズルの位置情報である実測情報を検出し、前記実測情報、及び前記基準情報の変化量から、ノズルの位置変化量を検出し、前記ノズルの位置変化量が、予め設定されたノズルの許容変化量の範囲内である場合には、前記実測情報を対象情報とし、この対象情報に基づいて前記ノズルの位置調整を行って、塗布対象物に塗布材料を供給し、前記ノズルの位置変化量が、前記許容変化量の範囲外である場合には、再度、前記ノズルを洗浄し、その後、前記塗布対象物に、前記塗布材料を供給することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、塗布方法、及び塗布装置に関し、例えば、ノズルから塗布対象物上に、材料を塗布して塗布膜を形成する塗布方法、及び塗布装置に関する。
【背景技術】
【0002】
半導体などの分野においては、塗布用ノズルを用い、この塗布用ノズルから材料を塗布して、基板上に膜を形成する方法がある。例えば、基板に円形状の膜を形成する方法として、所謂、スパイラル塗布方法など、種々の塗布方法がある。スパイラル塗布方法は、円形状の回転ステージ上に円盤状の基板を固定し、塗布ノズルの吐出面と基板表面との距離(ギャップ)を所定の値に保ち、その回転ステージを回転させ、流量を制御可能な定量ポンプで塗布ノズルから材料を吐出させながら、その塗布ノズルを基板中央から基板外周に向かって直線状に移動させ、らせん状(渦巻き状)の塗布軌跡を描くことで、基板全面に膜形成を行う方法である。
【0003】
塗布装置及び塗布方法では、例えば、ノズルと一体に設けた変位計で基板表面までの距離を測定し、測定した距離が予め設定した値となるように、ノズルの高さ方向の位置を調整する位置調整方法によって、ノズル先端と基板表面の距離を一定に保つように制御している(これを、所謂ギャップ制御という。)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001−310155号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
このような塗布方法では、ノズルの先端の付着物などの影響により、実際のノズル位置とは異なる位置をノズル位置として検出してしまう場合があり、実測値が変動することがある。このような場合にはギャップを精度良く制御することが困難となる。
【0006】
発明の実施形態は、ノズルと基板表面の距離(ギャップ)を精度良く制御することを可能とする。
【課題を解決するための手段】
【0007】
実施形態にかかる塗布方法は、測定により、基準となるノズルの位置情報である基準情報を検出し、前記基準情報測定の後に、前記ノズルを洗浄し、前記洗浄後に、測定により、前記ノズルの位置情報である実測情報を検出し、前記実測情報、及び前記基準情報の変化量から、ノズルの位置変化量を検出し、前記ノズルの位置変化量が、予め設定されたノズルの許容変化量の範囲内である場合には、前記実測情報を対象情報とし、この対象情報に基づいて前記ノズルの位置調整を行って、塗布対象物に塗布材料を供給し、
前記ノズルの位置変化量が、前記許容変化量の範囲外である場合には、再度、前記ノズルを洗浄し、その後、前記塗布対象物に、前記塗布材料を供給することを特徴とする。
【図面の簡単な説明】
【0008】
【図1】第1実施形態にかかるスパイラル塗布装置の構成を示す概略説明図。
【図2】同実施形態にかかるスパイラル塗布方法の制御手順を示すフローチャート。
【図3】同スパイラル塗布方法の位置調整における温度変化量調整を示すグラフ。
【図4】同スパイラル塗布方法の位置調整におけるノズル長変化量調整を示すグラフ。
【図5】同スパイラル塗布方法の測定工程を示す説明図。
【図6】同スパイラル塗布方法の位置決め工程を示す説明図。
【図7】同スパイラル塗布方法の塗布工程を示す説明図。
【発明を実施するための形態】
【0009】
以下、本発明の一実施形態かかるスパイラル塗布装置、及びスパイラル塗布方法について、図1乃至図7を参照して説明する。各図中矢印X,Y,Zはそれぞれ互いに直交する3方向を示す。また、各図において説明のため、適宜構成を拡大、縮小または省略して示している。
【0010】
図1に示すスパイラル塗布装置1は、塗布対象物としての基板Wが載置されるステージ2と、そのステージ2を水平面内で回転させる回転機構3と、ステージ2上の基板Wに先端から材料を吐出して塗布する塗布ノズル4と、その塗布ノズル4とステージ2とを水平面方向(X軸)及び高さ方向(Z軸)に相対移動可能とする移動機構5(移動機構部の一例)と、透過式寸法測定器11(測定部の一例)と、レーザ変位計12と、較正用ブロック13と、温度センサ14(温度検出部の一例)と、タイマ15(時間検出部の一例)と、ノズル洗浄装置16と、各部を制御する制御部10と、を備えている。
【0011】
ステージ2は、例えば円形状に形成されており、回転機構3により水平面内で回転可能に構成されている。このステージ2は、載置された基板Wを吸着する吸着機構を備えており、その吸着機構によりステージ2の載置面2a上に塗布対象物としての基板Wを固定して保持する。この吸着機構としては、例えばエアー吸着機構などが用いられる。
【0012】
回転機構3は、ステージ2を水平面内で回転可能に支持しており、ステージ中心を回転中心としてステージ2をモータなどの駆動源により水平面内で回転させる機構である。これにより、ステージ2上に載置された基板Wは水平面内で回転することになる。
【0013】
塗布ノズル4は、塗布膜Mとなる材料を吐出するノズルであり、先端(底面)にノズル孔が形成されたノズル面4aを有している。この塗布ノズル4は、圧力によりその先端4aから材料を連続的に吐出し、その材料をステージ2上の基板Wに塗布する。ノズル4は例えばPEEK等の材料で構成されている。
【0014】
この塗布ノズル4はノズルヘッド4cの下端に設けられている。ノズルヘッド4b水平面方向(X軸)及び高さ方向(Z軸)に支持されている。ノズルヘッド4bには材料を供給する供給タンクが、チューブやパイプから構成される流路を介して接続されている。さらに流路には供給用のポンプや流量調整弁などが設けられ、制御部10の制御に応じて動作する。
【0015】
移動機構5は、塗布ノズル4を支持してZ軸方向に移動させるZ軸移動機構6と、そのZ軸移動機構6を介して塗布ノズル4を支持しX軸方向に移動させるX軸移動機構7とを備えている。この移動機構5は塗布ノズル4をステージ2の上方に位置付け、その塗布ノズル4をステージ2に対して相対移動させる。Z軸移動機構6及びX軸移動機構7としては、例えば、リニアモータを駆動源とするリニアモータ移動機構やモータを駆動源とする送りネジ移動機構などが用いられる。
【0016】
位置検出部として、ステージ2の側方に設けられた透過式寸法測定器11と、塗布ノズル4と一体に設けられたレーザ変位計12と、較正用ブロック13と、が設けられている。
【0017】
較正用ブロック13はステージ2の側部に設けられ、ている。較正用ブロック13の上面は基準面13aとなる。
【0018】
透過式寸法測定器11は、例えば投光部と受光部とを有し、較正用ブロック13の上面13aにノズル4を対向配置させた状態で、投光部から光を照射し、受光部で受ける光の情報に基づいて上面13aとノズル4の先端4aの間のノズル離間距離Nを検出し、Z方向における位置情報として制御部10に送る。
【0019】
レーザ変位計12は、反射型レーザセンサなどであり。Z軸移動機構6とX軸移動機構7とによりX軸方向及びZ軸方向に移動する。レーザ変位計12は、基準値測定や実測の際に対向配置された較正用ブロック13の上面13aに光を当ててその反射光を検出することで較正用ブロック13の上面13aまでのセンサ離間距離Sを測定し、Z方向における位置情報として制御部10に送る。
【0020】
また、レーザ変位計12は、位置調整の際に対向配置された基板Wに光を当てて、その反射光を検出することで基板Wまでの離間距離Sを測定し、Z方向における位置情報として制御部10に送る。
【0021】
ノズル4には、温度検出部14が設けられている。温度検出部14は、例えばノズル4の側壁に設置されている。温度検出部14は熱電対などの温度センサであり、ノズル4の側壁の温度を検出してノズル4の温度を測定し、温度情報を制御部10に送る。
【0022】
時間検出部としてのタイマ15は、基準時及び実測時の時刻を検出し、制御部10に送る。
【0023】
ノズル洗浄装置16は、洗浄液を含浸させた布あるいは含浸させない清浄な布をノズル面4aと対向配置させる機構を備え、ノズルのX軸移動機構6とZ軸移動機構7を用いてノズル下面に付着した残渣を拭き取ることによりノズル4を洗浄する。これにより、先端4aに付着した残渣などが除去される。
【0024】
制御部10は、各部を集中的に制御するマイクロコンピュータと、各種プログラムや各種情報などを記憶する記憶部とを備えている。記憶部としては、メモリやハードディスクドライブ(HDD)などが用いられる。
【0025】
制御部10は、例えば、各種プログラムや各種情報(位置情報・温度情報など)に基づいて、演算処理を行い位置調整に必要なギャップ値や移動量を決定する。また、制御部10は、例えば、各種プログラムや各種情報(塗布条件情報など)に基づいて、回転機構3や移動機構5を制御し、ステージ2上に所定のギャップを維持して塗布ノズル4を位置決めする位置調整部として機能する。また制御部10は基板Wが載置されたステージ2を回転させ、塗布ノズル4の先端4aから材料を吐出させながら、その塗布ノズル4を基板中央(あるいは基板外周)から基板外周(あるいは基板中央)に向かって直線状に移動させ、渦巻き状の塗布軌跡を描くことで基板全面に膜形成を行う(所謂、スパイラル塗布を行う。)。
【0026】
以下、塗布装置1が行う成膜処理(塗布方法)について図2を参照して説明する。まず、初期動作として、透過式寸法測定器11、及びレーザ変位計12がリセットされる(ST1)。
【0027】
次に、制御部10は、基準値測定工程として、基準となる温度T0、時刻t0、ノズルの位置情報であるノズル変位NL0を検出する(ST2)。このとき、温度検出部14により温度T0が検出され、タイマ15により測定時刻t0の情報を取得する。ノズルの位置情報としてのノズル変位NL0は、レーザ変位計12とノズル先端4aとの変位(距離)である。ここでは図5(a)に示すように、ノズル4が較正用ブロック13の上面13a上の所定位置にある状態で、透過式寸法測定11によって、ノズル先端4aと較正用ブロック13の上面13aとのノズル離間距離N0を測定し、さらに、レーザ変位計12によって、レーザ変位計12から上面13aまでのセンサ離間距離S0を測定して、これらの差分であるS0−N0が、ノズルの位置情報としてのZ方向におけるノズル変位NL0となる。
【0028】
ST2で検出した各数値を基準値として設定する(ST3)。以上ST1〜ST3の工程により事前工程としての基準情報決定が終了する。
【0029】
塗布処理の際には、1枚目の基板Wでは、このST3で設定された基準値に基づき、また、2枚目以降の基板Wでは、後述するST15で設定された基準値に基づいて、位置調整を行う。
【0030】
まず、実測工程として、ST2と同様の測定方法で、温度T1及び測定時刻t1を検出する(ST4)。
【0031】
つぎに、ST3の基準値とST4の測定値に基づいて、温度変化ΔT、及び経過時間Δtと、予め設定された許容変化量範囲との比較判定を行う(ST5)。すなわち、基準温度T0と実測温度T1から温度変化ΔT=T1ーT0)を求め、この温度変化ΔTが予め設定された変化閾値ΔTaより小さい(変化が小さい)か否かを判定する。また、基準時刻t0と実測時刻t1から経過時間Δt=t1ーt0)を求め、この経過時間Δtが予め設定された変化閾値Δtaより小さい(経過時間が小さい)か否かを判定する。
【0032】
図3は温度変化ΔTの判定を示すグラフである。図3に示すように、温度変化ΔT及び経過時間Δtが、予め設定された変化閾値ΔTa、Δtaよりも小さい場合、すなわち許容変化範囲内である場合(ST5のY)には、ST3、あるいは後述するST15において、既に決定された基準値が有効であるとしてST6に進む。
【0033】
一方、温度変化ΔT、及び経過時間Δtの少なくともいずれかが予め設定された変化閾値ΔTa、Δta以上である場合、すなわち許容変化範囲外である場合(ST5のN)には、ST3、あるいは後述するST15において、既に基準値が有効でないエラーとして検出を行い、ST13〜ST15の再検出工程に進む。
【0034】
基準値再設定工程として、まずST13にてノズル洗浄装置16によりノズル4を洗浄し、ノズル先端4aに付着した残渣などを取り除く。
【0035】
そして、ST2と同様の測定方法により、再検出工程として温度T2、測定時刻t2、ノズル変位L2を再検出する(ST14)。
【0036】
そして、ST14にて検出した実測値である温度T2、測定時刻t2、ノズル変位L2を基準値(基準情報)とし、基準値温度T0、測定時刻t0、ノズル変位L0として再設定する(ST15)。そしてST4に進み、上記と同様に実測や変化量判定を行う。
【0037】
制御部10は、すでに決定された基準値が有効であると判定した場合にはST6として、ノズル洗浄装置16によりノズル4の洗浄を行い、ノズル先端4aの残渣を除去する。
【0038】
また、制御部10はノズル4の伸びを予測する(ST7)。例えば、ST4で検出した温度T1と、ST2またはST15で設定された基準温度T0、及びノズル長Lに基づいて、熱伸び量ΔLを検出する。なお、ノズル長Lは例えばノズルヘッド4bのノズル取り付け面からノズル先端4aまでの長さである
ここでは、事前に測定した温度とノズル4の伸びのデータテーブルを制御部10に記憶しておき、このデータテーブルからノズルの予測熱伸び量ΔLaを算出する。例えば、予測の熱伸び量ΔLa=線膨張係数α(計測温度T1−基準温度T0)・ノズル長L…(式1)となる。例えば、線膨張係数αはノズル4の材質により決定される。本実施形態では、ノズル4は、例えば、PEEKで構成されているので、その線膨張係数α=4.76×10-6/℃である。ノズル長L=50mmとする。
【0039】
次いで、図5(b)に示すように、実測によりノズル変位NL1を測定する(ST8)。このときの測定方法はST2と同様とし、レーザ変位計12との相対距離として、ノズル長NL1を測定する。すなわち、ノズル4が較正用ブロック13上にある状態で、透過式寸法測定11によってノズル先端4aと較正用ブロック13の上面13aとの離間距離N1を測定し、レーザ変位計12によって、レーザ変位計12から上面13aまでの離間距離S1を測定し、これらの差分であるS1−N1がノズル長NL1となる。
【0040】
そして、ノズル長の変化量ΔNL=NL1−NL0とST7で予測した熱伸び量ΔLaに基づいて決定されるノズル変化許容範囲(ノズル変化範囲)と、を比較判定する(ST9)。図4に示すように、ノズル長の変化量ΔNLが予測したノズル変化許容範囲内であって、上限変動閾値LΔLa<ΔNL<下限変動閾値HΔLaを満たす場合には(ST9のY)、ST7の実測値(実測情報)が有効であるとして、ST10に進む。なお、ノズル変化範囲は、予測熱伸び量ΔLaに基づいて、温度とノズル変化量を回帰分析して、回帰分析の残差の標準偏差に基づいて所定のノズル変化許容範囲を決定する。ここでは、例えば、ノズル長L=50[mm]、α=4.76[10-5/℃]の場合、LΔLa=-0.50μm、HΔLa=+0.20とした。
【0041】
一方、ノズル変位の変化量ΔNLが予め予測した変化許容範囲外であって、上限閾値LLa以上または下限閾値HLa以下である場合には(ST9のN)、ST7の実測値が有効でないとしてエラー検出を行いST13〜ST15の基準値再設定工程に進み、再び洗浄、測定再設定を行い、上記ST4に戻る。
【0042】
例えば図5(c)に示すようにノズル4の先端4aに付着物4cが付着している場合には、ノズル4の先端4aの位置が大きく変化するため、ノズル変位NLの変化量ΔNLが予め予測したノズル変化許容範囲外となり、付着物による測定エラーとして検出されることとなる。
【0043】
一方、所定のタイミングで、塗布対象物としての基板Wがロボットハンドリングなどの搬送機構によりステージ2上に搬入される。基板搬入処理や基板Wの入れ替え処理はST1〜ST11までの間に位置情報検出処理や洗浄処理などの段取り処理と並行して行う。基板Wはステージ2上に吸着機構により固定される。
【0044】
制御部10は、ST10として、ST8の実測値(実測情報)を対象情報として用い、この実測値NL1と予め設定された塗布ギャップ値Gaとに基づいて、対象となる基板Wとレーザ変位計12との間の目標対象ギャップ値を算出する。目標対象ギャップ値はST8で求めた実測値NL1+塗布ギャップ値Gaとなる。すなわち、レーザ変位計12が、基板W上に対向した状態で塗布面Waとの変位である対象ギャップG1を目標対象ギャップ値となるように位置調整をすることで、ノズル4の先端4aと基板W上の塗布面Waとの変位が目標の塗布ギャップGaとなる。
【0045】
そして、図6に示すように、ST10で求められた目標対象ギャップ値に基づき、Z軸移動機構6及びX軸移動機構7によりセンサ12及びノズル4をX軸及びZ軸方向に移動させて位置調整を行う(ST11)。このとき、まずX方向移動機構7の移動によりステージ2上の原点位置(基板Wの中心)に、移動させてX軸方向の位置調整を行う。X軸を位置決めした後、さらにセンサ12によりステージ2上の対向面である基板Wの上面Waまでの変位である対象ギャップG1を検出し、このG1が実測値NL1+塗布ギャップGaとなるようにZ軸方向の位置調整を行う。以上によりX軸方向及びZ軸方向の位置調整が終了する。
【0046】
ついで、塗布処理が行われる(ST12)。塗布処理では、ステージ2が回転機構3により回転し、そのステージ2上の基板Wが回転している状態で、塗布ノズル4が基板Wの中央である原点位置からX軸移動機構5bによりX軸方向に、すなわち基板Wの中心から外周に向かって等速で移動する。
【0047】
このとき、供給用ポンプを作動させて塗布材料を供給することにより塗布ノズル4は移動しながら先端4aから材料を連続して基板Wの塗布面Waに吐出し、その塗布面Wa上に渦巻状に材料を塗布する(スパイラル塗布)。これにより、図7に示すように、基板Wの塗布面Wa上に塗布膜Mが形成される。
【0048】
基板W上の所定の領域に塗布膜Mが形成されたら、塗布終了し、基板を取り出す。その後、Z軸移動機構6によりノズルヘッド4bとともに塗布ノズル4を上昇させ、塗布処理が終了する。塗布処理のあと、ST4およびST8での実測値を次回基準情報としてST3で設定した基準値を書き換える再設定処理を行う(ST16)。そして、ST4〜ST16までの処理を繰り返し行ない、一定数量の基板に塗布処理を行う。
【0049】
本実施形態にかかるスパイラル塗布装置及びスパイラル塗布方法によれば、経過時間や温度変化やノズル変位の変化量に基づき、洗浄及び測定をやり直すことで、誤検出による精度低下を防止してギャップ調整の精度を向上でき、膜厚を安定化することができる。
【0050】
すなわち、温度差や経過時間が大きい場合やノズル位置が大幅に変動した場合にエラーとして再検出を行うこととしたため、例えばノズル面4aに付着物が付着している場合には誤検出を防止し、位置調整精度が低下するのを防止できる。例えば、感光性の材料を塗布材料として用いた場合など、材料液とノズル部とのコントラストが低く、光学検出では付着物をノズルとして検出してしまうこともありノズル位置の正確な検出が困難であるが、上記実施形態によれば、複数回の測定値の比較で乖離があった場合にエラー検出することで、ノズル洗浄残渣の検出もできる。
【0051】
また、上記実施形態では、温度変化によるノズルの熱伸びを考慮して判定を行い、予測変化量から決定される所定の範囲内である場合にのみ実測データを用いることとしたので、より精度良く、位置決めすることが可能となる。また、再検出工程としてノズルの洗浄工程を組み込んだことにより、塗布開始点におけるメニスカス形状が安定し、膜厚の制御が可能となる。
【0052】
以上説明したように、発明の実施形態では、ノズルと基板表面の距離(ギャップ)を精度良く制御することを可能とする。
【0053】
本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0054】
W…基板(塗布対象物の一例)、WM…塗布膜、Wa…塗布面、1…塗布装置、2…ステージ、2a…載置面、3…回転機構、4…塗布ノズル、4a…ノズル面(先端)、5…移動機構、5a…Z軸移動機構、5b…X軸移動機構、7…供給部、8…連通管、10…制御部、11…透過式寸法測定器(測定部の一例)、12…レーザ変位計、13…較正用ブロック、13a…基準面、14…温度検出部、15…時間検出部。

【特許請求の範囲】
【請求項1】
測定により、基準となるノズルの位置情報である基準情報を検出し、
前記基準情報測定の後に、前記ノズルを洗浄し、
前記洗浄後に、測定により、前記ノズルの位置情報である実測情報を検出し、
前記実測情報、及び前記基準情報の変化量から、ノズルの位置変化量を検出し、
前記ノズルの位置変化量が、予め設定されたノズルの許容変化量の範囲内である場合には、前記実測情報を対象情報とし、この対象情報に基づいて前記ノズルの位置調整を行って、塗布対象物に塗布材料を供給し、
前記ノズルの位置変化量が、前記許容変化量の範囲外である場合には、再度、前記ノズルを洗浄し、その後、前記塗布対象物に、前記塗布材料を供給することを特徴とする塗布方法。
【請求項2】
前記基準情報の測定の後に、前記基準情報測定時の経過時間、及び前記ノズルの温度変化量を検出し、前記経過時間及び前記温度変化量が、各々、予め設定された時間の変化範囲内、及び温度変化範囲外である場合には、エラー状態であるとして、再検出を行うものであって、
前記変化量による判定によりエラー状態であると判定された場合には、前記再検出において、前記塗布ノズルを再洗浄し、前記再洗浄後に、前記ノズルの位置情報を再測定し、前記再測定により検出したノズル位置情報を前記基準情報として、実測情報の再検出、及び前記変化量による判定を再び行うことを特徴とする請求項1記載の塗布方法。
【請求項3】
ノズル面の位置情報を検出する際には、ノズル位置測定用の基準面と前記塗布ノズルとを対向配置させた状態で、前記塗布ノズルと一体に設けられた変位センサにより、前記センサと前記基準面との距離であるセンサ離間距離を検出し、
前記塗布ノズルの側部に設けられた測定部により、前記塗布ノズルと前記基準面までのノズル離間距離を検出し、
前記センサ離間距離と前記ノズル離間距離との差分に基づいて、前記ノズル面の位置情報を検出するとともに、
位置調整の際には前記塗布ノズルを移動させて塗布対象物が設置されるステージ上に対向配置させた状態で、前記変位センサにより前記塗布対象物と前記センサとの離間距離である対象ギャップを測定し、
前記対象ギャップと、前記対象情報に基づいて、前記塗布対象物と前記塗布ノズルとの位置調整を行う、ことを特徴とする請求項2記載の塗布方法。
【請求項4】
前記基準情報測定時と前記実測時の温度変化に基づいて、前記ノズル長の予測伸び量を検出し、前記予測伸び量に基づいて、前記所定のノズル変化範囲を決定することを特徴とする請求項3記載の塗布方法。
【請求項5】
前記ノズルの洗浄、及び前記ノズルの再洗浄は、前記ノズルにおいて、前記塗布材料を前記塗布対象物に吐出する先端口の部分を洗浄することであり、かつ前記塗布材料は感光性の材料であることを特徴とする請求項1乃至4の何れか一項に記載の塗布方法。
【請求項6】
塗布対象物が載置される載置面を有するステージと、
前記ステージを前記載置面に沿う回転方向に回転可能とする回転機構と、
前記ステージ上の前記塗布対象物に材料を吐出して塗布するノズルと、
前記ステージと前記ノズルとを前記回転方向に交わる交差方向に前記載置面に沿って相対移動させる移動機構と、
温度を検出する温度検出部と、
前記ノズルを洗浄する洗浄部と、
前記ノズルの位置情報を検出するノズル位置検出部と、
前記ノズル位置検出部により、前記ノズルのノズル面の位置情報である基準情報を検出し、前記基準情報の測定の後に、前記洗浄部で前記ノズルを洗浄し、前記洗浄後に前記ノズル位置検出部により、前記ノズルの位置情報である実測情報を検出し、前記実測情報と前記基準情報との変化であるノズル変化量が予め設定されたノズル変化範囲内である場合には前記実測情報を対象情報として前記対象情報に基づいて前記ノズルの位置調整を行うとともに、前記変化量が前記ノズル変化範囲外である場合には、エラーとし、再検出を行うように制御するとともに、前記位置調整後に、前記塗布対象物が載置された前記ステージを回転機構により回転させながら、移動機構により前記ステージと前記塗布ノズルとを前記交差方向に前記載置面に沿って相対移動させ、前記塗布ノズルにより前記ステージ上の塗布対象物に材料を塗布させる制御部と、を備えたことを特徴とする塗布装置。
【請求項7】
前記ノズルの洗浄、及び前記ノズルの再洗浄は、前記ノズルにおいて、前記塗布材料を前記塗布対象物に吐出する先端口の部分を洗浄することであり、かつ前記塗布材料は感光性の材料であることを特徴とする請求項6に記載の塗布装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−71027(P2013−71027A)
【公開日】平成25年4月22日(2013.4.22)
【国際特許分類】
【出願番号】特願2011−209718(P2011−209718)
【出願日】平成23年9月26日(2011.9.26)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】