説明

弾性境界波装置

【課題】増幅度を高めるためにバイアス電圧を高めたとしても半導体において生じた熱を速やかに放散することができ、従って半導体による増幅作用を安定にかつ確実に利用することができる弾性波装置を得る。
【解決手段】圧電基板2と、前記圧電基板2の上に形成されている誘電体層14と、前記圧電基板2と前記誘電体層14との間の境界に形成されているIDT電極3,4と、前記誘電体層14に接するように設けられた半導体層9とを備え、前記圧電基板2と前記誘電体層14との間の境界を伝搬する弾性境界波を利用した弾性境界波装置であって、前記半導体層9は、前記弾性境界波によって発生する電界と、前記半導体層9中のキャリアとが結合するように設けられており、前記半導体層中のキャリアの移動速度が、前記弾性境界波の伝搬速度よりも高い、弾性境界波装置1。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば共振子や帯域フィルタなどに用いられる弾性境界波装置に関する。
【背景技術】
【0002】
従来、共振子や帯域フィルタとして弾性表面波を利用した弾性表面波装置が広く用いられている。弾性表面波装置において弾性表面波を増幅するために、弾性表面波により生じる電界と、半導体中のキャリアとを結合させる方法が知られている。
【0003】
例えば下記の特許文献1には、図21に示す弾性表面波装置1001が開示されている。弾性表面波装置1001では、圧電基板1002上に、くし型入力電極1003,1004が配置されている。くし型入力電極1003とくし型電極1004との間の領域において、圧電基板1002上にスペーサ1005が配置されている。スペーサ1005を介して、圧電基板1002上に半導体1006が固定されている。半導体1006の上面には、出力電極1007が形成されている。ここでは、くし型入力電極1003,1004からの入力電圧により圧電基板1002上において弾性表面波が励振される。この弾性表面波により生じる電界が、半導体1006において生じるキャリアと結合され、弾性表面波が増幅される。
【0004】
他方、下記の特許文献2には、図22に示す弾性表面波装置1011が開示されている。弾性表面波装置1011では、圧電基板1012上に、入力電極1013と、出力電極1014とが形成されている。入力電極1013及び出力電極1014間の弾性表面波伝搬路上において、バッファー層1015が圧電基板1012上に積層されている。バッファー層1015上に半導体層1016が積層されている。入力電極1013からの入力により弾性表面波が励振される。弾性表面波の電界と、半導体層1016に直流電圧を印加することにより生じたキャリアとが結合され、弾性表面波が増幅される。
【0005】
また、下記の非特許文献1にも弾性表面波装置1001や、1011と同様の構造の弾性表面波装置が開示されている。
【0006】
他方、CdSやGaAsなどの圧電性と半導体性の双方の特性を併せ持つ圧電半導体を基板として用いた弾性表面波装置も提案されている。この場合には、圧電半導体からなる基板上に、入力側IDT電極及び出力側IDT電極が形成され、かつ圧電半導体に直流電圧を印加してキャリアを移動させ、該キャリアと入力側IDT電極からの入力により励振された弾性表面波による電界とが結合されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平2−214209号公報
【特許文献2】WO96/25792
【非特許文献】
【0008】
【非特許文献1】「弾性表面波工学」,社団法人電子通信学会、1983年11月15日,pp.214−218
【発明の概要】
【発明が解決しようとする課題】
【0009】
特許文献1に記載の弾性表面波装置において、増幅度を高めるには、圧電基板1002と半導体1006との間の隙間を小さくする必要がある。しかしながら、隙間を小さくした場合、スペーサ1005により隙間を一定に制御することが非常に困難であった。そのため、特性のばらつきが大きくなり、安定な特性の弾性表面波装置1001を量産することはできなかった。また、圧電基板1002に半導体1006をスペーサ1005を介して強固に接合すると、弾性表面波が減衰し、共振特性やフィルタ特性などが大きく劣化するという問題があった。
【0010】
他方、特許文献2に記載の弾性表面波装置1011では、バッファー層1015を介して半導体層1016が圧電基板1012の上面に積層されているため、特性のばらつきは生じ難い。しかしながら、半導体層1016による増幅作用を高めるため、 半導体層1016に高いバイアス電圧を印加すると、半導体層1016における発熱量により半導体層1016の温度が上昇し、増幅作用が飽和するおそれがあった。半導体層1016にバッファー層1015を介して結合されている圧電基板1012の熱伝導率は比較的小さい。そのため、半導体層1016の温度上昇を抑制するには、半導体層1016にヒートシンクなどの放熱部材を結合しなければならなかった。
【0011】
加えて、ヒートシンクを半導体層1016上に設けた場合には、ヒートシンクへの弾性表面波の漏洩や弾性表面波の散乱等により挿入損失が低下しがちであった。その結果、やはり増幅度が小さくなるという問題があった。
【0012】
他方、圧電半導体基板を用いた弾性表面波装置においても、特許文献2に記載の弾性表面波装置の場合と同様に、増幅度を高めようとしてバイアス電圧を高めた場合、圧電半導体基板における発熱量が増大し、同様の問題があった。
【0013】
本発明の目的は、上述した従来技術の欠点を解消し、バイアス電圧を高めたとしても半導体において生じた熱を速やかに放散することができ、従って半導体による増幅作用を安定にかつ確実に高めることができ、かつ量産性に優れた弾性波装置を提供することにある。
【課題を解決するための手段】
【0014】
本発明によれば、圧電基板と、前記圧電基板上に形成されている誘電体層と、前記圧電基板と前記誘電体層との間の境界に形成されているIDT電極と、前記誘電体層に接するように設けられた半導体層と、前記半導体層に直流電界を印加するための第1及び第2の直流電界印加用電極とを備え、前記圧電基板と前記誘電体層との間の境界を伝搬する弾性境界波を利用した弾性境界波装置であって、前記半導体層は、前記弾性境界波によって発生する電界と、前記半導体層中のキャリアとが結合するように設けられており、前記半導体層中のキャリアの移動速度が、前記弾性境界波の伝搬速度よりも高い、弾性境界波装置が提供される。
【0015】
本発明に係る弾性境界波装置のある特定の局面では、前記半導体層は、前記圧電基板と前記誘電体層との間の境界において、前記IDT電極と接触しないように設けられている。
【0016】
本発明に係る弾性境界波装置の他の特定の局面では、前記半導体層は前記圧電基板上に積層されている。この場合、より好ましくは、圧電基板と、半導体層との間に形成された拡散防止層がさらに備えられる。
【0017】
本発明に係る弾性境界波装置のさらに他の特定の局面では、前記半導体層は、前記誘電体層内に埋設されており、前記IDT電極よりも上方に配置されている。
【0018】
本発明に係る弾性境界波装置の別の特定の局面では、上記誘電体層は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、ダイヤモンドライクカーボン及びダイヤモンドからなる群から選択された1種の誘電体材料からなる。
【0019】
本発明に係る弾性境界波装置のさらに別の特定の局面によれば、前記誘電体層が、第1の誘電体層と、該第1の誘電体層上に設けられている第2の誘電体層とからなり、第1の誘電体層の横波音速が、該第2の誘電体層の横波と前記圧電基板の遅い横波音速より遅い。
【0020】
本発明において、第2の誘電体層を構成する材料は特に限定されないが、好ましくは、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、ダイヤモンドライクカーボン及びダイヤモンド群から選択された1種の誘電体材料からなる。
【0021】
本発明において、第1の誘電体層を構成する材料についても特に限定されないが、好ましくは、第2の誘電体層が酸化珪素以外の誘電体材料からなる場合、第1の誘電体層が酸化珪素により形成されている。
【0022】
本発明に係る弾性境界波装置のさらに他の特定の局面によれば、前記半導体層は、前記第1の誘電体層内に配置されている。
【0023】
本発明に係る弾性境界波装置の別の特定の局面によれば、前記IDT電極が、圧電基板上に形成された第1のIDT電極と第2のIDT電極とを有する。この場合、より好ましくは、平面視した場合、上記半導体層は、第1,第2のIDT電極間に位置している。
【0024】
本発明に係る弾性境界波装置のさらに他の特定の局面では、前記圧電基板は、圧電半導体であり、前記圧電基板と前記半導体層とを兼ねている。
【発明の効果】
【0025】
本発明に係る弾性境界波装置では、半導体装置に直流電界が印加された際に生じるキャリアの移動速度が弾性境界波の伝搬速度よりも高く、弾性境界波により生じる電界と、上記キャリアとが結合するように半導体層が設けられているため、弾性境界波を増幅することができる。
【0026】
しかも、上記半導体層が誘電体層と接触するように設けられているため、増幅度を高めるために半導体層に高い直流バイアス電圧を印加した場合であっても、半導体層により生じた熱を速やかに放散させることができ、それによって十分な増幅度を得ることができる。
【0027】
加えて、半導体層が誘電体層に接して設けられており、半導体層の位置精度のばらつきも生じ難いため、特性のばらつきが生じ難く、弾性境界波装置の量産性を高めることができる。
【0028】
よって、本発明によれば、弾性境界波による応答を十分に大きくすることができ、しかも特性の安定な弾性境界波装置を容易に提供することが可能となる。
【図面の簡単な説明】
【0029】
【図1】(a)は本発明の第1の実施形態に係る弾性境界波装置の模式的斜視図であり、(b)は該弾性境界波装置の正面断面図である。
【図2】比較のために用意した従来の弾性表面波装置を示す模式的正面断面図である。
【図3】(a)は図2に示した弾性表面波装置の模式図であり、(b)は第1の実施形態の弾性境界波装置の模式図である。
【図4】図3(a)に示した弾性表面波装置における半導体層の発熱による温度、並びに図3(b)に示した第1の実施形態の弾性境界波装置における種々の誘電体材料からなる誘電体層の膜厚と弾性境界波装置の温度との関係を示す図である。
【図5】(a)は第1の実施形態におけるSiNからなる誘電体層の膜厚と半導体層の膜厚と、弾性境界波の音速との関係を示す図であり、(b)は第1の実施形態において、SiNからなる誘電体層の膜厚と、弾性境界波装置の最表面及び圧電基板と半導体層との界面における弾性境界波の振幅強度との関係を示す図である。
【図6】比較のために用意した従来の弾性表面波装置における弾性表面波装置の厚み方向と弾性表面波の振幅との関係を示す図である。
【図7】第1の実施形態の弾性境界波装置の厚み方向における弾性境界波の振幅との関係を示す図である。
【図8】(a)は、誘電体層がAlNからなる場合の第1の実施形態の弾性境界波装置における誘電体層の膜厚と、弾性境界波の音速との関係を示す図であり、(b)はAlNからなる誘電体層の膜厚と弾性境界波の振幅との関係を示す図である。
【図9】(a)は、誘電体層がダイヤモンドからなる場合の第1の実施形態の弾性境界波装置における誘電体層の膜厚と、弾性境界波の音速との関係を示す図であり、(b)はダイヤモンドからなる誘電体層の膜厚と弾性境界波の振幅との関係を示す図である。
【図10】本発明の第2の実施形態に係る弾性境界波装置の正面断面図である。
【図11】(a)は、誘電体層がSiOからなる場合の第2の実施形態の弾性境界波装置における誘電体層の膜厚と、弾性境界波の音速との関係を示す図であり、(b)はSiOからなる誘電体層の膜厚と弾性境界波の振幅との関係を示す図である。
【図12】(a)及び(b)は、第1の実施形態及び第2の実施形態における弾性境界波装置の弾性境界波の振幅強度の厚み方向分布を示す図である。
【図13】(a)は図2に示した弾性表面波装置の模式図であり、(b)は第2の実施形態の弾性境界波装置の模式図である。
【図14】比較のために用意した従来の弾性境界波装置における弾性表面波の表面の最高温度並びに本発明の第2の実施形態の弾性境界波装置において、第1の誘電体層がSiNからなり、第2の誘電体層が膜厚0.2、2または20μmのSiO膜からなる場合のSiN膜の膜厚と弾性境界波装置表面の最高温度との関係を示す図である。
【図15】第2の実施形態の弾性境界波装置における弾性境界波の振幅の弾性境界波装置厚み方向に沿う分布を示す図である。
【図16】本発明の第3の実施形態に係る弾性境界波装置を示す正面断面図である。
【図17】本発明の第4の実施形態に係る弾性境界波装置を示す正面断面図である。
【図18】(a),(b)は、本発明の第5の実施形態の弾性境界波装置の模式的斜視図及び正面断面図である。
【図19】(a),(b)は、本発明の第6の実施形態に係る弾性境界波装置の模式的斜視図及び正面断面図である。
【図20】本発明の第6の実施形態の変形例に係る弾性境界波装置の模式的正面断面図である。
【図21】従来の弾性表面波装置の一例を示す模式的正面図である。
【図22】従来の弾性表面波装置の他の例を示す斜視図である。
【発明を実施するための形態】
【0030】
以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
【0031】
〔第1の実施形態〕
図1(a)及び(b)は、本発明の第1の実施形態に係る弾性境界波装置の模式的斜視図及び正面断面図である。
【0032】
弾性境界波装置1は、圧電基板2を有する。圧電基板2は、本実施形態では、128°YカットX伝搬のLiNbOからなる。圧電基板2上に第1のIDT電極3と、第2のIDT電極4とが形成されている。
【0033】
第1,第2のIDT電極3,4としては、Pt、Au、Cu、またはAlなどの適宜の金属もしくは合金を用いることができる。
【0034】
本実施形態では、第1,第2のIDT電極は、Ptからなる。圧電基板2上には、入力電極5,6が形成されている。入力電極5はIDT電極3の一端に電気的に接続されており、入力電極6は、第1のIDT電極3の他端に電気的に接続されている。同様に、圧電基板2の上面には、第2のIDT電極4が設けられている部分の弾性境界波伝搬方向両側に、出力電極7,8が形成されている。出力電極7は、第2のIDT電極4の一端に電気的に接続されており、出力電極8は第2のIDT電極4の他端に電気的に接続されている。
【0035】
入力電極5,6及び出力電極7,8並びに入力電極5,6と第1のIDT電極3とを電気的に接続している配線及び出力電極7,8と第2のIDT電極4を接続している配線は、第1,第2のIDT電極3,4を形成する電極材料と同様の電極材料により形成することができる。好ましくは、入力電極5,6及び出力電極7,8等は、第1,第2のIDT電極3,4と同じ電極材料からなる。
【0036】
第1のIDT電極3と第2のIDT電極4とは、弾性境界波伝搬方向において隔てられており、第1,第2のIDT電極3,4間の弾性境界波伝搬路上に半導体層9が形成されている。半導体層9の一端側には、端子電極10が形成されており、他端側には、端子電極11が形成されている。なお、半導体層9に直流電界を印加するための電極すなわち端子電極10,11は、半導体層9にオーミック性接触する材料からなることが好ましい。従って、端子電極10,11は、例えばTiやAuにより形成することが望ましい。端子電極10に電気的に接続されるように、圧電基板2の上面に第1の直流電圧印加用電極12が形成されており、同様に、端子電極11に電気的に接続されるように、圧電基板2の上面には、第2の直流電圧印加用電極13が形成されている。
【0037】
半導体層9に、第1,第2の直流電圧印加用電極12,13から直流バイアス電圧を印加した場合、半導体層9においてキャリアが移動する。このキャリアの移動速度は、弾性境界波の伝搬速度より高い。すなわち、半導体層9は、弾性境界波の伝搬速度よりもキャリアの移動速度が速い半導体材料より構成される。本実施形態では、半導体層9は、InSbからなる。
【0038】
また、本実施形態では、半導体層9が圧電基板2上に直接積層されているので、弾性境界波により生じる電界と、半導体層9中の上記キャリアとが結合するように半導体層9が設けられていることになる。
【0039】
本実施形態では、第1,第2の直流電圧印加用電極12,13は、弾性境界波伝搬方向と直交する方向において一方側に、すなわち圧電基板2の一方側面2a側に、寄せられて形成されているが、弾性境界波伝搬方向と直交する方向において一方側に第1の直流電圧印加用電極12が、他方側に第2の直流電圧印加用電極13が形成されていてもよい。もっとも、第1,第2の直流電圧印加用電極12,13の双方が圧電基板2の一方側面2aまたは他方側面2b側に寄せられて形成されていることが望ましく、それによって、直流電圧を印加するための電気的接続を容易に行うことができる。
【0040】
また、圧電基板2上には、第1,第2のIDT電極3,4及び半導体層9を覆うように誘電体層14が形成されている。誘電体層14は、本実施形態では、SiNからなる。もっとも、誘電体層14は、圧電基板2と誘電体層14との界面に配置されたIDT電極3に入力電極を印加することにより弾性境界波を励振し得る適宜の誘電体材料により形成することができる。このような誘電体材料としては、窒化ケイ素(SiN)に限らず、酸化ケイ素、酸窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、ダイヤモンドライクカーボン及びダイヤモンドからなる群から選択された1種の誘電体材料を好適に用いることができる。これらの誘電体材料は、下記の表1に示すように、熱伝導率がLiNbOなどの圧電単結晶に比べて極めて高い。従って、半導体層9において発生した熱を誘電体層14により速やかに放散することができる。
【0041】
圧電基板2、誘電体層及び半導体層などを形成するための様々な材料の横波音速及び遅い横波音速、熱伝導率及び電子移動度を下記の表1に示す。
【0042】
【表1】

【0043】
本実施形態の弾性境界波装置1では、圧電基板2と誘電体層14との境界に第1,第2のIDT電極3,4が配置されている。第1のIDT電極3に交流電界を印加することにより、弾性境界波が励振され、第2のIDT電極4から該弾性境界波による応答を出力として取り出すことができる。従って、トランスバーサル型弾性境界波フィルタが構成されている。
【0044】
しかも、半導体層9が圧電基板2と誘電体層14との境界に配置されており、すなわち弾性境界波伝搬上に配置されているので、第1,第2の直流電圧印加用電極12,13から直流電圧を印加することにより、半導体層9内においてキャリアが移動することとなる。キャリアが弾性境界波の電界と結合し、このキャリアの移動速度が弾性境界波の伝搬速度よりも高いので、それによって弾性境界波を増幅することができる。
【0045】
しかも、上記直流電圧印加用電極12,13から印加する直流電圧すなわちバイアス電圧を高めて増幅度を高めた場合であっても、半導体層9の発熱による特性の劣化や増幅度の低下が生じ難い。これは、半導体層9が、誘電体層14に接触するように設けられているので、半導体層9が発熱したとしても、熱伝導度が高い誘電体層14により熱が速やかに放散されることによる。
【0046】
さらに、図21に示した従来の弾性表面波装置1001においては、空隙を高精度にコントロールすることができなかったのに対し、半導体層9及び誘電体層14が圧電基板2上に積層されているだけであるため、本実施形態では、空隙の高精度の制御を必要としない。従って、特性のばらつきも生じ難く、量産性を効果的に高め得る。
【0047】
本実施形態の弾性境界波装置の上記作用効果を、半導体層が圧電基板上に積層された従来の弾性表面波装置と比較してより具体的に説明することとする。
【0048】
前述した非特許文献1の215頁には、弾性表面波の増幅量は下記の式(1)で表わされることが記載されている。
【0049】
【数1】

【0050】
式(1)において、hは半導体の厚みを、uは半導体中のキャリアの速度を示す。なお、u=μEであり、μはキャリアの移動度を、Eは印加電界の大きさを示す。また、σは半導体の電気伝導度を示し、σ=eNμである。ここで、eは電荷を、Nはキャリア密度を示す。Kは弾性表面波の電気機械結合係数を示し、vは弾性表面波の速度を示し、εは圧電基板の等価誘電率を示す。
【0051】
式(1)より、uがvよりも大きくなると、すなわち半導体中のキャリアの移動速度が弾性表面波の音速よりも早くなると、増幅量Gがプラスの値となる。従って、弾性表面波を増幅することができる。また、半導体における移動度が大きくなるほど、半導体の膜厚が薄くなるほど、あるいは弾性表面波の結合係数が大きくなるほど、増幅率が大きくなることがわかる。これを、上記実施形態の弾性境界波装置1と、比較のために用意した図2に示す従来の弾性表面波装置1101とを対比して説明する。図2に示す弾性表面波装置1101は、誘電体層14が設けられていないことを除いては、上記実施形態とほぼ同様に構成されている。すなわち、128°YカットLiNbOからなる圧電基板1102上に、上記実施形態と同様にして、第1,第2のIDT電極1103,1104及び半導体層1109等が形成されている。この弾性表面波装置1101及び上記実施形態の弾性境界波装置1は、いずれも、トランスバーサル型のフィルタである。
【0052】
弾性境界波装置1では、弾性境界波の波長λとしたときに、半導体層9としてのInSb膜の膜厚を波長λの10%、誘電体層14の膜厚を波長λの100%以上とすることにより、P成分とSV成分とが主体の弾性境界波が伝搬することとなる。この弾性境界波の電気機械結合係数Kは3%程度である。
【0053】
他方、InSbの移動度μは理想的には78000cm/Vsであるが、格子定数がInSbとは異なるLiNbO上に設けられたInSbにおける移動度μは大幅に低下する。例えばMBE法で成膜されたInSb膜では膜厚200nm、で移動度μは6000cm/Vs、キャリア密度N2.5×1016/cm程度となる。
【0054】
弾性境界波伝搬路上のInSbの膜厚を200nm、幅を180μm、弾性波伝搬路長さ、すなわち第1のIDT電極3と第2のIDT電極4との間の距離を400μmとし、第1のIDT電極3に交流電圧を印加し、波長2μmの弾性境界波を励振した場合を想定する。弾性表面波装置についての上記式(1)より、半導体層9に40Vの直流バイアス電圧を印加すると、出力側の第2のIDT電極4では、6.8dBのゲインを得ることができる。このときの半導体層9における消費電極は320mWである。なお、ゲインは電圧を印加した後の挿入損失と印加前の挿入損失の差で表わす。
【0055】
半導体層9の発熱による弾性境界波装置1内の温度上昇を有限要素法により求めた。最も温度が高くなる部分は半導体層9の中心であり、この半導体層9の中心の温度を最高温度とする。結果を図4に示す。
【0056】
なお、表1に示したように、SiNの熱伝導率は35.5Wm−1−1であり、空気の熱伝導率である0.026Wm−1−1よりも遥かに大きい。なお、LiNbOの熱伝導率が4.6Wm−1−1である。
【0057】
図4は、誘電体層14が、SiO、SiN、AlNまたはダイヤモンドである各弾性境界波装置1における誘電体層14の膜厚(μm)と上記最高温度との関係を示す。本明細書において誘電体層14の膜厚とは、圧電基板2上に形成されている誘電体層14の膜厚をいうものとし、半導体層9の上方の誘電体層部分の膜厚をいうものではない。なお、比較のために、図2に示した従来の弾性表面波装置1101の最高温度を破線Aで表わす。従来の弾性表面波装置1101では、誘電体層は設けられていないが、最高温度は約143℃であり、この143℃のところに破線Aを示した。
【0058】
図4から明らかなように、本実施形態では、誘電体層14の膜厚が厚くなるにつれて、誘電体層14を構成している材料の如何にかかわらず、最高温度が低くなっていることがわかる。これは、誘電体層14により半導体層9からの熱が速やかに放散されているためと考えられる。
【0059】
図3(a)に模式的に示すように、従来の弾性表面波装置1101では、半導体層1109は、圧電基板1102と空気とに取り囲まれている。これに対して、図3(b)に示すように、本実施形態の弾性境界波装置1では、半導体層9の下面には圧電基板2が位置しているが、半導体層9の側面及び上面は、誘電体層14に接している。また、空気に比べて、誘電体層14の熱伝導率は遥かに高い。従って、半導体層9において生じた熱が誘電体層14を介して放散されている。
【0060】
図4から明らかなように、波長が2μmであり、かつSiNからなる誘電体層14の膜厚がλの100%と想定した場合、SiNからなる誘電体層14の膜厚は2μmとなり、最高温度は131℃に低下することがわかる。また、SiNの膜厚が10μmであれば、最高温度は105℃、100μmであれば65℃まで最高温度を低め得ることがわかる。
【0061】
従って、本実施形態の弾性境界波装置1では、ヒートシンクを別途設けることなく、半導体層9における熱を速やかに放散させることができ、大きなゲインを安定に得ることができる。
【0062】
なお、本実施形態では、上記のように、ヒートシンクを別途設ける必要はないが、さらに誘電体層14上にヒートシンクを設けてもよい。例えば、誘電体層14を、外部のヒートシンク材に密着させたり、誘電体層14上に水などの空気に比べて熱伝導性の高い液体を配置してもよい。弾性境界波装置1では、誘電体層14よりも上部の構造は弾性境界波に実質的に影響を与えない。従って、弾性表面波装置1101とは異なり、電気的特性に影響を与えることなく、様々な手段を用いて放熱性を高めることも可能である。
【0063】
図5(a)は、半導体層9の膜厚を波長λの0.5%、2%、5%、10%、25%、50%、または100%とした場合のSiNからなる誘電体層14の膜厚と弾性境界波の音速との関係を示す図である。InSbからなる半導体層9の膜厚を波長λの10%以上、かつSiNからなる誘電体層14の膜厚を波長λの100%以上とすることにより、SiN膜厚によらず音速が一定となり弾性境界波を確実に伝搬させ得ることがわかる。
【0064】
図5(b)は、上記実施形態のInSbからなる半導体層9の膜厚が波長λの10%の水準におけるSiNからなる誘電体層14の膜厚と、弾性境界波の振幅強度の関係を示す図である。実線が最表面の振幅を、破線が圧電基板と半導体層9との界面における振幅を示す。さらに、図6は、比較のために用意した弾性表面波装置1101の弾性表面波の振幅分布を示す図であり、図7は、上記実施形態の弾性境界波装置1における厚み方向における振幅分布を示す図である。U1は縦波成分、U2はSH波成分、U3はSV成分である。なお、U1〜U3は弾性境界波を構成する部分波成分である。
【0065】
図5(b)及び図7から明らかなように、SiNからなる誘電体層の膜厚をλの100%以上とすれば、最表面の振幅成分が0となる。従って、半導体層9よりも上方部分は、弾性境界波は弾性的には影響を与えないことがわかる。よって、SiNからなる誘電体層14の膜厚を十分に厚くすることにより、放熱性を効果的に高めたとしても、弾性境界波による応答が劣化し難いことがわかる。
【0066】
また、半導体層9の膜厚が波長λの5%未満と薄い場合には、SiNからなる誘電体層14の膜厚を波長λの20%以上とすると、弾性表面波としての伝搬モードは存在しなくなり、また弾性境界波としての伝搬モードも生じない。すなわち、波はLiNbO基板中にバルク波として漏洩し、特性が大幅に劣化する。従って、好ましくは、半導体層の膜厚は、波長λの5%以上であることが望ましい。
【0067】
弾性境界波では、圧電体と誘電体の界面±数λの範囲内にエネルギーが閉じこもるため、最表面の振幅は0となり、弾性境界波の波長をλとしたとき、誘電体層14の内、圧電基板2と誘電体層14との境界よりも上方に数λを超えた誘電体層部分から弾性的な影響を受け難い。すなわち、弾性境界波が散乱し難く、あるいは減衰し難い。
【0068】
次に、上記誘電体層14を構成する材料として、SiNに代えて、SiNよりも熱伝導率が高いAlN及びダイヤモンドを用いた場合の結果を図8(a),(b)及び図9(a),(b)に示す。
【0069】
図8(a)及び(b)では、半導体層9が、波長λの10%の膜厚のInSbからなり、誘電体層14がAlNからなることを除いては、上記実施形態と同様に構成された弾性境界波装置におけるAlNからなる誘電体層14の膜厚と弾性境界波の音速との関係及び誘電体層14の膜厚と振幅との関係を示す図である。図8(b)の実線は最表面における振幅の膜厚依存性を、破線は圧電基板と半導体層9との界面における振幅の膜厚依存性を示す。
【0070】
図9(a)及び(b)は、AlNに代えて、ダイヤモンドを用いたことを除いては、同様にして求められた弾性境界波の音速及び振幅強度の誘電体層14の膜厚に対する依存性を示す図である。
【0071】
図8(a),(b)及び図9(a),(b)から明らかなように、SiNに代えて、AlNやダイヤモンドを用いた場合であっても、誘電体層14の膜厚を0.5λ以上、より好ましくは1λ以上とすることにより弾性境界波を確実に伝搬させ得ることがわかる。
【0072】
また、上記実施形態と同様にして、InSbからなる半導体層9の発熱により半導体層9の最高温度を有限要素法により計算した。その結果は、前述した図4に示されている。誘電体層14の膜厚を2μmとした場合、誘電体層14がAlNからなる場合最高温度は92℃であり、ダイヤモンドの場合には60℃となることがわかる。すなわち、SiNを用いた場合に比べ、さらに最高温度が低くなることがわかる。
【0073】
上記第1の実施形態及び変形例から明らかなように、半導体層9における熱を放散させるには、誘電体層14はより高い熱伝導率の材料からなることが望ましい。
【0074】
〔第2の実施形態〕
図10は本発明の第2の実施形態に係る弾性境界波装置を示す正面断面図である。
【0075】
本実施形態の弾性境界波装置101は、誘電体層114が、SiOからなる第1の誘電体層114aと第1の誘電体層114a上に積層されたSiNからなる第2の誘電体層114bを有することを除いては、第1の実施形態の弾性境界波装置1と同様に構成されている。従って、同一部分については同一の参照番号を付することにより、第1の実施形態の説明を援用することとする。
【0076】
本実施形態では、LiNbOからなる圧電基板102と、第1の誘電体層114aと、第2の誘電体層114bとを有する、いわゆる三媒質構造の弾性境界波装置101が構成されている。
【0077】
前述した表1に示すように、SiOの横波音速は3750m/秒であり、SiNの横波音速は5950m/秒であり、LiNbOの遅い横波音速は4079m/秒である。従って、誘電体層114と圧電基板102との界面において励振された弾性境界波が、第2の誘電体層114bよりも内側に効果的に閉じ込められる。よって、半導体層9による増幅度をより一層高めることができる。
【0078】
これを、図11(a),(b)及び図12(a),(b)を参照してより具体的に説明する。図11(a)は、半導体層9を構成するInSbの膜厚が波長λの0.5%、2%、5%、10%、15%、20%、または25%の場合のSiOからなる第1の誘電体層114aの膜厚と弾性境界波の音速との関係を示す。また、図11(b)は、InSbの膜厚が波長λの0.5%、2%、5%、10%、15%、20%、または25%の場合のSiOからなる第1の誘電体層114aの膜厚と圧電基板2と半導体層9との界面における振幅との関係を示す。いずれの場合においても、SiNからなる第2の誘電体層114bの膜厚は波長λの100%である。
【0079】
図11(b)から明らかなように、特にInSbの膜厚が20%以下と薄い領域にて、横波音速が相対的に遅いSiOからなる第1の誘電体層114aを、横波音速が相対的に速いSiNとLiNbOとの間に配置することにより、圧電基板102と半導体層9との間に弾性境界波のエネルギーをより一層集中させ得ることがわかる。さらに、InSbの膜厚が15%以下であれば、より好ましい。従って、SiOからなる第1の誘電体層114aを設けなかった場合に比べて、圧電基板102と半導体層9との界面における振幅が大きくなることがわかる。増幅率は、半導体層9に染みだす圧電基板2の電界と、半導体層9中のキャリアとの相互作用に依存するので、界面における振幅が大きいほど、増幅率は大きくなる。よって、本実施形態によれば、弾性境界波をより一層効果的に増幅することができる。
【0080】
また、第1の実施形態では、InSbからなる半導体層の膜厚が波長λの5%未満と薄い場合には、弾性境界波は閉じこもらなかったが、図11(a)から明らかなように、本実施形態では、InSbの膜厚が波長λの5%未満の場合においても弾性境界波が閉じ込もることが可能であることがわかる。前述した式(1)から明らかなように、半導体層9の厚みが薄いほど、増幅率は高められる。従って、本実施形態によれば、半導体層9の膜厚を薄くすることにより増幅率をより一層高めることができる。
【0081】
図12(a)は、前述した第1の実施形態における振幅強度の振幅分布を示し、図12(b)はInSbの膜厚が10%、SiOが70%における、本実施形態の振幅強度の振幅分布を示す。図12(a)に示すように、SiOからなる第1の誘電体層が設けられていない場合には、振幅のピークは圧電基板102内に位置していた。これに対して、図12(b)に示すように、本実施形態では、圧電基板102と半導体層9の界面に振幅のピークが位置している。これは、前述したように、SiOの横波音速が、LiNbOの遅い横波及びSiNの横波の音速に比べて遅いことによる。
【0082】
本実施形態においても、第1の実施形態の場合と同様に、弾性境界波伝搬路上のInSbの膜厚を200nm、幅を180μm、弾性波伝搬路長さ、すなわち第1のIDT電極3と第2のIDT電極4との間の距離を400μmとし、第1のIDT電極3に交流電圧を印加し、波長2μmの弾性境界波を励振した場合を想定する。弾性表面波装置についての上記式(1)より、半導体層9に40Vの直流バイアス電圧を印加すると、出力側の第2のIDT電極4では、10.7dBのゲインを得ることができる。このときの半導体層9における消費電極は320mWである。なお、ゲインは電圧を印加した後の挿入損失と印加前の挿入損失の差で表わす。
【0083】
また、半導体層9における発熱による温度上昇を有限要素法により求めた。第1の誘電体層114aが0.2μm、2μm及び20μmの場合のSiNからなる第2の誘電体層114bの膜厚と最高温度の結果を図14に示す。なお、比較のために、誘電体層が設けられていない弾性表面波装置、すなわち図13(a)に示す構造の弾性表面波装置1101の最高温度を図14に破線で示す。理解を容易とするために、図13(b)に、本実施形態の弾性境界波装置を構造を模式的に示す。なお、図14の場合と同様に、弾性表面波装置1101では、誘電体層は設けられていないが、本実施形態との対比のために、破線Aで143℃の温度を示す。
【0084】
図14から明らかなように、本実施形態においても、SiOの膜厚が0.2μm、2μm及び20μmのいずれの場合においても、膜厚が増加するにつれて、最高温度が低くなっていくことがわかる。これは、図13(b)に示すように、半導体層9を構成しているInSbが、第1の誘電体層114aすなわちSiOに接しており、第1の誘電体層114a上に、SiNからなる第2の誘電体層114bが積層されていることによる。
【0085】
SiOの熱伝導率は1.42Wm−1−1とさほど高くはないが、空気よりも高く、さらにSiOに比べてSiNの熱伝導率は35.5Wm−1−1とより一層高い。そのため、SiNからなる誘電体層114bの膜厚を大きくすることより、放熱性をより一層高めることができる。
【0086】
上記実施形態では、半導体層としてInSbを用いたが、Siのように遅い横波音速が5844m/秒とSiOよりも速い半導体を用いてもよい。図15から明らかなように、半導体層9をSiにより形成した構造においても、弾性境界波がLiNbOと誘電体層を構成しているSiOとの間、特に、LiNbOと半導体を構成しているSiとの界面を確実に伝搬することがわかる。
【0087】
なお、第1の誘電体層114aとしては、SiOに限らず、タンタル酸化物やテルル酸化物などを用いてもよい。すなわち、横波音速が相対的に第2の誘電体層114b及び圧電基板2よりも遅い誘電体材料を適宜用いることができる。もっとも、好ましくは、酸化ケイ素あるいは酸化ケイ素を主成分とする誘電体材料が用いられ、その場合には、周波数温度係数TCFの絶対値を小さくすることができる。
【0088】
〔第3の実施形態〕
図16は、本発明の第3の実施形態に係る弾性境界波装置を示す正面断面図である。第3の実施形態の弾性境界波装置201は、半導体層9と圧電基板2との間に拡散抑制層202が形成されていることを除いては、第1の実施形態の弾性境界波装置1と同様に構成されている。
【0089】
拡散抑制層202は、半導体層9の成膜に先立ち、圧電基板102上に成膜される。拡散抑制層202は、酸化ケイ素、五酸化タンタル、窒化ケイ素、アルミナ、炭化ケイ素、または窒化アルミニウムなどにより形成することができる。拡散抑制層202を設けることにより、圧電基板2と半導体層9との間の相互拡散を抑制することができる。従って、拡散抑制層202を構成する材料としては、圧電基板2に対する反応性が半導体層9よりも低い適宜の材料を用いることができ、上述の材料以外の材料も用いることができる。
【0090】
〔第4の実施形態〕
図17は、本発明の第4の実施形態に係る弾性境界波装置の正面断面図である。第4の実施形態の弾性境界波装置301では、半導体層9が、第1の半導体層9aと第1の半導体層9a上に積層された第2の半導体層9bを有する。このように、半導体層9は、複数の半導体層を積層した構造を有していてもよい。また、第1の誘電体層114a及び第2の誘電体層114bも、それぞれ、複数の誘電体層を積層した構造を有していてもよい。
【0091】
〔第5の実施形態〕
図18(a),(b)は、本発明の第5の実施形態に係る弾性境界波装置に係る模式的斜視図及び正面断面図である。第5の実施形態の弾性境界波装置401は、圧電基板402が圧電性と半導体性とを有する圧電半導体からなる。圧電基板402が、増幅作用を果たすための半導体層をも兼ねている。従って、本実施形態では、圧電基板402の上面に、第1のIDT電極3及び第2のIDT電極4に接続される入力電極5,6及び出力電極7,8が、第1,第2の直流電圧印加用電極をも兼ねている。具体的には、入力電極5,6から入力電圧を印加し、出力電極7,8から出力が取り出されるが、入力電極5,6と、出力電極7,8との間に直流電圧を印加することにより、圧電基板402の半導体性を利用し、キャリアを移動させることができる。このキャリアを、励振された弾性境界波の電界と結合させることにより、本実施形態においても、弾性境界波の増幅度を高めることができる。
【0092】
このような圧電半導体としては、CdSやZnOなどの圧電性と半導体性とを兼ね備えた適宜の圧電半導体を用いることができる。
【0093】
本実施形態においても、誘電体層114は、第1,第2の誘電体層114a,114bを有する。そして、直流電圧を印加して圧電半導体からなる圧電基板402においてキャリアを移動させた場合、圧電基板402が発熱する。しかしながら、圧電基板402が誘電体層114に接しているため、前述した実施形態と同様に、熱が誘電体層114側に速やかに放散される。従って、第1〜第4の実施形態と同様に、増幅度を高めようとして、直流電圧を高めた場合であっても、弾性境界波装置の温度を低めることができる。従って、大きなゲインを得ることができる。
【0094】
加えて、圧電基板402上に、誘電体層114が面接触的に積層されているので、特性のばらつきが生じ難く、量産性を高めることもできる。
【0095】
〔第6の実施形態〕
図19(a),(b)は本発明の第6の実施形態に係る弾性境界波装置を示す模式的斜視図及び正面断面図である。第6の実施形態に係る弾性境界波装置501では、圧電基板502上に第1,第2のIDT電極503,504と、IDT電極503,504が設けられている領域の弾性境界波伝搬方向両側に配置された反射器521,522とが形成されている。そして、圧電基板502上に、誘電体層514が積層されている。誘電体層514内に、半導体層9が埋設されている。
【0096】
本実施形態では、圧電基板502上に、入力電極5及び出力電極7と、直流電圧印加用電極12,13とが形成されている。入力電極5は、第1のIDT電極503に、出力電極7は、第2のIDT電極504に電気的に接続されている。第1,第2のIDT電極503,504と反射器521,522とを有するため、本実施形態では、縦結合共振子型の弾性境界波フィルタが構成されている。この場合、第1,第2のIDT電極503,504に半導体層9が接触しないことが求められるので、半導体層9は、第1,第2のIDT電極503,504の上方に、IDT電極503,504と接触しないように配置されている。従って、半導体層9は、誘電体層14内に埋設されており、IDT電極503,504及び反射器521,522が設けられている部分の上方に位置している。
【0097】
このように、半導体層9は、弾性境界波が伝搬される領域の上方に配置されていることが望ましい。もっとも、半導体層9は、弾性境界波が伝搬する領域の上方の少なくとも一部に配置されていてもよい。
【0098】
図20は、第6の実施形態の変形例に係る弾性境界波装置を示す模式的正面断面図である。弾性境界波装置501は、二媒質構造の弾性境界波装置であったが、図20に示すように、第2の実施形態と同様に三媒質構造の弾性境界波装置601であってもよい。すなわち、半導体層9が埋設されている第1の誘電体層514aと、第1の誘電体層514a上に積層された第2の誘電体層514bとを有していてもよい。
【0099】
第6の実施形態から明らかなように、本発明は、トランスバーサル型弾性境界波フィルタだけでなく、縦結合共振子型フィルタのような共振子型のフィルタや、1ポート型弾性境界波共振子にも適用することができる。これらの共振子型の弾性境界波装置の場合には、上記のように、IDT電極に半導体層が接すると、短路により損失が増加する。従って、半導体層9は、IDT電極と直接接触しないことが望ましい。
【0100】
なお、第1の実施形態では、128°YカットLiNbOからなる圧電基板2上を伝搬するP成分とSV成分とが主体である弾性境界波を説明したが、本発明では、いずれのモードの弾性境界波を用いてもよい。前述した式(1)より、電気機械結合係数Kが大きいほど、増幅率は高くなる。従って、例えば、60°YカットLiNbOを伝搬するSH成分が主体の弾性境界波は、電気機械結合係数が大きいため、増幅率をより一層高めることができる。
【0101】
また、圧電基板を構成する圧電材料はLiNbOに限らず、LiTaO、水晶等の様々な圧電性材料により形成することができる。もっとも、電気機械結合係数が大きい、LiNbOまたはLiTaOが特に好ましく用いられる。
【0102】
また、半導体層9を構成する材料については、InSb、InAs、InP、GaAs、GaSb、ZnO、Ge及びダイヤモンドが特に好ましく、増幅率を効果的に高めることができる。もっとも、これらの半導体に限らず、ポリシリコン、カーボンナノチューブ、グラフェンなどの他の半導体を用いてもよい。
【符号の説明】
【0103】
1…弾性境界波装置
2…圧電基板
2a…一方側面
2b…他方側面
3,4…第1,第2のIDT電極
5,6…入力電極
7,8…出力電極
9…半導体層
9a,9b…第1,第2の半導体層
10,11…端子電極
12,13…第1,第2の直流電圧印加用電極
14…誘電体層
101…弾性境界波装置
102…圧電基板
114…誘電体層
114a,114b…第1,第2の誘電体層
201…弾性境界波装置
202…拡散抑制層
301…弾性境界波装置
401…弾性境界波装置
402…圧電基板
501…弾性境界波装置
502…圧電基板
503,504…第1,第2のIDT電極
514…誘電体層
514a,514b…第1,第2の誘電体層
521,522…反射器


【特許請求の範囲】
【請求項1】
圧電基板と、
前記圧電基板上に形成されている誘電体層と、
前記圧電基板と前記誘電体層との間の境界に形成されているIDT電極と、
前記誘電体層に接するように設けられた半導体層と、
前記半導体層に直流電界を印加するための第1及び第2の直流電界印加用電極とを備え、
前記圧電基板と前記誘電体層との間の境界を伝搬する弾性境界波を利用した弾性境界波装置であって、
前記半導体層は、前記弾性境界波によって発生する電界と、前記半導体層中のキャリアとが結合するように設けられており、
前記半導体層中のキャリアの移動速度が、前記弾性境界波の伝搬速度よりも高い、弾性境界波装置。
【請求項2】
前記半導体層は、前記圧電基板と前記誘電体層との間の境界において、前記IDT電極と接触しないように設けられている、請求項1に記載の弾性境界波装置。
【請求項3】
前記半導体層は前記圧電基板上に積層されている、請求項2に記載の弾性境界波装置。
【請求項4】
前記圧電基板と、前記半導体層との間に形成されている拡散防止層をさらに備える、請求項3に記載の弾性境界波装置。
【請求項5】
前記半導体層は、前記誘電体層内に埋設されており、前記IDT電極よりも上方に配置されている、請求項1に記載の弾性境界波装置。
【請求項6】
前記誘電体層は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、ダイヤモンドライクカーボン及びダイヤモンドからなる群から選択された1種の誘電体材料からなる、請求項1〜5のいずれか1項に記載の弾性波境界装置。
【請求項7】
前記誘電体層が、第1の誘電体層と、該第1の誘電体層上に設けられている第2の誘電体層からなり、第1の誘電体層の横波音速が、該第2の誘電体層の横波と前記圧電基板の遅い横波音速より遅いことを特徴とする、請求項1〜6のいずれか1項に記載の弾性境界波装置。
【請求項8】
前記半導体層は、前記第1の誘電体層内に配置されている、請求項7に記載の弾性境界波装置。
【請求項9】
前記第2の誘電体層は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウム、ダイヤモンドライクカーボン及びダイヤモンドからなる群から選択された1種の誘電体材料からなる、請求項7または8に記載の弾性境界波装置。
【請求項10】
前記第2の誘電体層が、酸化珪素以外の誘電体材料からなり、前記第1の誘電体層が酸化珪素からなる、請求項7〜9のいずれか1項に記載の弾性境界波装置。
【請求項11】
前記IDT電極が、圧電基板上に形成された第1のIDT電極と第2のIDT電極とを有する、請求項1〜10のいずれか1項に記載の弾性境界波装置。
【請求項12】
前記半導体層は、前記第1のIDT電極と前記第2のIDT電極との間に位置している、請求項11に記載の弾性境界波装置。
【請求項13】
前記圧電基板が圧電半導体であり、前記圧電基板と前記半導体層とを兼ねている、請求項1に記載の弾性境界波装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公開番号】特開2011−66492(P2011−66492A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2009−213032(P2009−213032)
【出願日】平成21年9月15日(2009.9.15)
【出願人】(000006231)株式会社村田製作所 (3,635)
【Fターム(参考)】