説明

多層フィラメント超伝導性物品、およびその形成方法

超伝導性物品であって、基板、基板の上に横たわるバッファ層、及びバッファの上に横たわる高温超伝導性(HTS)材料よりなるフィラメントを持つものが与えられる。フィラメントは基板の長さに沿って伸び、かつ、隣接するフィラメントから水平方向にある空間だけ空けて配置されている。多層フィラメント超伝導性テープは、少なくとも約0.4である臨界電流保持比を持つ。

【発明の詳細な説明】
【背景技術】
【0001】
開示の分野
本発明は、多層フィラメント超伝導性物品に向けられており、かつ、特に低ACロス多層フィラメント超伝導性物品に向けられている。
【0002】
関連する技術の記録
超伝導体材料は技術社会において永く知られ、理解されてきた。液体ヘリウムの使用を要求する温度(4.2K)で超伝導特性を示す低温超伝導体(低−TC又はLTS)は1991年以来知られてきた。しかしながら、酸化物ベースの高温(高−TC)超伝導体が発見されたのは幾分最近になってからである。1986年あたりに液体窒素温度(77K)以上の温度で超伝導特性を有する最初の高温超伝導体(HTS)、すなわちYBa2Cu37-X(YBCO)が発見され、これにつづいて過去15年にわたってBi2Sr2Ca2Cu310+y(BSCCO)及びその他、を含む付加的な材料が開発されてきた。高温超伝導体(高−Tc超伝導体)の開発は、このような超伝導体を比較的高価な液体ヘリウムに基づく極低温基盤構造で動作させるよりむしろ、液体窒素で動作させるとコストを低下できることに部分的に依存して、このような材料を含む超伝導体要素および他の装置の経済的に実現可能な発展の可能性を、創り出してきた。
【0003】
非常に多くの可能な応用の中で産業はこのような材料の発電、送電、配電、および貯蔵を含む電力産業における使用を展開させることを求めてきた。この点に関し、銅ベースの商用電力要素の本質的な抵抗は、毎年数十億ドルの電力の損失を生じていると評価されており、したがって、電力産業は送電および配電電力ケーブル、発電機、変圧器及び故障電流妨害器/制限器等の電力要素における高温超伝導体の利用に基づき、利益を得る立場にある。さらに、電力産業における高温超伝導体の他の利点は、従来技術に対する、電力処理能力の3−10%の増加、電力設備の大きさ(すなわち、接地面積)および重量の実質的な低減、環境衝撃の低減、より大きい安全性、および容量の増大を含む。このような高温超伝導体の利点が極めて強力なものであり続けている間にも、多くの技術的挑戦が、高温超伝導体の製造及び商業化において大規模に存在しつづけている。
【0004】
高温超伝導体の商業化に関連した挑戦の多くは、種々の電力要素の形成に用いることのできる超伝導性テープセグメントの製造の回りに存在する。超伝導性テープセグメントの第1世代は上述のBSCCO高温超伝導体の使用を含む。この材料は一般に、貴金属、代表的には銀、のマトリックス内に埋め込まれた分離したフィラメントの形で設けられる。このような導体は電力産業で実施するに必要な長い長さ(キロメートルのオーダー等)に作ることができるが、材料及び製造コストのためにこのようなテープは広く商業的に実現可能な製品を代表するものではない。
【0005】
したがって、多くの興味は優秀な商業的な実行可能性を持つ、いわゆる第2世代HTSテープで生じてきた。これらのテープは代表的に層構造に依拠し、これは一般に機械的サポートを与えるフレキシブル基板、基板上に横たわる少なくとも1つのバッファ層、バッファ層は任意に複数の膜を含む、バッファ膜の上に横たわるHTS層、及び超伝導体層の上に横たわる任意のキャップ層、及び/又はキャップ層の上に、又は全体構造の周りに横たわる任意の電気的安定化層を含む。しかしながら今日まで、このような第2世代テープ、及びこのようなテープを組み込んでいる装置の十分な商業化に先立って、数多くの工学的および製造上の挑戦が続いている。
【0006】
新しい技術の出現は新しい問題を生じるが、HTSテープの場合においては交流(AC)電流を低減すること、及びその間臨界電流容量を維持することは、特に煩雑である。ACロスは導体の有効性を低減し、かつ超伝導性物品を通って電流を流すことにより生成される磁界によって生じせしめられる。いくらかの超伝導体設計がACロスを軽減するよう示唆されてきたが、これらの物品の形成及び利用は第2世代HTSテープの複雑な多層化構造を与えられてユニークな障害を課してきた。特に、このような構造を商業的に実現可能な長い長さの導体に形成することは、このような物品が、増大する電力需要を向上した性能および耐性をもって処理する能力を持つよう期待されるよりより大きい主要な障害を残す。
【発明の開示】
【0007】
1つの側面によれば、多層フィラメント超伝導性テープセグメントよりなる超伝導性テープであって、基板テープ、基板の上に横たわるバッファ層、及びバッファ層の上に横たわる高温超伝導性(HTS)材料よりなる複数フィラメントを含むものが開示されている。複数フィラメントは基板の長さに沿って伸び、隣接するフィラメントから水平方向に空間によりスペースを空けられており、かつ縦方向にはギャップによりスペースを空けられている。多層フィラメント超伝導性テープセグメントは、約100ミクロンより大きくない水平方向フィラメント間不整列を持つ。
【0008】
もう1つの側面によると、超伝導性物品であって、基板テープ、基板の上に横たわるバッファ層、及びバッファ層の上に横たわる高温超伝導性(HTS)材料よりなる複数フィラメントを持つ多層フィラメント超伝導性テープセグメントを含むものが開示されている。複数フィラメントは、基板の長さに沿って伸び、かつ隣接するフィラメントから水平方向に空間によりスペースを空けられている。また、多層フィラメント超伝導性テープセグメントは、少なくとも約0.6の臨界電流保持比を持つ。
【0009】
第3の側面によれば、多層フィラメント超伝導性テープの形成方法が与えられ、これは、超伝導性テープをリールツーリールプロセスで移送することを含み、ここで、超伝導性テープは、基板、該基板の上に横たわるバッファ層、および、該バッファ層の上に横たわる高温超伝導性(HTS)層を含む。該方法はさらに、前記超伝導体層上にマスクを形成すること、及び研磨粒子を使ってマスクの部分、及びHTS層の部分を除去し、HTS材料よりなる複数のフィラメントを持ち、かつ超伝導性テープの長さに沿って伸び、かつ隣接する複数フィラメントから水平方向に空間によりスペースを空けられた多層フィラメント超伝導性テープを形成することを含む。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】米国特許第6,190,752号明細書
【図面の簡単な説明】
【0011】
本開示は添付の図面を参照することにより、当業者によってよりよく理解され、かつその多くの特徴および利点が当業者により明らかとなるであろう。
【図1A】図1Aは1つの実施形態による超伝導性物品の一般化された構造を示す斜視図である。
【図1B】図1Bは1つの実施形態による多層フィラメント超伝導性物品の一般化された構造を示す斜視図である。
【図2】図2は1つの実施形態による多層フィラメント超伝導性物品の一部の立面図を含む。
【図3】図3は1つの実施形態による多層フィラメント超伝導性物品の一部の平面図を含む。
【図4】図4は1つの実施形態による多層フィラメント超伝導性物品を形成するプロセスを図示するフローチャートである。
【図5】図5は1つの実施形態による多層フィラメント超伝導性物品を形成するプロセスを図示するフローチャートである。
【図6】図6は1つの実施形態による多層フィラメント超伝導性物品を形成するプロセスを図示するフローチャートである。
【図7】図7は1つの実施形態による多層フィラメント超伝導性物品を形成するにおいて用いられる基板ホルダの斜視図である。
【図8】図8は1つの実施形態による多層フィラメント超伝導性物品を形成するにおいて用いられる基板ホルダおよびレティクルを図示する。
【図9】図9は1つの実施形態による、登録マークを有するレティクル、及び多層フィラメント超伝導性物品を形成するにおいて用いられる登録マークを有する多層フィラメント超伝導性物品を含む。
【図10】図10は1つの実施形態による、リールツーリールプロセスで多層フィラメント超伝導性物品を形成するプロセスの図的な表現を与える一連の図示を含む。
【図11】図11は1つの実施形態による多層フィラメント超伝導性物品を含む無効電流制限器を含む。
【図12】図12は1つの実施形態による変形構造を持つ多層フィラメント超伝導性物品の一部の断面図を含む。
【図13】図13は1つの実施形態による多層フィラメント超伝導性物品のACロス低減を図示する電力対磁界のプロットを含む。
【図14】図14は故障状態での従来のFCL装置についての電流対時間のグラフを図示する。
【図15】図15は1つの実施形態による多層フィラメント超伝導性物品を組み込んでいるFCL装置の電流対時間のグラフを図示する。
【図16】図16は故障状態における従来のFCL装置についての電圧対時間のグラフを図示する。
【図17】図17は1つの実施形態による多層フィラメント超伝導性物品を組み込んでいるFCL装置についての電圧対時間のグラフを図示する。 異なる図面における同じ参照符号の使用は、同様の、又は同じ項目を示す。
【発明の概要】
【0012】
図1に戻って、本発明の1つの実施形態による超伝導性物品100の一般化された層化構造が描かれている。超伝導性物品は、基板10、基板10の上に横たわるバッファ層12、超伝導性層14、それにつづく代表的には貴金属よりなるキャップ層16、及び代表的には銅等の非貴金属よりなる安定化層18を含む。バッファ層12はいくつかの異なる膜より構成される。安定化層18は超伝導性物品100の周囲の周りに伸び、これによりそれを完全に包む。
【0013】
基板10は一般に金属ベースのものであり、かつ代表的に少なくとも2つの金属元素の合金である。特に、適切な基板材料は、公知のHastelloy(登録商標)またはInconel(登録商標)グループの合金等のニッケルベースの金属合金を含む。これらの合金は、膨張係数、引っ張り強度、降伏強度、及び伸長を含む所望のクリープな、化学的及び機械的特性を持つ傾向がある。これらの金属は、一般にスプールドテープの形で商業的に利用可能であり、代表的にリールツーリールテープ処理を利用する超伝導性テープの製造に特に適している。
【0014】
基板10は、代表的に高い寸法比を持つテープ状の形状をしている。ここで用いられるように、用語“寸法比”は、基板又はテープの長さの、次の長さ寸法、すなわち基板又はテープの幅、に対する比を記すのに用いられる。例えば、例えば、テープの幅は、一般に約0.1から約10cmのオーダーであり、かつテープの長さは、代表的に少なくとも約0.1mであり、最も代表的には約5mより大きい。実際、基板10を含む超伝導性テープは、100m又はそれ以上のオーダーの長さをもつであろう。したがって、基板は、10より小さくない、102より小さくない、あるいは103よりさえ小さくないオーダーの、かなり高い寸法比を持ち得る。ある実施形態は、104およびそれより高い寸法比を持ち、より長い。
【0015】
1つの実施形態において、基板は、超伝導性テープの構成層の続いて起こる堆積のために望ましい表面特性を持つように処理される。例えば、表面は所望の平坦さ、及び表面粗さを持つように研磨される。さらに基板は、公知のRABiTS(roll assisted biaxially textured substrate)技術等により、技術において理解されるように2軸テキスチャされるように取り扱うことができる、ただしここでの実施形態は、代表的に上記した商業的に利用可能なニッケルベースのテープのようにテキスチャされていない多結晶基板を利用する。
【0016】
バッファ層12に戻って、バッファ層は単一層であってよく、あるいはより共通に数枚の膜よりなっていてもよい。最も代表的に、バッファ層は一般に膜の面内および面外の両方の結晶軸に沿って整列された結晶性テキスチャを持つ2軸テキスチャ膜を含む。このような2軸テキスチャはIBADで達成することができる。技術において理解されるように、IBADは優れた超伝導特性のための望ましい結晶学的方位を持つ超伝導性層のつづいての形成のために適切にテキスチャされたバッファ層を形成するのに有利に用いられる技術である、イオンビームアシスティッドデポジションの頭字語である。酸化マグネシウムはIBAD膜のための選択の代表的な材料であり、かつ約5から約50ナノメーター等、約1から約500ナノメーターのオーダーであり得る。一般に、IBAD膜は米国特許第6,190,752号明細書、参照によりここに組み入れられる、で定義され、記述された岩塩状結晶構造を持つ。
【0017】
バッファ層は、IBAD膜および基板に直接接触し、かつ両者間に置かれるよう設けられるバリア膜等の、付加的な膜を含むことができる。この点に関し、バリヤ膜は、イットリア等の酸化物により有利に形成することができ、かつ基板をIBAD膜から絶縁するように機能する。バリア膜はまた、窒化シリコン等の非酸化物により形成することもできる。バリア膜の堆積のための適切な技術は、化学気相成長、及びスパッタリングを含む物理気相成長を含む。バリア膜の代表的な厚さは、約1から約200ナノメーターの範囲内にある。またさらに、バリヤ層はまた、IBAD膜上に形成されたエピタキシャル成長膜をも含むことができる。この文脈において、エピタキシャル成長膜は、IBAD膜の厚さを増大するのに有効であり、かつMgOまたは他の互換性のある材料等のIBAD層に用いられたのと原理的に同じ材料よりなるのが望ましい。
【0018】
MgOベースのIBAD膜及び/又はエピタキシャル膜を用いる実施形態において、MgO材料と超伝導性層材料の間には格子不整合が存在する。したがって、バッファ層はさらにもう1つのバッファ膜を含むことができ、これは特に超伝導性層とその下にあるIBAD膜及び/又はエピタキシャル膜の間の格子定数不整合を低減するように用いられる。このバッファ膜はYSZ(イットリア安定化ジルコニア)、ストロンチウムルテネート、ランタン(ランタナム)マンガネート、及び一般にぺロブスカイト構造セラミック材料等の材料により形成され得る。バッファ膜は種々の物理気相堆積技術により堆積され得る。
【0019】
上記は原理的に、IBAD等のテキスチャプロセスによるバッファスタック(層)内の2軸テキスチャされた膜の実行に焦点を置いたものであるが、代替的に基板表面自体を2軸テキスチャすることもできる。この場合バッファ層は一般に、テキスチャされた基板上にバッファ層内での2軸テキスチャを維持するようにエピタキシャル成長される。2軸テキスチャされた基板を形成するための1つのプロセスは、技術においてRABiTS(roll assisted biaxially textured substrates)として知られている公知の技術であり、一般に技術において理解されている。
【0020】
超伝導性層14は、一般に高温超伝導体(HTS)層の形をしている。HTS材料は代表的に液体窒素の温度、77K以上で超伝導特性を示す高温超伝導材料のいずれかから選択される。このような材料は、たとえば、YBa2Cu37-x,Bi2Sr2CaCu2z,Bi2Sr2Ca2Cu310+y,Tl2Ba2Ca2Cu310+y,およびHgBa2Ca2Cu38+yを含み得る。1つのクラスの材料は、REBa2Cu37-xを含み、ここで、REは希土類元素、または希土類元素の結合である。上記の中で、YBa2Cu37-x、これはまた一般にYBCOとも言われる、が有利に用いられる。YBCOは、希土類材料、たとえばサマリウム、等のドーパントの付加をもって、あるいはその付加無しで使用し得る。超伝導性層14は、厚膜及び薄膜形成技術を含む種々の技術の任意の1つにより形成され得る。好ましくは、パルスレーザー堆積(PLD)等の薄膜物理気相成長技術を高堆積速度のために用い得、あるいは化学気相成長技術をより低いコスト、及びより大きい表面領域処理のために用い得る。代表的には、超伝導性層は、超伝導性層14と関連した所望のアンペアレートを得るために、約0.1から約30ミクロンの、最も代表的には、約1から約5ミクロン等の、約0.5から約20ミクロンの、オーダーの厚さを持つ。
【0021】
超伝導性物品はまた、キャップ層16及び安定化層18を含み、これらは一般に、低抵抗インタフェースを与えるために、かつ実際の使用における超伝導体のバーンアウトの防止を助ける電気的安定化のために含まれている。より特定的には、層16および18は、冷却が失敗したとき、あるいは臨界電流密度を超えたときに超伝導体に沿っての電荷の連続した流れを助け、そして該超伝導性層は超伝導状態から移行して抵抗性になる。代表的には、貴金属が単数又は複数の安定化層と超伝導性層14の間の不所望の相互作用を防止するためにキャップ層16に用いられる。代表的な貴金属は金、銀、プラチナ、及びパラジウムを含む。銀は代表的にそのコストおよび一般的な入手容易さのために用いられる。キャップ層16は代表的に安定化層18から超伝導性層14への構成要素の不所望の拡散を防ぐに十分な厚さに形成されるが、しかしこれはコスト(生の材料および処理コスト)面より一般に薄く形成される。DCマグネトロンスパッタリング等の物理気相成長を含む種々の技術をキャップ層16の堆積に用いることができる。
【0022】
安定化層18は、一般に超伝導性層14の上に横たわるように、かつ特に図1に示される特定の実施形態においては、キャップ層16の上に横たわり、かつ直接接触するように組み入れられている。安定化層18は、厳格な環境条件および超伝導性クェンチに対する安定性を向上する保護/分路層として機能する。この層は一般に稠密であり、かつ熱的に、かつ電気的に伝導性であり、かつ超伝導性層の失敗の場合には、あるいはもし超伝導性層の臨界電流を超えたときは電流をバイパスするように機能する。それは、プリフォームされた銅ストリップを超伝導性テープ上に積層することによる、半田のような中間のボンディング材料を用いることによる等の種々の厚膜および薄膜形成技術の任意の1つにより形成され得る。他の技術は代表的に、蒸着またはスパッタリング等の物理気相成長ばかりでなく、無電解めっき等のウェットケミカルプロセス、及び電気めっきに焦点を当ててきた。この点に関し、キャップ層16はその上に銅を堆積するためのシード層として機能し得る。顕著には、キャップ層16及び安定化層18は種々の実施形態に従って以下に記述されるように順序を変えてもよく、あるいは使用しなくてもよい。
【0023】
図1Bを参照して、例示的な多層フィラメント超伝導性物品150の斜視図が図示されている。図示されるように、多層フィラメント超伝導性物品150は以前に記述したように基板10及びその上に横たわるバッファ層12を含み得る。しかしながら一般化された超伝導性物品と異なり、多層フィラメント超伝導性物品150はバッファ層の上に横たわるフィラメント21、22、及び23(21−23)を含む。一般にフィラメントは第1の端、及び第2の端を持つ長いセグメントである。1つの実施形態によれば、フィラメント21−23はHTS材料を含み得る。顕著には、フィラメント21−23は物品の長さに沿って伸び、かつおのおのの形状および大きさを持ち、水平方向には他のフィラメントから空間距離だけ隔てられ、かつ縦方向にはギャップ距離だけ隔てられた分離した物品である。さらに図示されるように1つの実施形態においては、このような多層フィラメント超伝導性物品はフィラメント21−23の上に横たわるキャップ層16ばかりでなく、キャップ層16の上に横たわる安定化層18を含む。
【0024】
分離したフィラメントを持つ多層フィラメント超伝導性物品の形成は低ACロス超伝導性物品の形成を可能とする。超伝導性テープセグメントの長さに沿っての分離したフィラメントの形成はHTS層を通って流れる電流により引き起こされる磁気的干渉の低減を可能とする。したがって、HTS材料よりなるフィラメントを持つ超伝導性物品の形成は高効率の、かつ低ACロスの超伝導性物品の形成を可能とする。
【0025】
図1BはHTS材料のみを含むフィラメント21−23を図示するが、もう1つの実施形態においては、フィラメントは構成層内の材料より形成され得る。このように1つの特定の実施形態においては、フィラメント21−23は、HTS材料及びバッファ層12が該フィラメントを形成するようパターン化されるように形成され得る。もう1つの特定的な実施形態においては、フィラメント21−23は、HTS材料及びキャップ層16がパターン化されてフィラメントを形成するように形成され得る。該フィラメントが、異なる層が安定化層18、キャップ層16、HTS層14、及びバッファ層を含むフィラメントを形成するようパターン化されて形成され得ることは理解されるであろう。
【0026】
図2を参照して、多層フィラメント超伝導性物品の一部の平面図が、図示されている。該物品はベース層201を含み、これは、ここで記述されるように基板及びその上に横たわるバッファ層を含み得る。多層フィラメント超伝導性物品はさらに、ベース層201の部分上に横たわるフィラメント203、204、205、206、207、208、209、及び210(203−210)を含み得る。フィラメントはHTS材料ばかりでなく、実施形態によってはバッファ層、キャップ層、及び安定化層からの材料を含み得る。
【0027】
図示されるように、フィラメント203−210は多層フィラメント超伝導性物品の長さに沿って伸びる。一般に、フィラメント203−210は少なくとも約100ミクロンの連続的な長さ217を持つ。もう1つの実施形態においては、フィラメント203−210は少なくとも約200ミクロン、あるいは少なくとも約400ミクロン、あるいはさらに少なくとも約1000ミクロンのより長い長さを持ち得る。1つの特定の実施形態において、フィラメント203−210は本質的にテープセグメントの全長に沿って伸びる連続的な長さを持つ。以前に記述したように、このような長さはミクロンサイズよりもはるかに大きいものであり得る、なぜなら、多層フィラメント超伝導性テープセグメントは、少なくとも約5m、かつより代表的には少なくとも約10m、またはさらには少なくとも約100mのオーダーの長さを持ち得るからである。1つの特定の実施形態においては、ここでの多層フィラメント超伝導物品は約5mと約100m間の範囲内のように、約1mと約1km間の範囲内の長さを持つことができる。
【0028】
フィラメント203−210は矢印213で図示される空間距離だけ水平方向に空間を空けられ得る。一般に、隣接するフィラメントを分離する空間距離213は約1mmより大きくない。他の実施形態においては、スペース213は約0.5mmより大きくない、約0.25mmより大きくない、あるいはさらに約1mmよりさえ大きくない、のようにより小さくあり得る。1つの特定の実施形態においては、隣接するフィラメントの間隔を開ける空間距離213は約0.05mmと約1mmの間の範囲内にあり、より特定的には約0.1mmと約0.5mmの間の範囲内にある。
【0029】
1つの実施形態によれば、フィラメント203−210は縦方向にテープセグメントの長さに沿って伸びる、矢印215で示されるギャップにより分離され得る。一般に、このようなギャップは、フィラメント203−210の長さより短い長さを持つ。1つの実施形態によれば、ギャップは約3mmより大きくなく、たとえば約1mmより大きくなく、特定の場合にはより短い。例えば、1つの実施形態においては、ギャップ215は約100ミクロン、75ミクロン、50ミクロンより大きくなく、あるいは約20ミクロンよりさえ大きくない。さらに、1つの特定の実施形態においては、ギャップは約100ミクロンと約400ミクロンの間の範囲内にある。1つの特定の実施形態においては、フィラメント203−210は本質的に基板テープの全長に渡って伸びることができ、この場合、実質的なギャップは存在しない。
【0030】
図3は図2に示される多層フィラメント超伝導性物品の一部を図示する。特に、図3はフィラメント203及びフィラメント207の一部を図示する。以前に記述したように、フィラメント203と207はギャップ215により分離され得る。1つの実施形態によれば、フィラメントは対応するフィラメント203と207の2分軸間の距離303により示されるように水平方向のフィラメント間不整列を持ち得る。水平方向フィラメント間不整列303は互いに縦方向に間隔を開けられた2つのフィラメント間の水平変位の示しである。図3に示されるように、水平方向フィラメント間不整列303はそれぞれフィラメント203及び207の対応する2分軸304及び305に基づく、フィラメント203および207の長さに直交する測定である。1つの実施形態によれば、水平方向フィラメント間不整列303は約100ミクロンより大きくない。もう1つの実施形態においては、水平方向フィラメント間不整列303は約50ミクロンより大きくなく、または約25ミクロンより大きくなく、あるいは約10ミクロンよりさえ大きくない。1つの特定の実施形態において、水平フィラメント間不整列303は約5ミクロンと約100ミクロンの間の範囲内にあり、より特定的には約10ミクロンと約50ミクロンの間の範囲内にある。分離したフィラメント間のこのような水平方向フィラメント間不整列303を持つ多層フィラメント超伝導性物品を形成すれば、正確に整列されたフィラメント、およびACロスの低減等の優秀な電気的特性を持つ超伝導性物品を形成することが可能となる。
【0031】
図4は1つの実施形態により多層フィラメント超伝導性物品を形成するプロセスを与えるフローチャートを図示する。特に、図4は長尺の多層フィラメント超伝導性物品の形成を可能とする、リールツーリールプロセスを用いた多層フィラメント超伝導性物品の形成方法を与える。したがって、プロセスはステップ401で超伝導性テープをフィードリールから移送することで始まる。超伝導性テープは基板、基板の上に横たわるバッファ層、及びバッファ層の上に横たわるHTS層を含む。顕著には、この時点でのHTS層は、分離したフィラメントがHTS層からパターン化される前に、一般にバッファ層上に横たわる等角の材料よりなる層である。
【0032】
プロセスはさらにステップ403でマスクテープをフィードリールから移送することを含む。特に、マスクテープはテープの形をした長尺材料よりなる。1つの実施形態によれば、マスクテープは超伝導性テープのそれに類似した寸法を持つ。このように、1つの実施形態においては、マスクテープは少なくとも約10:1である寸法比を持つ。もう1つの実施形態においては、マスクテープは少なくとも100:1の、あるいは少なくとも約1000:1でさえある寸法比を持つ。
【0033】
特にある寸法を参照して、1つの実施形態においては、マスクテープは超伝導性テープセグメントと一般に同じである平均幅を持つ。1つの実施形態において、マスクテープは約10cmより大きくない平均幅を持つ。もう1つの実施形態において、マスクテープの平均幅は約5cmより大きくなく、たとえば約1cmより大きくない。1つの特定の実施形態において、マスクテープは約1mmと約1cmの間の範囲内の平均幅を持つ。
【0034】
もう1つの実施形態において、マスクテープは約5mmより大きくない平均厚さを持つ。まだ、もう1つの実施形態によれば、マスクテープは約2mmより大きくない、たとえば約1mmより大きくない、あるいは約0.5mmよりさえ大きくない平均厚さを持つ。ある実施形態においては、マスクテープは約0.05mmと約0.25mmの間の範囲内の平均厚さを持ち、特に薄いことが望ましい。
【0035】
1つの実施形態によれば、マスクテープは放射線−感受性材料よりなる。たとえば、エレクトロニクス産業で用いられるフォトリソグラフィ材料またはレジスト材料を含む。1つの実施形態においては、マスクテープは樹脂等の有機材料を含む。
【0036】
それぞれステップ401及び403で与えられるように超伝導性テープ及びマスクテープをフィードリールから移送する間に、プロセスはステップ405で超伝導性テープ上にマスクテープを形成してマスクされた超伝導性テープを形成することで継続される。マスクテープを超伝導性テープ上に形成するプロセスは、2つのテープをマスクテープが超伝導性テープのHTS層上に横たわるように結合することを含む。1つの実施形態によれば、マスクテープを超伝導性テープ上に形成するプロセスは、マスクテープを超伝導性テープ上に、両テープを水平方向に揃え、かつ両テープを互いに押圧して積層することを含む。1つの特定の実施形態において、マスクテープを超伝導性テープ上に積層するプロセスは、マスクされたテープ及び超伝導性テープを一緒に基板ホルダを通して移送し、かつ両テープに圧力を加えることを含む。たとえば、マスクテープ及び超伝導性テープは基板ホルダを通して移送し、かつ両テープにローラを介して圧力を印加することができる。より特定的な実施形態において、マスクテープを超伝導性テープ上に形成するプロセスはさらに、マスクテープ及び超伝導性テープを加熱して適切な積層を可能にすることを含む。熱は両テープに局所的に印加されて両テープの積層を可能にする。1つの実施形態においては、熱と圧力を結合して印加して積層を完了することができる。熱を用いるある実施形態においては、温度は約50°Fより高く、たとえば約75°Fより高くあり得る。代表的に、積層の間に両テープに局所的に与えられる温度は約150°Fより高くない。
【0037】
積層プロセスの間に、湿化剤をマスクされたテープ、または超伝導性テープ、またはその両方に添加することができる。湿化剤の付加は、エアロゾル、またはスプレーの形で与えられ、これは接触するよう結合されるべき各テープの表面に添加され得る。代表的に、超伝導性テープおよびマスクテープに湿化の目的で適用される材料は、超伝導性テープまたはマスクテープの構成層を汚染しない材料である。このように、1つの実施形態においては、湿化剤は水溶性ベースの溶液を含む。特定の実施形態において、湿化剤は本質的に脱イオン化水よりなり得る。
【0038】
ステップ405で与えられるようにマスクテープを超伝導性テープ上に結合してマスクされた超伝導性テープを形成した後に、プロセスは、ステップ407で与えられるようにマスクされた超伝導性テープを第1の登録マークを持つ基板ホルダを通して、かつ第2の登録マークを持つレティクル下で移送させることで継続される。
【0039】
図7及び8を簡単に参照して、これらの図はマスクされた超伝導性テープを、リールツーリールプロセスのある部分の間にここでの実施形態に従って整列させるのに用いられる物品(たとえば、基板ホルダおよびレティクル)の図示を与える。図7は1つの実施形態による基板ホルダを示し、図8は1つの実施形態による基板ホルダ、及びその上にあるレティクルを示す。特に図7は長尺のテープ、特にマスクされた超伝導性テープを受け入れ、整列させるためのチャネル701を持つ基板ホルダ700の斜視図を示す。1つの特定の実施形態において、基板ホルダ700は1つの登録マーク、または一連の登録マークを含む。図7に示されるように、基板ホルダ700はチャネル701の側部から伸びるシェルフ703の表面上に登録マーク704および705を含む。登録マーク704及び705は基板ホルダ700をもう1つの対象と整列させるのに適切であり、かつこのようなマークは穴、ギザギザ、スクラッチ等の適切なインデシアを含み得る。
【0040】
図8はレティクル801の下にある基板ホルダ700の斜視図を示す。図示されるように、レティクル801は、基板ホルダ700の上に横たわっており、かつ基板ホルダ700の登録マーク704および705と垂直方向に整列している登録マーク804および805を持ち、レティクル801の基板ホルダ700に対する整列を可能にしている。レティクル801の登録マーク804及び805は、基板ホルダ700上のそれらと類似したインデシアを含む。
【0041】
さらに、登録マークを整列させるために用いられる方法及び装置は、機械的、電気的、又は光学的な方法を含み得る。たとえば、1つの特定の実施形態において、整列の光学的な方法は登録マークを整列させるレーザおよびセンサを含む。機械的な方法はそれらの各々の表面から突出し、かつスイッチをトリップする登録マークを含む。
【0042】
ステップ407で与えられるように、マスクされた超伝導性のテープを、基板ホルダを通して、かつレティクル下で移送させた後に、プロセスはステップ409でマスクされた超伝導性テープをレティクルを通って向けられた放射に露出させてパターン化された超伝導性テープを形成することで継続される。特定の実施形態によれば、放射は、マスクされた超伝導性テープの部分が放射に露出され、かつマスクされた超伝導性テープの他の部分が放射に露出されないように前記レティクル内のあるパターンを通るように向けられ得る。このようなプロセスは、放射に露出されたマスクされたテープ部分の硬さを、放射に露出されなかった部分に比較しより軟かくする、のように変更することを可能とする。
【0043】
一般に、レティクルを通るように向けられる放射は特定の波長のものである。適切な波長は、一般に約50ナノメーターより小さい放射波長を含む。1つの実施形態において、放射はより短い波長を持ち、これによりそれは、代表的に約400ナノメーターより小さい、あるいは約350ナノメーターよりさえ小さいそれらの波長を含み、紫外、又は深紫外波長と言われる。
【0044】
再び、前記テープの部分を放射に露出するプロセスをさらに図解する図8を簡単に参照して、レティクル801はパターン化された部分803を含み、これは、放射がそれを通って向けられるとき、特定のパターンを超伝導性テープ805の表面上に投射し、これによりマスクテープをパターン化する。一般に、パターン化された部分803は、分離したフィラメントを持つ超伝導性テープの形成を可能とするパターンを含む。すなわち、1つの実施形態において、パターン化された部分803は、もし同じでなくても多層フィラメント超伝導性テープ上に形成されるフィラメントの最終パターンと類似したパターンよりなる。基板ホルダ700上に横たわるレティクル801の結合は、連続的なリールツーリールプロセスを可能とし、かつより特定的には超伝導性テープセグメントの長さのほとんどに沿って伸びるフィラメントの形成を可能とする。1つの特定的な実施形態においては、基板ホルダ700とレティクル801との結合は、超伝導性テープセグメントの全長に沿ってギャップなしで伸びるフィラメントを持つ多層フィラメント超伝導性テープの形成を可能とする。
【0045】
図4で与えられたプロセスに戻って、ステップ409でパターン化された超伝導性テープを形成した後に、プロセスはステップ411でマスクテープの部分及びHTSテープの部分を研磨剤粒子を用いて除去して多層フィラメント超伝導性テープを形成することで継続される。1つの実施形態によれば、このようなプロセスは研磨剤粒子を用いることを含み、かつより特定的にはパターン化された超伝導性テープの表面を高速に加速された研磨剤粒子で高圧で研磨することを含み、ここで、放射に露出されたマスクテープの部分は、前記マスクテープのより硬くかつ研磨剤粒子を跳ね返す部分と反対により柔らかくなり、下にあるHTS層の部分とともに除去される。このようなプロセスはリールツーリールプロセスを用いて完了することができ、そこでは、パターン化された超伝導性テープはフィードリールから研磨ゾーンを通って供給され、該研磨ゾーンでは、高圧下の研磨剤粒子はパターン化された超伝導性テープの表面に向けられてマスクテープの部分およびその下にあるHTS層の部分を除去する。テープを研磨ゾーンを通って移送させた後に、超伝導性テープは巻き取りスプール上に集められる。
【0046】
研磨剤粒子は、有機材料、たとえば酸化物、窒化物、ボロン化物、又はそれらの任意の結合等を含む。1つの特定の実施形態において、適切な研磨剤粒子は、シリカ、アルミナ、シリコンカーバイド、ダイヤモンド、キュービックボロンナイトライド、又はそれらの任意の結合を含む。1つの特定の実施形態において、研磨剤粒子は、シリカ、又はアルミナを含み得る。
【0047】
平均粒子サイズは、リールツーリールプロセスを用いたフィラメントのパターニングを可能とするのに適切である。したがって、1つの実施形態において、研磨剤粒子は100ミクロンより大きくない平均粒子サイズを持つ。もう1つの実施形態において、研磨剤粒子はより小さく、例えば、約75ミクロンより大きくない、約50ミクロンより大きくない、約25ミクロンより大きくない、あるいはさらに、約10ミクロンより大きくない等、である。特定の実施形態によれば、研磨剤粒子の粒子サイズは、約1ミクロンと約75ミクロンの間の範囲内にあり、かつより特定的には、約5ミクロンと約50ミクロンとの間の範囲内にある。
【0048】
マスクテープの部分、及びHTSテープの部分を研磨剤粒子を用いて除去して分離したフィラメントを有する多層フィラメント超伝導性テープを形成した後に、マスクテープの部分はまだ前記研磨剤粒子により除去されていないテープの部分の上に横たわり得る。したがって、プロセスはさらに、マスクテープのそれらの部分を、それらを洗浄剤に露出することによって除去することを含む。適切な洗浄剤は無機または有機材料を含む。1つの特定の実施形態において、洗浄剤は水溶性ベースの溶液である。より特定的な実施形態において、洗浄剤は脱イオン化水を含む。1つの特定の実施形態において、多層フィラメント超伝導性テープを洗浄するプロセスは、該多層フィラメント超伝導性テープをリールツーリールプロセスで浴槽を通して移送させることを含む。このような浴槽は、多層フィラメント超伝導性テープを熱に露出させて前記HTSフィラメント上に横たわるマスクテープの部分を除去することを含む。もう1つの実施形態においては、多層フィラメント超伝導性テープを洗浄するプロセスは、さらに該多層フィラメント超伝導性テープの上表面を洗浄剤でスプレーすることを含み、さらにまた、超音波振動による等、前記多層フィラメント超伝導性テープをかくはんすることを含む。
【0049】
図5は1つの実施形態により多層フィラメント超伝導性テープを形成するためのプロセスを含む。図5に示されるプロセスのある部分は、図4のプロセスにしたがって以前に記述したプロセスと同様である。特にステップ501、503、及び505は、図4で記述されたプロセスと実質的に同じである。該プロセスのステップ507は、第1の登録マークを有するマスクされた超伝導性テープを第2の登録マークを有するレティクル下で移送することを含む。この特定の実施形態においては、マスクされた超伝導性テープは登録マークを含み、したがって、このようなプロセスは基板ホルダを使用しない。
【0050】
図9を簡単に参照して、登録マークを有するマスクされた超伝導性テープ、及び対応する登録マークを有するマスクされた超伝導性テープの上に横たわるレティクルの斜視図が与えられる。図示されるように、マスクされた超伝導性テープ901はテープの長さに沿って空間を空けて配置された登録マーク903及び904を含む。さらにレティクル905は登録マーク903及び904とそれぞれ対応し、かつこれと整列する登録マーク906及び907を含む。登録マーク903及び904の登録マーク906及び907との整列は、マスクされた超伝導性テープ901のレティクル905との整列を可能とし、かつそこにおいてマスクテープの効率的なかつ有効なパターニングを可能にする。さらに、登録マーク903及び904のタイプは図7及び8にしたがって以前に記述したものと同じでよい。
【0051】
さらに図9に図示されるように、マスクされた超伝導性テープは登録マーク903及び904を含むためのマスクされた超伝導性テープ901の長さに沿った部分909及び911を含む。1つの実施形態において、部分909及び911はマスクされた超伝導性テープのセグメントを含み、そこではマスクされたテープは超伝導性テープセグメントの上には横たわらない。もう1つの実施形態において、部分909及び911はマスクされた超伝導性テープのセグメントを含み、そこでは、部分909及び911が最終的に形成される多層フィラメント超伝導性テープ内のフィラメント間のギャップに対応するように、該マスクテープ下にはHTS層は存在しない。前記部分909及び911は、マスクされた超伝導性テープ901のレティクルとの整列を登録マーク903及び904を介して可能とするものであり、かつ最終的に形成される多層フィラメント超伝導性テープ内の中間領域910内に形成されるフィラメント間のギャップの形成を可能とするものである。
【0052】
まだ図9を参照して、登録マーク903及び904を有するマスクされた超伝導性テープ901を移送させるプロセスは、リールツーリールプロセス内で完了することができる。1つの特定の実施形態において、リールツーリールプロセスはステッピングプロセスを含み、そこでは、リールはある距離だけ移送されたのち停止して超伝導性テープ901の登録マーク903及び904をレティクル905の登録マーク906及び907と整列させ、かつその後、マスクされた超伝導性テープ901の中間部分910を放射に露出させる。1つの部分が放射に露出された後に、テープは再びある距離だけ移送されて停止し、かつマスクされた超伝導性テープ901の長さに沿った異なる登録マークが再びレティクル905の登録マーク906及び907と整列し、そして露光プロセスが繰り返される。マスクされた超伝導性テープ901上の登録マーク903及び904の登録マーク906及び907との整列の方法は図7及び8により上記で記述した方法と同一である。
【0053】
再び図5を参照して、登録マスクを有するマスクされた超伝導性テープをレティクル下で移送させた後に、プロセスは図4にしたがって記述されたのと同じ態様で継続される。特に、プロセスは継続され、そこでは、マスクされた超伝導性テープの部分をレティクルを通るように向けられた放射に露出させてステップ509で与えられるようなパターン化された超伝導性テープを形成し、かつさらに、該マスクテープの部分、及び該マスクテープの部分の下にあるHTS層の部分を研磨剤を用いて除去してステップ511で与えられるような多層フィラメント超伝導性テープを形成する。
【0054】
図6は1つの実施形態にしたがってリールツーリールプロセスで多層フィラメント超伝導性テープを製造する方法を図示する。該プロセスは、ステップ601で印刷可能なテープ材料をフィードリールからプリンタを介して移送し、かつその表面上にパターンを印刷して印刷されたテープを形成することで始まる。1つの実施形態によれば、印刷可能なテープ材料は、放射の特定の波長に対して透明である、又は実質的に透明である長尺のテープ材料を含み得る。1つの特定の実施形態においては、印刷可能なテープ材料は有機材料を含む。もう1つの実施形態においては、印刷可能なテープ材料はポリエステル及びポリエチレン、又はそれらの結合等の有機材料を含む。より特定的な実施形態では、印刷可能なテープ材料は2軸方向付けされたポリエチレンテレフタレートポリエステル膜、Mylar (登録商標)ともいわれる、よりなる。
【0055】
印刷可能なテープ材料はリールツーリールプロセスで移送し得るので、印刷可能なテープ材料は一般に、超伝導性テープ材料に類似したそれらの寸法を持つ。1つの実施形態によれば、印刷可能なテープ材料は約10:1より小さくない寸法比を持つ。もう1つの実施形態においては、印刷可能なテープ材料は100:1より小さくない、あるいは1000:1よりさえ小さくない寸法比を持つ。
【0056】
上記したように、印刷可能なテープ材料はある波長の放射に対して実質的に透明であり得る。1つの特定の実施形態において、印刷可能なテープ材料は約500nmより小さい、かつより特定的には約400nmより小さい波長を持つ放射である紫外放射に対して透明である。さらに、印刷可能なテープ材料は、放射をしてその厚みを通って伝播することを許す適切な平均厚さを持つ。1つの特定の実施形態において、印刷可能なテープ材料は約5mmより大きくない平均厚さを持つ。他の実施形態において、印刷可能なテープ材料はより薄く、たとえばその平均厚さが約3mmより大きくない、あるいは約1mmよりさえ大きくない。1つの特定の実施形態において、印刷可能なテープ材料は約0.05mmと約0.25mmの間の範囲内の平均厚さを持つ。
【0057】
印刷可能なテープ材料の表面上にパターンを印刷するプロセスを参照して、一般に印刷可能なテープ材料はリールツーリールプロセスでプリンタを通して移送されて印刷されたテープを形成する。上記表面上のパターンは、最終多層フィラメント超伝導性テープ上に形成されるべきフィラメントを表すものであり得る。すなわち、該パターンは、相互に空間を空けて配置されたフィラメントに類似する、かつフィラメントグループ間のギャップを含む、分離したイメージを持つフィラメントのイメージを含み得る。
【0058】
ステップ601で印刷されたテープを形成したのち、プロセスはステップ603で、印刷されたテープを放射感受性テープ材料と結合させてリールツーリールプロセスにて印刷されたマスクテープを形成することで継続される。印刷されたテープは第1のフィードリールから巻き戻され、放射感受性材料は第2のリールから巻き戻され、かつ2つのテープは単一の巻き取りリール上に結合され、集められる。一般に、この実施形態で使用される放射感受性テープ材料は図4および5で記述された実施形態で用いられたのと同じ材料である。すなわち、放射感受性テープ材料は、一般に樹脂等の有機材料を含む。さらに、該放射感受性テープ材料は、放射の特定の波長に露出されたとき、柔らかくなる材料を含む。
【0059】
印刷されたテープを放射感受性テープ材料と結合させるプロセスは、積層プロセスを含む。積層プロセスは、図4を参照して以前に記述したのと類似したプロセスを含む。このように、積層プロセスは各テープを一緒にロールすることを含み、これはさらに、圧力、熱、又は湿気、及びそれらの任意の結合を含む。
【0060】
1つの特定の実施形態において、印刷されたテープは、該印刷されたテープの表面上のパターンが放射感受性テープ材料の表面と接触しないように、該放射感受性テープ材料と結合され得る。あるいは、もう1つの実施形態においては、印刷されたテープは、該印刷されたテープの表面上のパターンが放射感受性テープ材料の主表面と接触するように、該放射感受性テープ材料と結合され得る。
【0061】
印刷されたマスクテープをステップ603で形成した後に、プロセスはステップ605で、印刷されたマスクされたテープを放射ゾーンを通って移送し、かつ印刷されたマスクテープの部分を放射に露出してパターン化されたマスクテープを形成することで継続される。したがって、印刷されたマスクテープ上のパターンは、特に該パターンのより暗い部分は放射をブロックすることができ、一方、印刷されていない部分は、放射がそれを通ることを許し、下にある放射感受性テープ材料を現像せしめる。以前に記述されたように、放射に露出された印刷されたマスクされたテープの部分、特に放射感受性テープ材料よりなる印刷されたマスクテープのそれらの部分は放射に露出されることにより、より柔らかくなり得る。
【0062】
ステップ605でパターン化されたマスクされたテープを形成した後に、プロセスはステップ607で、印刷されたテープをパターン化されたマスクされたテープより除去することで継続される。1つの特定の実施形態においては、印刷されたマスクされたテープの部分を放射に露出した後に、印刷されたテープを放射感受性テープ材料から分離することができる。1つの実施形態においては、インターリーフストリッパを用いてパターンマスクされたテープから印刷されたテープを除去することができる。
【0063】
ステップ609でパターン化されたマスクされたテープから印刷されたテープを除去したのちに、プロセスはステップ609で継続され、ここでは、パターン化されたマスクされたテープを超伝導性のマスクされたテープとリールリールプロセスで結合する。一般に、超伝導性テープは基板、基板の上に横たわるバッファ層、及びバッファ層の上に横たわる等角のHTS層を含む。1つの実施形態においては、超伝導性のテープはまた、キャップ層又は安定化層、あるいはその両者を含む。パターン化されたマスクされたテープを超伝導性テープと結合するには、ここで記述したような積層プロセスを含めばよい。
【0064】
ステップ609でパターン化されたマスクテープを超伝導性テープと結合した後に、プロセスはステップ611で、図4を用いて以前に記述したように、パターン化されたマスクされたテープの部分、及びHTS層の部分を研磨剤を用いて除去して多層フィラメント超伝導性テープを形成することで継続される。このように、プロセスは結合されたパターン化されたマスクされたテープおよび超伝導性テープを研磨領域を通って移送させることを含み、そこでは、研磨粒子がパターン化されたマスクされたテープおよび超伝導性テープの表面に高圧で向けられてパターン化されたマスクされたテープおよびHTS層の部分を除去する。
【0065】
図10は図6で記述されたプロセスに従い、多層フィラメント超伝導性物品をリールツーリールプロセスで形成するプロセスの図的表現を与える一連の図示である。図示されるように、プロセスはステップ1001で、その表面上に印刷されたパターンを持つ印刷されたテープ1002を放射感受性テープ材料1004と結合することで始まる。印刷されたテープ1002は、その表面上にテープの長さに沿って伸び、かつ水平方向にある空間距離だけ間隔を空けて配置された、かつ縦方向には該テープの長さに沿って伸びるギャップを含むHTSフィラメントに類似するパターンを含む。
【0066】
印刷されたテープ1002を放射感受性テープ材料1004と結合して印刷されたマスクされたテープを形成した後に、プロセスはステップ1003で継続され、そこでは、印刷されたマスクされたテープ1006は放射ゾーン1008を通って移送され、そこで、放射は印刷されたマスクされたテープ1006の表面に向けられて放射感受性テープ材料1004の部分を露出させる。ここで記述されるように、このようなプロセスは、放射感受性テープ材料1004の放射に露出された部分を柔らかくする。
【0067】
ステップ1003で印刷されたマスクされたテープ1006の部分を放射に露出させた後に、プロセスはステップ1005で継続され、そこでは、パターン化されたマスクされたテープ1010は超伝導性テープ1012と結合される。ここで記述されるように、テープを放射に露出させた後に、上に横たわる印刷されたテープ1002を除去して、より柔らかい部分1022に比較してより硬い部分1020を含むパターン化されたマスクされたテープ1010(すなわち、放射感受性テープ材料)をその背後に残す。超伝導性テープ1012は基板1018、基板の上に横たわるバッファ層1016、及びバッファ層の上に横たわるHTS層1014を含み得る。1つの実施形態によれば、超伝導性テープ1012はさらにHTS層1014の上に横たわるキャップ層を含む。もう1つの実施形態においては、超伝導性テープ1012はさらにHTS層1014の上に横たわる安定化層を含む。
【0068】
ステップ1005でパターン化されたマスクされたテープ1010を超伝導性テープ1012と結合させた後に、プロセスはステップ1007で継続し、そこでは、パターン化されたマスクされたテープ1010及びHTS層1012の部分は研磨剤粒子を用いて除去される。その上に横たわるパターン化されたマスクされたテープ1010を持つ超伝導性テープ1012は、研磨剤粒子1026を圧力下でパターン化されたマスクされたテープ1010の表面に向かわせる研磨ゾーン1024を通って移送される。このようなプロセスは、パターン化されたマスクされたテープ1010のある部分ばかりでなく、パターン化されたマスクされたテープ1010のより柔らかい部分1022の下にあるHTS層1014の部分の除去を可能にする。したがって、テープを研磨ゾーン1024を通って移送させた後に、HTS層1014の部分、及びパターン化されたマスクされたテープの部分1020はまだ残っており、これはフィラメントに似ている。
【0069】
プロセスはステップ1009で継続され、そこでは、パターン化されたマスクされたテープ1010の部分を除去してバッファ層1016の上に横たわるフィラメント1028を形成した後に、パターン化されたマスクされたテープの残っている部分1020が除去される。したがって、フィラメント1028の上に横たわるパターン化されたマスクされたテープ1020の部分を除去するプロセスは、図4にしたがってここで述べたようなリンスを含み得る。このプロセスの後に、キャップ層、及び/又は安定化層がフィラメント1028上に設けられる。図10はHTS層のみよりなるフィラメントを有する多層フィラメント超伝導性物品の形成を図示するが、他の多層フィラメント超伝導性物品も同じプロセスで形成でき、かつバッファ層、キャップ層、安定化層の部分、又はそれらの任意の結合を含むフィラメントを含み得る。
【0070】
このように、ここでの実施形態による多層フィラメント超伝導性物品の形成は改善された電流容量を持つ超伝導性物品の形成を可能とする。ここで図解されるように、ここで形成される多層フィラメント超伝導性物品は少なくとも約0.6の臨界電流保持比を持つ。ある実施形態においては、この比はより大きく、たとえば、少なくとも約0.65、少なくとも約0.70、あるいは少なくとも約0.75でさえある。1つの特定の実施形態においては、臨界電流保持比は約0.60と約0.90の間の範囲内にある。
【0071】
図11を参照して、故障電流制限器(FCL)装置1100の上面図が与えられる。FCL装置1100はHTS材料よりなるフィラメントを持つ多層フィラメント超伝導性テープセグメント1101を含み、該フィラメントは該テープセグメントの長さに沿って伸び、かつここで記述された実施形態の1つにしたがって形成される。一般に、超伝導性テープセグメント1101は約0.1mより小さくない長さを持ち、たとえば、約5mより小さくなく、あるいは約10mより小さくなく、あるいは約100mよりさえ小さくない。代表的に、超伝導性テープセグメント1101は約1kmより大きくない長さを持つ。
【0072】
1つの実施形態において、多層フィラメント超伝導性テープセグメント1101は、該多層フィラメント超伝導性テープセグメント1101のパスが実質的に非誘導性であるようにベース1102上にて懸架され、かつコンタクト1103、1104、1105、1106、1107,1108、1109、1110、1111(1103−1111)の回りに巻きつけられている。一般に、多層フィラメント超伝導性テープセグメント1101はコンタクト1103−1111の間に懸架されて冷却媒体への露出を可能にしている。したがって、1つの実施形態においては、多層フィラメント超伝導性テープセグメント1101の全外部表面領域の約50%より小さくない部分が冷却媒体に露出されている。もう1つの実施形態においては、超伝導性テープの全外部表面領域の約75%より小さくない部分、たとえば、約90%より小さくない部分、あるいは約98%よりさえ小さくない部分が冷却媒体に露出されている。
【0073】
特定の図示された実施形態においては、多層フィラメント超伝導性テープセグメント1101はベース1102上でコンタクト間に懸架されている。特定の実施形態によれば、該多層フィラメント超伝導性テープセグメント1101はベース上を覆ってその側部上に懸架され、テープセグメントの上面及び底面に正接となる平面がベース1102の主平面に垂直に、又は実質的に垂直になるようになっている。1つの実施形態によれば、多層フィラメント超伝導性テープセグメント1101の全長の約75%より少なくない部分がベース1102上に懸架されている。もう1つの実施形態においては、テープセグメントの全長の約90%より小さくない部分が、また他の実施形態においては、多層フィラメント超伝導性テープセグメント1101の本質的に全長が、ベース1102上で懸架されている。
【0074】
多層フィラメント超伝導性テープセグメント1101は分路回路1121に電気的に結合され得る。したがって、FCL装置はメアンダーパスの全距離をスパンする単一の、又は複数の分路回路を含み得る。図11に示されるように、分路回路1121は電気的コンタクトをすることなく多くのコンタクトをスパンする。1つの実施形態によれば、分路回路1121は少なくとも1つのインピーダンス要素(たとえば、抵抗及び/又はインダクタ)を、かつより代表的には、メアンダーパスの距離をスパンする複数のインピーダンス要素を含み得る。1つの実施形態においては、複数のインピーダンス要素は互いに直列に接続され得る。直列に接続されるインピーダンス要素の数は一般に約2より大きく、たとえば、約5より小さくなく、あるいは約10個のインピーダンス要素より少なくない。
【0075】
一般に、インピーダンス要素は、分路回路がスパンする多層フィラメント超伝導性テープセグメントの長さに基づく特定のインピーダンスを持つように選択されて、各インピーダンス要素は、多層フィラメント超伝導性テープセグメントのある長さを保護するようにしている。1つの実施形態においては、分路回路は、保護されるべきテープのメータあたり約0.1ミリオームより小さくないインピーダンスを持つインピーダンス要素を含む。他の実施形態は、保護されるべきテープの長さ当たりのより大きいインピーダンスを利用し、たとえば、インピーダンス要素は、保護されるべきテープの長さ当たり約1ミリオームより小さくない、あるいは保護されるべきテープの長さ当たり約5ミリオームより小さくない、あるいは保護されるべきテープの長さ当たり約10ミリオームよりさえ小さくない、かつ保護されるべきテープの長さ当たり約1.0オームまでの値を持つ。
【0076】
1つの特定の実施形態によれば、多層フィラメント超伝導性テープセグメント1102は、そこでは多層フィラメント超伝導性テープセグメント1101がチルトされ、または回転される回転領域1117及び1119を持つ。図示された実施形態によれば、回転領域1117および1119は特に超伝導性テープセグメント401の直線部分に沿って局在化されている。このような回転領域1117及び1119は超伝導性テープセグメント401の電気的コンタクト1113及び1115への結合を可能とし、これは今度は、超伝導性テープセグメント1101を分路回路1121に結合させる。顕著には、回転領域1117及び1119内で多層フィラメント超伝導性テープセグメント1101は回転せられて、これにより超伝導性テープセグメント401の少なくとも一部がベース1102に平行であり、かつ電気的コンタクト1113及び1115のコンタクト表面に対してフラットであるようにしている。このようなFCL装置が、直列に結合されかつ動作する、あるいは代替的に、並列構成で動作できる複数の多層フィラメント超伝導性物品を含み得ることは理解されるであろう。
【0077】
図12はFCL装置において使用される多層フィラメント超伝導性テープセグメント1201の一部の断面図である。特に、多層フィラメント超伝導性テープセグメント1201は基板1203、及び基板1203の上に横たわるフィラメント1202、1203、1204、及び1205(1202−1205)を含む。1つの特定の実施形態において、多層フィラメント超伝導性テープセグメント1201は、特定の層がテープセグメントの長さに沿って伸びるフィラメント1202−1205内に含まれるように形成されている。1つの実施形態においては、フィラメント1202−1205はバッファ層1207、HTS層1209、及びキャップ層1211を含む。1つの実施形態においては、多層フィラメント超伝導性テープセグメント1201はさらにすべての層の上に横たわる光学的安定化層1213を含む。代表的に、このような多層フィラメント超伝導性テープセグメント1201は、通常の化学エッチングプロセスを用いてこれを形成するのは、異なる層のおのおのを選択的にエッチングするために異なる化学物質を用いなければならないので困難であろう。しかしながら、この構成を有する多層フィラメント超伝導性テープセグメントは、ここで記述されたプロセスを用いて容易に形成される。
【0078】

テーブル1を参照して、ここで与えられた実施形態にしたがって形成された多層フィラメント超伝導性テープセグメントの、化学エッチングプロセスを用いて形成された従来の多層フィラメント超伝導性テープセグメントと対比される改善された電流保持能力を図解する。サンプル1−6はマスキング、パターニング、及び研磨除去技術を含む、ここで記述されたプロセスを介して形成されたサンプルを含む。サンプル1−5は、HTS層よりなるフィラメント及び、Inconel 基板及びMgO を含む2軸テキスチャされたバッファ層の上に横たわる安定化剤を含む多層フィラメント超伝導性テープセグメントである。
【0079】
標準サンプル1−3は0.5モルクエン酸の使用を含む標準化学エッチングプロセスを用いて形成された。標準サンプル1−3はInconel基板、その上に横たわる等角2軸テキスチャバッファ層、及びフィラメントを形成するようパターン化されたHTS層及び安定化層を含む。テーブル1で与えられたサンプルのおのおのにおいて、フィラメントは33cm長さ、600ミクロン幅、及び、水平方向の分離のための400ミクロンのスペース幅を有して形成されている。ギャップ長は2.5mmである。すべてのサンプルのテープセグメントは1m長、かつ4mm幅である。

【0080】
テーブル1はテープセグメントの、フィラメントの形成前、及びフィラメントの形成後の臨界電流(Ic)値((Ic Before )、及び(Ic After ))を与える。臨界電流(Ic) はHTSテープの電流運搬能力、すなわち超伝導性物品の重要な特徴、の示しである。より特定的には、テーブル1は臨界電流保持比に関するデータを与え、これは多層フィラメント構造を形成するのに貢献した、失われた電流運搬能力のパーセントを示す。テーブル1に示されるように、ここで記述された実施形態により形成されたサンプル1−5のおのおのは、化学エッチングプロセスを用いて形成された標準サンプル(例えば、Std.1-3 )に対比してより大きい臨界電流保持比を証明した。
【0081】
より特定的には、サンプル1−5のおのおのは少なくとも0.60(すなわち、40%)の臨界電流保持比を証明した、これは、化学エッチングプロセスにより形成された最善の多層フィラメントHTSサンプル(すなわち、サンプルStd.1 )より約30%大きく、かつこれにより、少なくとも約30%より大きい電流を扱うことのできる多層フィラメント超伝導性テープである。サンプル1−6のすべてはもし少なくとも0.65でなくとも、少なくとも0.60の臨界電流保持比を証明した。
【0082】
さらに、標準サンプル1−5のおのおのは、フィラメントの形成の後により大きい絶対電流運搬能力を証明した。フィラメントの形成の後の標準サンプルについての最も大きい電流値は62Aであり、一方サンプル1−5の中で最も低い電流値は88Aの電流を持つサンプル2であった。したがって、サンプル1−5はすべての標準サンプルと対比される形成プロセス後の改善された絶対電流容量値を証明する。
【0083】
標準サンプルのおのおのはサンプル1−5と、サンプルのすべてはほとんど同じ程度のACロスの低減を示したので、十分な目的を持って比較された。ACロスの低減は長い長さの導体においては電荷の移動(すなわち、電流)により生ずる干渉する磁界による電力損失を最小化するのに望ましい。このように、サンプル1−5はパターニング後の同じ程度のACロス低減を持ってのより大きい電流運搬能力を証明し、一方、標準サンプルはより小さい電流運搬能力を証明する。
【0084】
さらに、サンプル1−5はパターン化されていない超伝導性物品よりより大きいACロス低減を持つ。図13を参照して、制御サンプル、及びテーブル1で与えられたサンプル1−5についての、電力(W/m)対 磁界(B)を示すプロットが与えられる。特に、図13はサンプルに供給される電力のある範囲にわたっての該サンプルのおのおのについて生成される磁界を図示する。制御サンプルについてのプロット1301は層の各々内に同じ材料を含むパターン化されていない超伝導性テープである。サンプル1−5についてのプロット1303は増大する電力の範囲を通して、かつしたがって、より大きいACロス低減の範囲を通して生成されるより低い磁界を証明する、なぜなら、該サンプルを通して与えられる任意のレベルの電力につきより低い磁界が生成され、かつこれによりACロスが低減されるからである。
【0085】
テーブル1及び図13で与えられる情報は、ここでの実施形態にしたがって形成される多層フィラメント超伝導性テープが、従来の多層フィラメント超伝導性物品、及びパターン化されていない超伝導性物品に対して優れていることを図示する。ここで記述された多層フィラメント超伝導性テープは、従来の超伝導性テープに比較し、より大きい臨界電流保持比、及び改善されたACロス低減を与える。なんら特定の理論に結合することを期待していないが、発明者らは、ここで与えられるプロセスは化学エッチングプロセスに関して起こるアンダーカット現象を低減させることに気づく。顕著には、アンダーカッティングは、層の部分を除去するために化学エッチを用いるときには、ウェット化学エッチャントは高い水平エッチングを生ずる材料、及びフィラメントにおけるHTS層に対するダメージを異方的に除去するので、広く行き渡っている。
【0086】
さらに、現在開示された多層フィラメント超伝導性物品をFCL装置内へ組み込むと、FCL特性の改善を生じる。図14−17はFCL装置内で用いられる従来の多層フィラメント超伝導性物品の機能を、ここで記述されたプロセスにしたがってFCL装置内で形成された多層フィラメント超伝導性物品と比較している。
【0087】
図14は従来のプロセスにより形成された多層フィラメント超伝導性物品についての、故障電流の印加の間の電流対時間のプロットを含む。比較により、図15はここで開示されたプロセスにしたがって形成された多層フィラメント超伝導性物品についての、故障電流の印加、及び続いての回復の間の電流対時間のプロットを含む。図14の従来のサンプルは、フィラメントを持たず、かつ、Inconel 基板、2軸テキスチャバッファ層、HTS材料層、及びキャップ材料層を含む、線を付けられていない超伝導性物品である。多層フィラメント超伝導性物品はまた、フィラメントの上に横たわる等角の安定化剤層を含んでいた。図15の非従来のサンプルはここで記述された実施形態にしたがって形成され、顕著には、多層フィラメント超伝導性設計を含み、かつInconel 基板、及び基板の上に横たわるフィラメントの一般構造を持つ、ここで、各フィラメントは2軸テキスチャされたバッファ層、HTS層、及びキャップ材料を含む。該フィラメントは800ミクロン幅、33ミクロン長であり、かつ水平方向に200ミクロンの空間間隔を置いて配置されている。
【0088】
77Kで液体窒素浴槽内で行われたテストの間に、図14の従来のサンプルは168Aの電流を持ち、かつ失敗時の負荷電流は約1600Aであり、一方、図15の非従来のサンプルは141Aの電流を持ち、失敗時の負荷電流は3540Aであった。すべてのサンプルは2.5ミリオーム分路コイルに接続されていた。図14と15を比較することにより図解されるように、従来サンプルの応答時間(すなわち、完全回復に戻るための時間)は故障電流の印加の後約80秒であり、一方、非従来のサンプルの応答時間は故障電流の印加の後約10秒である。非従来のサンプルは比較可能な負荷電流の持つ大きさの2倍以上の大きさの故障電流にさらされるとき、優秀な応答時間を持つ。
【0089】
図16及び17を参照して、図16は従来のプロセスにしたがって形成される線をつけられていない(すなわち、フィラメントを持たない)超伝導性物品についての故障電流の印加の間の電圧対時間のプロットを含む。図17はここで記述されたプロセスにしたがって形成された多層フィラメント超伝導性物品についての故障電流の印加の間の電圧対時間のプロットを含む。サンプルは図14及び15の説明に関して上記で記述されたのと同じ構造を持っていた。再び、図16と17の比較において、図17の非従来のサンプルは大きさが2倍の故障電流にさらされたときにも優秀な応答時間を証明する。
【0090】
したがって、ここで記述された多層フィラメント超伝導性物品、装置、及びプロセスは従来技術からの旅立ちを証明する。ここでの実施形態は、改善された長い長さの多層フィラメント超伝導性物品を形成するのに適した、リールツーリールプロセス、多数テープ、マスキングプロセス、パターニングプロセス、露出技術、及び特定の研磨技術を含む要素の結合を用いて多層フィラメント超伝導性物品を形成するプロセスを記述している。このようなプロセスは、登録マークの特徴と結合した基板ホルダ、レティクルを含む、特定の装置の使用によりさらに向上される。このようなプロセスと装置の結合は、低い水平方向フィラメント間不整列、改善されたACロス低減、及び改善された電流運搬能力を持つ正確に整列されたフィラメントを持つ多層フィラメント超伝導性物品の形成を可能とする。さらに、ここで与えられたプロセスは、異なる材料層を含むフィラメントを持つ多層フィラメント超伝導性物品を形成するための、多数の化学エッチング及び/又は異なる化学エッチングの必要を除去する。ここで開示された同じ形成プロセスの任意の1つは異なる材料の層を含むフィラメントを持つ多層フィラメント超伝導性物品を形成するために用いることができる。
【0091】
ある文献、例えば米国特許出願2007/0197395、及び米国特許出願2006/0040830は、研磨ミリングまたは砂研磨を用いた多層フィラメント超伝導性酸化物膜のパターニングの可能性を広く認識しているが、このような文献は、特に化学パターニング技術に向けられている。かつ実際、中間膜を酸化物超伝導体に変換する前に中間膜をパターニングしている。さらに、このような文献、特に米国特許出願2007/0197395は、HTS材料がより柔らかい中間膜に比較して研磨技術により除去するにはより硬く、あるいはHTS層を形成した後には、それは一般に脆弱な酸化物層であるのでダメージとなることを明確に開示している。さらに、一般の過ぎ去った文献は研磨剤の使用に向けてなされているが、これらの文献はいずれもここで記述されたリールツーリールプロセス、リールツーリール動作を可能とする装置、特定のマスキング技術、または研磨剤研磨技術の特徴の結合を開示していない。さらには、前記文献のいずれも改善された臨界電流保持、またはACロス低減を持つ長尺多層フィラメント超伝導性物品の形成を証明しておらず、FCL物品において使用されたときの応答時間の改善を言及していない。
【0092】
発明は、特定の実施形態の文脈で図示され、記述されたが、種々の修正および置換が本発明の範囲からどのようにも離れることなくなされることができるので、示された詳細に限定されるものではない。例えば、付加的な、あるいは等価な置換を与えることができ、かつ、付加的な、あるいは等価な製造ステップを用いることができる。このように、ここで記述された発明の更なる修正および等価物は普通の実験以上のものを行わなくても当業者に起こることであり、かつ、すべてのこのような修正及び等価物は、以下の請求項により定義される発明の範囲内にあるものと信じられる。

【特許請求の範囲】
【請求項1】
超伝導性物品であって、以下のものからなる:
以下のものからなる多層フィラメント超伝導性テープセグメント:
基板;
前記基板の上に横たわるバッファ層; 及び
前記バッファ層の上に横たわり、かつ前記基板の長さに沿って伸びる超伝導性(HTS)材料よりなるフィラメントであって、隣接するフィラメントから水平方向にある空間だけ空けられ、かつ縦方向にあるギャップだけ間隔を空けられており、ここで、該フィラメントは約100ミクロンより大きくない水平方向フィラメント間不整列を持つ。
【請求項2】
請求項1記載の超伝導性物品であって、前記水平方向フィラメント間不整列は約50ミクロンより大きくない。
【請求項3】
請求項1記載の超伝導性物品であって、前記多層フィラメント超伝導性テープセグメントは少なくとも約5mの長さを持つ。
【請求項4】
請求項1記載の超伝導性物品であって、前記HTSフィラメントは少なくとも約100ミクロンの連続長さを持つ。
【請求項5】
請求項1記載の超伝導性物品であって、前記HTSフィラメントは前記基板の長さに沿って伸びるギャップにより分離されており、該ギャップは前記HTSフィラメントの長さより大きくない長さを持つ。
【請求項6】
請求項5記載の超伝導性物品であって、前記ギャップは約3mmより大きくない長さを持つ。
【請求項7】
請求項1記載の超伝導性物品であって、前記空間は約1mmより大きくない。
【請求項8】
請求項1記載の超伝導性物品であって、前記バッファ層は前記膜の面内、及び面外の両方で2軸整列された結晶を持つ2軸整列テキスチャ膜よりなる。
【請求項9】
請求項1記載の超伝導性物品であって、前記多層フィラメント超伝導性テープセグメントは、以下のものを備えた故障電流制限器(FCL)装置である:
該多層フィラメント超伝導性テープセグメントに並列に電気的に接続された分路回路。
【請求項10】
以下のものよりなる超伝導性物品:
以下のものよりなる多層フィラメント超伝導性テープセグメント:
基板;
前記基板の上に横たわるバッファ層; 及び
前記バッファ層の上に横たわり、かつ前記基板の長さに沿って伸びる超伝導性(HTS)材料よりなるフィラメントであって、隣接するフィラメントから水平方向にある空間だけ空けられており、ここで、該多層フィラメント超伝導性テープセグメントは、少なくとも約0.6の臨界電流保持比を持つ。
【請求項11】
請求項10記載の超伝導性物品であって、前記臨界電流保持比は少なくとも0.65である。
【請求項12】
多層フィラメント超伝導性テープを形成する方法であって、以下のことよりなる:
リールツーリールプロセスで超伝導性テープを移送させること、
前記超伝導性テープは、以下のものよりなる:
基板;
前記基板の上に横たわるバッファ層; 及び
前記バッファ層の上に横たわるHTS層;
前記超伝導性テープの上に横たわるマスクを形成すること; 及び、
前記マスクの部分及び前記HTS層の部分を研磨粒子を用いて除去して、前記超伝導性テープの長さに沿って伸び、かつ隣接するフィラメントからある空間だけ空けられて水平方向に配置されたHTSフィラメントを持つ超伝導性テープを形成すること。
【請求項13】
請求項12の方法であって、前記マスクを形成することは以下のことよりなる:
マスクテープを、フィードリールから移送すること;
前記超伝導性テープをフィードリールから移送すること; 及び
前記マスクテープを前記超伝導性テープ上に積層して、マスクされた超伝導性テープを形成すること。
【請求項14】
請求項13記載の方法において、さらに以下のことを備える:
前記マスクされた超伝導性テープを第1の登録マスクを有する基板ホルダを通して移送させること; 及び、
前記マスクされた超伝導性テープの部分を第2の登録マスクを有するレティクルを通って向けられる放射に露出させること、ここで、前記第2の登録マスクは前記第1の登録マスクに対応し、かつ整列している。
【請求項15】
請求項13記載の方法において、さらに以下のことを備える:
前記第1の登録マスクを有するマスクされた超伝導性テープを、第2の登録マスクを有するレティクル下にて移送させること; 及び、
前記マスクされた超伝導性テープの部分を前記レティクルを通って向けられた放射に露出させて、パターン化された超伝導性テープを形成すること。
【請求項16】
請求項12の方法において、前記マスクを形成することは以下のことよりなる:
印刷可能なテープ材料をフィードリールからプリンタを通して移送させること; 及び、
前記プリンタ内で前記印刷可能なテープ材料の表面上にパターンを印刷して、プリントされたテープを形成すること。
【請求項17】
請求項16の方法において、前記印刷可能なテープ材料はポリエステルよりなる。
【請求項18】
請求項16に記載の方法であって、さらに以下のことよりなる:
前記印刷可能なテープ材料を第1のフィードリールより移送させること;
放射感受性テープ材料を第2のフィード材料より移送させること;
前記印刷されたテープと前記放射感受性テープ材料とを結合させて印刷されたテープを形成すること; 及び
前記印刷されたテープを巻き取りリールに移送させること。
【請求項19】
請求項18に記載の方法であって、さらに以下のことよりなる:
前記印刷されたマスクテープをフィードリールから放射ゾーンを通って移送させて、パターン化された放射感受性マスクテープを形成すること;
前記印刷されたテープを前記パターン化された放射感受性マスクテープから除去すること; 及び、
前記パターン化された放射感受性マスクテープを前記超伝導性テープセグメント上に積層すること。
【請求項20】
請求項19に記載の方法であって、さらに以下のことよりなる:
前記パターン化された放射感受性マスクテープの表面を、約75ミクロンより大きくない平均粒子サイズを持つ研磨剤粒子を、圧力下で前記パターン化されたマスクテープの主表面に向けさせて前記パターン化された放射感受性マスクテープの部分、及び前記HTS層の部分を除去することにより研磨して、前記超伝導性テープの長さに沿って伸びるHTSフィラメントを持つ多層フィラメント超伝導性テープを形成すること。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公表番号】特表2011−522380(P2011−522380A)
【公表日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2011−511819(P2011−511819)
【出願日】平成21年5月28日(2009.5.28)
【国際出願番号】PCT/US2009/045482
【国際公開番号】WO2009/155053
【国際公開日】平成21年12月23日(2009.12.23)
【出願人】(505448796)スーパーパワー インコーポレイテッド (18)
【Fターム(参考)】