説明

抗MIF抗体

本願は、マクロファージ遊走阻止因子(MIF)のC末端または中心領域と特異的に結合するモノクローナル抗体およびその抗原結合部分に関する。これら抗MIF抗体およびその抗原結合部分はさらにヒトMIF生物学的機能を阻害する。本願は、単離された抗MIF抗体由来重および軽鎖免疫グロブリンおよびそのような免疫グロブリンをコードする核酸分子に関する。また、本願は、抗MIF抗体を同定する方法、これら抗体を含む医薬組成物、およびこれら抗体の使用方法、およびMIF関連病状を治療するための組成物に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マクロファージ遊走阻止因子(MIF)のC末端または中心領域と特異的に結合するモノクローナル抗体およびその抗原結合部分に関する。これら抗MIF抗体およびその抗原結合部分はさらにヒトMIF生物学的機能を阻害する。本発明は、単離された抗MIF抗体由来重および軽鎖免疫グロブリンおよびそのような免疫グロブリンをコードする核酸分子に関する。また、本発明は、抗MIF抗体を同定する方法、これら抗体を含む医薬組成物、およびこれら抗体の使用方法、およびMIF関連病状を治療するための組成物に関する。
【背景技術】
【0002】
マクロファージ遊走阻止因子(MIF)は、マクロファージのin vitroでの無作為な遊走を阻害する能力に基づいて最初に単離されたサイトカインである(Bloom et al. Science 1966、153、80-2;David et al. PNAS 1966、56、72-7)。MIFは、1966年以来知られているが、大多数の細胞におけるその明確な機能は解っていないが、MIFは、先天性および後天性の免疫反応の非常に重要な上流調節因子のようである。
【0003】
ヒトMIF cDNAは1989年にクローンされ(Weiser et al.、PNAS 1989、86、7522-6)、そのゲノムでの局在は、22番染色体に位置づけられた。MIF遺伝子産物は、分子量12.5kDaのアミノ酸タンパク質である。該タンパク質は、ヒト、マウス、ラット、およびウシMIF間の配列相同性が90〜96%と保存性が高い。しかしながら、MIFは、あらゆる他のタンパク質とも有意な配列相同性を持たない。MIFの三次元構造は、あらゆる他のサイトカインや下垂体ホルモンと異なっている。該タンパク質は、同じサブユニットの三量体として結晶化される。各単量体は、4本鎖βシートに対してパックされる二重逆平行αらせんを含む。該単量体は、隣り合ったサブユニットのβシートと相互作用し、単量体間の接点を形成する、さらなる二本のβ鎖を有する。3つのβシートは、分子3回軸に沿ったタンパク質の中心を通り抜ける溶媒が到達可能なチャンネルを含むバレル(barrel)を形成するよう配置される(Sun et al. PNAS 1996、93、5191-5196)。
【0004】
マクロファージからのMIFの分泌は非常に低濃度のグルココルチコイドで誘導されることが報告された(Calandra et al. Nature 1995、377、68-71)。しかしながら、MIFは、前炎症サイトカインとして、グルココルチコイドの作用を逆調節し(counter-regulate)、他のサイトカイン、例えば、腫瘍壊死因子TNF-αおよびインターロイキンIL-1βの分泌を促すことにより(Baugh et al、Crit Care Med 2002、30、S27-35)、炎症性および免疫性疾患の病因に役割を果たすと推測される。また、MIFは、リンパ腫、メラノーマ、および結腸癌の成長と直接関連がある(Nishihira et al. J Interferon Cytokine Res. 2000、20:751-62)。
【0005】
MIFは、多くの病状の介在因子であり、炎症性腸疾患(IBD)、リウマチ性関節炎(RA)、急性呼吸窮迫症候群(ARDS)、喘息、糸球体腎炎、IgA腎症、癌、心筋梗塞(MI)、および敗血症を含む種々の疾患と関連がある。
【0006】
ポリクローナルおよびモノクローナル抗MIF抗体は、組み換えヒトMIFに対して発現した(Shimizu et al.、FEBS Lett. 1996;381、199-202;Kawaguchi et al.、J. Leukoc. Biol. 1986、39、223-232;およびWeiser et al.、Cell. Immunol. 1985、90、167-78)。
【0007】
抗MIF抗体は、TNF-α放出を阻害するための治療的使用が示唆されている。Calandra et al.(J. Inflamm. 1995. 47、39-51)は、実験的に誘発したグラム陰性およびグラム陽性敗血症性ショックから動物を保護するための抗MIF抗体の使用について報告した。抗MIF抗体は、敗血症性ショックおよび他の炎症性疾患状態におけるサイトカイン産生を調節するための治療手段として示唆された。
【0008】
US 6,645,493は、MIFの生物活性を中和する、ハイブリドーマ細胞由来のモノクローナル抗MIF抗体を開示している。これらマウス由来抗MIF抗体は内毒素性ショックの治療に有益な効果があることが動物モデルにおいて示されるかもしれない。記載された抗MIF抗体のいくつか(III.D.9、XIV.14.3、および XIV.15.5)を、比較実験のために本発明において使用した。
【0009】
US 2003/0235584は、MIF遺伝子がホモ接合性にノックアウトされた動物におけるMIFに対する高親和性抗体の製造方法を開示する。
【0010】
グリコシル化阻害因子(GIF)は、Galat et al.(Eur. J. Biochem. 1994、224、417-21)によって記載されたタンパク質である。MIFおよびGIFは、現在では同一であると認識されている。Watarai et al.(PNAS 2000、97、13251-6)は、T細胞における翻訳後修飾の生化学的性質を同定するための異なるGIFエピトープと結合するポリクローナル抗体について記載した。Watarai et al(PNAS 2000、97、13251-6)は、GIFはin vitroで種々の立体構造アイソフォームに生じると報告した。ある種のアイソフォームは、一システイン残基の化学修飾により生じる。該化学修飾は、GIFタンパク質内の立体構造変化をもたらし、その生物学的機能を変化させる。
【発明の概要】
【発明が解決しようとする課題】
【0011】
種々の疾患におけるMIFの関与の複雑さを考慮すると、エピトープ特異的抗MIF抗体の機能の解明とその治療的アプローチのための使用が大いに望まれる。したがって、MIFが介在する疾患および病状を治療するためのヒトMIF生物学的機能を阻害するエピトープ特異的抗MIF抗体の必要性がある。
【課題を解決するための手段】
【0012】
(発明の要約)
本発明は、マクロファージ遊走阻止因子(MIF)のC末端または中心領域と特異的に結合する抗体およびその抗原結合部分に関する。
【0013】
さらに、本発明は、これら抗体またはその抗原結合部分をコードする核酸分子、ならびにそのような核酸を含むベクター、およびそのようなベクターを含む宿主細胞、ならびに核酸分子によってコードされるポリペプチドの組み換え製造方法に関する。
【0014】
また、本発明は、抗MIF抗体またはその抗原結合部分を含む医薬組成物に関する。該医薬組成物は、医薬的に許容される担体または他の治療薬も含みうる。
【0015】
本発明は、免疫性疾患、例えば、炎症性疾患および過剰増殖性障害を治療するための医薬の製造における抗MIF抗体またはその抗原結合部分の使用にも関する。
【0016】
本発明は、さらに、免疫性疾患、例えば、炎症性疾患および過剰増殖性障害の治療に使用するための抗MIF抗体またはその抗原結合部分に関する。
【0017】
本発明は、有効量の抗MIF抗体またはその抗原結合部分を用いる種々の免疫性疾患および病状、例えば、炎症性疾患および過剰増殖性障害の治療方法にも関する。
【0018】
本発明は診断的方法にも関する。抗MIF抗体またはその抗原結合部分は、生物試料中のMIFを検出するのに用いることができる。
【0019】
本発明は、さらに、活性MIFを阻害し、動物モデルで有益な効果をもたらすことができる抗MIF抗体の同定方法に関する。
【図面の簡単な説明】
【0020】
【図1】本発明のヒト抗MIF抗体の軽鎖可変領域のアミノ酸配列を示す。
【図2】本発明のヒト抗MIF抗体の重鎖可変領域のアミノ酸配列を示す。
【図3】本発明のヒト抗MIF抗体の軽鎖可変領域のDNA配列およびその翻訳を示す。
【図4】本発明のヒト抗MIF抗体の重鎖可変領域のDNA配列およびその翻訳を示す。
【図5】コントロール抗体(C3)および抗MIF抗体Bax94に対するネズミIII.D.9の競合実験。抗体Bax94の量の増加により明確な競合を観察することができる。
【図6】抗体Bax94(点線)および抗体Bax152(破線)は、コントロール抗体(C3)と比較して腹膜炎動物モデルの生存の増加と、死ぬまでの時間の延長を示した。
【図7】活性MIFおよび非活性MIFに対する抗体Bax94の結合の差。抗体Bax94は直接ELISAフォーマット中の活性MIFと結合するが、非活性MIFは結合しない。
【図8】ヒト抗MIF抗体のin vitro特性をまとめた表。
【図9】細胞をベースにしたアッセイにおける抗MIF抗体のアポトーシス促進効果。PC-3細胞の抗体処理後の細胞カスパーゼ-3(エフェクターカスパーゼ)活性を示す。アッセイはトリプリケートで行い、データは平均±SDで示す。
【図10】抗MIF抗体の抗浸潤(侵襲)効果。マトリゲルコートしたTranswell(登録商標)挿入物の細孔を通したPC-3前立腺癌細胞の浸潤を試験する。視野あたりの浸潤細胞数を数える(顕微鏡で400倍に拡大して)。データは3〜10視野の計数の平均±SDとして示し、有意差を示す。
【発明を実施するための形態】
【0021】
(発明の詳細な説明)
定義および一般的技術
特記しない限り、本発明に関連して用いる科学用語および技術用語は、当業者が一般的に理解する意味を持つものとする。一般的には、本明細書に記載の細胞および組織培養、分子生物学、免疫学、微生物学、遺伝学、ならびにタンパク質および核酸化学の技術およびそれに関連して用いる用語は当該分野でよく知られ、一般に用いられているものである。本発明の方法および技術は、特記しない限り、一般的に、当該分野でよく知られ、本明細書全体に引用され、論じられた種々の一般的およびより具体的な参考文献に記載された従来の方法に従って行われる。例えば、Sambrook et al.、Molecular Cloning:A Laboratory Manual、第2版、Cold Spring Harbor Laboratory Press、Cold Spring Harbor、N.Y.(1989)、および Ausubel et al.、Current Protocols in Molecular Biology、Greene Publishing Associates(1992)、および Harlow and Lane、Antibodies:A Laboratory Manual、Cold Spring Harbor Laboratory Press、Cold Spring Harbor、N.Y.(1990)(これらの内容は本明細書の一部を構成する)参照のこと。
【0022】
「MIF」または「マクロファージ遊走阻止因子」とは、免疫および炎症反応における非常に重要なメディエーターとして、特にグルココルチコイドの逆調節因子(counterregulator)として知られるタンパク質をいう。MIFには、哺乳動物MIF、特にヒトMIF(Swiss-Prot、一次受託番号:P14174)が含まれ、ここで、単量体型は、115アミノ酸タンパク質としてコードされ、最初のメチオニンの開裂により114アミノ酸タンパク質として生成される。「MIF」は、「GIF」(グリコシル化阻害因子)および他の形のMIF、例えばMIFの融合タンパク質も含む。MIFのアミノ酸の番号付けは、N末端メチオニン(アミノ酸1)で始まり、C末端アラニン(アミノ酸115)で終わる。
【0023】
用語「活性MIF」は、その生物学的機能に関連するMIFの天然の立体構造アイソフォームを表す。活性MIFは、細胞表面に観察することができるアイソフォーム(例えばTHP1など)を含む。活性MIFは、細菌で攻撃した後の哺乳動物の血清中に生じるMIFアイソフォームも含む。
【0024】
「抗体」は、完全抗体または特異的結合に関して完全抗体と競合する抗原結合部分を表す。一般的には、Fundamental Immunology、Ch. 7(Paul、W.編、第2版、Raven Press、N.Y.(1989))(この内容は本明細書の一部を構成する)参照のこと。用語「抗体」には、遺伝子操作された形、例えば、キメラ抗体もしくはヒト化抗体が含まれる。
【0025】
抗体の、用語「抗原結合部分」は、抗原(例えばMIF)と特異的に結合する能力を保持する抗体の1またはそれ以上の断片を表す。抗原結合部分は、組み換えDNA技術、または完全抗体の酵素的もしくは化学的開裂により製造することができよう。抗原結合部分には、Fab、Fab'、F(ab')2、Fv、および相補性決定領域(CDR)断片、一本鎖抗体(scFv)、キメラ抗体、ディアボディ(diabody)、および特異抗原と結合するのに十分な抗体の少なくとも部分を含むポリペプチドが含まれる。成熟軽および重鎖可変ドメインはいずれも、N末端からC末端にむかって、領域FR1、CDR1、FR2、CDR2、FR3、CDR3、およびFR4を含む。各ドメインに対するアミノ酸の割り当ては、Kabat、Sequences of Proteins of Immunological Interest(National Institutes of Health、Bethesda、Md.(1987、および1991))、Chothia et. al. J. Mol. Biol. 196:901-917(1987)、または Chothia et al.、Nature 342:878-883(1989)の定義に従う。抗体またはその抗原結合部分は、別の機能的分子(例えば、別のペプチドまたはタンパク質)と結合するか、誘導体化することができる。例えば、抗体またはその抗原結合部分は、1またはそれ以上の他の分子構成要素、例えば別の抗体(例えば二特異的抗体またはディアボディ)、検出可能物質、細胞毒性物質、医薬物質、および/または結合分子と機能的に結合することができる。
【0026】
用語「ヒト抗体」は、可変および定常ドメイン配列がヒト配列であるあらゆる抗体を表す。該用語は、ヒト遺伝子由来の配列を有するが、変化している、例えば、免疫原性が減少しうる、親和性が増加している、望ましくないホールディングなどが生じ得るシステインが除去されている抗体を含む。該用語にはヒト細胞では典型的ではないグリコシル化をもたらすかもしれない非ヒト細胞中で組み換え的に製造した抗体を含む。
【0027】
用語「ヒト化抗体」は、非ヒト免疫グロブリン由来の配列を含む、免疫グロブリン、免疫グロブリン鎖、またはその断片(例えば、Fv、Fab、Fab'、F(Fab')2断片、または抗体の他の抗原結合部分)を表す。
【0028】
用語「キメラ抗体」は、2またはそれ以上の異なる種由来の領域を含む抗体を表す。
【0029】
用語「単離された抗体」または「単離されたその抗原結合部分」は、抗体供給源、例えばファージ表現ライブラリーまたはB細胞レパートリーから選択され、同定された抗体またはその抗原結合部分を表す。
【0030】
用語「KD」は、各抗原と特定抗体のFab部分の平衡解離定数を表す。
【0031】
MIFの用語「中心領域」および「C末端領域」は、それぞれアミノ酸35〜68および86〜115を含むヒトMIFの領域を表す。
【0032】
用語「エピトープ」には、免疫グロブリンまたは抗体断片と特異的に結合することができるあらゆるタンパク質決定基を含む。エピトープ決定基は、通常、分子の化学的活性表面団、例えば露出したアミノ酸、アミノ糖、または他の炭化水素側鎖からなり、通常、特異的3次元構造特性、および特異的荷電特性を有する。
【0033】
用語「ベクター」は、それが結合している別の核酸を輸送することができる核酸分子を表す。ある態様において、該ベクターは、プラスミド、すなわち、その中にさらなるDNA断片を結合することができる環状二本鎖DNAループである。
【0034】
用語「宿主細胞」は、発現ベクターを導入した後に組み換えタンパク質を生成することができる細胞系を表す。用語「組み換え細胞系」は、その中に組み換え発現ベクターが導入されている細胞系を表す。「組み換え細胞系」は、特定の対象細胞系だけでなく、そのような細胞系の子孫も意味すると理解すべきである。突然変異または環境的影響により後の世代にある種の修飾が生じうるので、そのような子孫は、実際に親細胞と同一ではないかもしれないが、まだ、本明細書で用いる用語「組み換え細胞系」の範囲内に含まれる。
【0035】
用語「医薬的に許容される担体」は、生理学的に適合性のあらゆるすべての溶媒、分散媒質、コーティング、抗生剤、および抗真菌剤、等張剤および吸収遅延剤などを表す。
抗MIF抗体
【0036】
ある態様において、本発明は、ヒトMIFのC末端または中心領域と特異的に結合し、さらにヒトMIF生物学的機能を阻害する単離されたモノクローナル抗体、またはその抗原結合部分を表す。ある態様において、該モノクローナル抗体はヒトモノクローナル抗体である。他の態様において、モノクローナル抗体はヒト化モノクローナル抗体である。
【0037】
ある態様において、抗MIF抗体の軽鎖は、抗体Bax8(配列番号1)、抗体Bax69(配列番号2)、抗体Bax74(配列番号3)、抗体Bax94(配列番号4)、抗体Bax152(配列番号5)、抗体BaxA10(配列番号6)のVLのアミノ酸配列と同じアミノ酸配列、または該アミノ酸配列と85%、好ましくは90%の配列相同性を有するアミノ酸配列を含む。ある態様において、該軽鎖は、該抗体のいずれかのCDR1の始まりからCDR3の終わりまでのアミノ酸配列を含む。ある態様において、抗MIF抗体の軽鎖は、図1に示すアミノ酸配列の少なくとも軽鎖CDR1、CDR2、またはCDR3を含む。
【0038】
ある態様において、重鎖は、抗体Bax8(配列番号7)、抗体Bax69(配列番号8)、抗体Bax74(配列番号9)、抗体Bax94(配列番号10)、抗体Bax152(配列番号12)、抗体BaxA10(配列番号12)の可変ドメイン(VH)のアミノ酸配列、または該アミノ酸配列と85%、好ましくは90%の配列相同性を有するアミノ酸配列を含む。ある態様において、該重鎖は、該抗体のいずれかのCDR1の始まりからCDR3の終わりまでのアミノ酸配列を含む。ある態様において、抗MIF抗体の重鎖は、図2に示すアミノ酸配列の少なくとも重鎖CDR1、CDR2、またはCDR3を含む。
抗MIF抗体のクラスおよびサブクラス
【0039】
本発明の抗MIF抗体は、単離されたモノクローナル抗体である。該抗MIF抗体は、IgG、IgM、IgE、IgA、またはIgD分子でありうる。他の態様において、該抗MIF抗体はIgGであり、IgG1、IgG2、IgG3、またはIgG4サブクラスである。他の態様において、該抗体は、サブクラスIgG1またはIgG4である。他の態様において、該抗体はサブクラスIgG4である。ある態様において、IgG4抗体は、セリン(Kabatナンバリング法でセリン228)がプロリンに変化する1個の突然変異を有する。したがって、IgG4のFc領域のCPSCサブ配列は、IgG1のサブ配列であるCPPCになる(Angal et al. Mol Immunol. 1993、30、105-108)。
抗MIF抗体により認識されるMIFエピトープ
【0040】
ある態様において、本発明は、ヒトMIFのアミノ酸35〜68または86〜115に及ぶ領域と特異的に結合する抗MIF抗体またはその抗原結合部位に関するものであり、好ましくは、該抗MIF抗体は、それぞれアミノ酸50〜68または86〜102に及ぶ領域と特異的に結合し、ヒトMIF生物学的機能を阻害する。
【0041】
他の態様において、本発明は、活性MIFと特異的に結合し、さらに、ヒトMIF生物学的機能を阻害する抗MIF抗体に関する。ある態様において、活性MIFは膜結合性である。
【0042】
驚くべきことに、本発明の抗MIF抗体は、ヒトMIFとの結合試験において抗MIF抗体 III.D.9と競合する驚くべき特性を有することがわかった。III.D.9の競合は実施例5に記載のごとく決定することができる。
抗MIF抗体のヒトMIFに対する結合親和性
【0043】
本発明は、5×10−7Mまたはそれ以下のKでヒトMIFと結合する抗MIF抗体またはその抗原結合部分に関する。他の態様において、該抗体は、5×10−8Mまたはそれ以下、5×10−9Mまたはそれ以下、または5×10−10Mまたはそれ以下のKでヒトMIFと結合する。
【0044】
抗MIF抗体またはその抗原結合部分のヒトMIFに対する結合親和性は、当該分野で知られた方法により決定することができる。例えば、該結合親和性は、表面プラズモン共鳴(BIACORE)により測定することができる。実施例10は、BIACORE技術による抗MIF抗体の親和性定数を決定する方法を例示する。
【0045】
ある態様において、本発明は、さらに、500nM以下のKDで活性MIFと結合し、さらにヒトMIF機能生物学的機能を阻害する抗MIF抗体またはその抗原結合部分に関する。ある態様において、該抗MIF抗体またはその抗原結合部分は50nM以下のKDで活性MIFと結合する。
抗MIF抗体の製造
【0046】
本発明の抗MIF抗体またはその抗原結合部分は、当業者に知られた多くの方法、例えば抗体断片のファージディスプレイライブラリーのスクリーニングにより製造することができよう。ファージディスプレイライブラリーの種々のフォーマット、例えばscFvまたはFab断片ライブラリーなどを用いることができる。ファージディスプレイライブラリーを、ある種のMIFエピトープに対する望ましい親和性を有する抗体断片についてスクリーニングし、適切なクローンから遺伝子物質を回収する。ライブラリーを作製し、スクリーニングする連続において、最初の単離された抗体断片の親和性に比べて増加した親和性の抗体断片を単離することができる。同定された抗MIF抗体の親和性は、さらに親和性成熟により増強することができる。
核酸、ベクター、宿主細胞、および抗MIF抗体の組み換え製造方法
【0047】
さらに、本発明は、本発明の抗MIF抗体またはその抗原結合部分をコードする核酸分子、および該核酸を含むベクター、および該ベクターを含む宿主細胞、および該核酸分子によってコードされるポリペプチドの組み換え製造方法に関する。
【0048】
ある態様において、抗MIF抗体のVL領域をコードするDNA配列は、図3に示す抗体Bax8(配列番号13)、抗体Bax69(配列番号14)、抗体Bax74(配列番号15)、抗体Bax94(配列番号16)、抗体Bax152(配列番号17)、抗体BaxA10(配列番号18)のVLの配列と同じヌクレオチド配列、または該ヌクレオチド配列のいずれかと85%、好ましくは90%の配列相同性を有する配列を含む。
【0049】
ある態様において、抗MIF抗体のVH領域をコードするDNA配列は、図4に示す抗体Bax8(配列番号19)、抗体Bax69(配列番号20)、抗体Bax74(配列番号21)、抗体Bax94(配列番号22)、抗体Bax152(配列番号23)、抗体BaxA10(配列番号24)のVH配列と同じヌクレオチド配列、または該ヌクレオチド配列のいずれかと85%、好ましくは90%の配列相同性を有する配列を含む。
【0050】
本発明に従った抗MIF抗体の製造は、RNAの逆転写および/またはDNA増幅、および発現ベクター内へのクローニングといった遺伝子工学によるあらゆる組み換えDNA製造方法を含む。ある態様において、該ベクターは、さらなるDNA断片がウイルスゲノム内に結合しうるウイルスベクターである。ある態様において、該ベクターは、導入された宿主細胞内で自立的に複製することができる(例えば、細菌の複製起点を有する細菌ベクター、およびエピソーム哺乳動物ベクター)。他の態様において、該ベクター(例えば、非エピソーム哺乳動物ベクター)は、宿主細胞内に導入すると宿主細胞のゲノムに統合され、宿主ゲノムと共に複製されることができる。さらに、ある種のベクターは、作動可能なように結合した遺伝子の発現を指示することができる。そのようなベクターは、本明細書では「組み換え発現ベクター」(または単に「発現ベクター」)という。
【0051】
抗MIF抗体は、常套的発現ベクター、例えば細菌ベクター(例えば、pBR322およびその誘導体)、または真核細胞ベクターにより製造することができる。該抗体をコードする該配列には、複製、発現、および/または宿主細胞からの分泌を調節する調節配列を与えることができる。これら調節配列は、例えば、プロモーター(例えばCMVまたはSV40)およびシグナル配列を含む。発現ベクターは、選択および増幅マーカー、例えばジヒドロ葉酸還元酵素遺伝子(DHFR)、ヒグロマイシン-B-ホスホトランスフェラーゼ、およびチミジン-キナーゼを含むこともできる。用いるベクターの構成要素、例えば選択マーカー、レプリコン、エンハンサーは、市販品を入手するか、常套的方法により製造することができる。ベクターは、種々の細胞培養、例えば哺乳動物細胞、例えばCHO、COS、HEK293、NS0、繊維芽細胞、昆虫細胞、酵母、または細菌、例えばE. coli中で発現させるために構築することができる。例えば、発現したタンパク質の最適なグリコシル化を可能にする細胞を用いる。
【0052】
抗MIF抗体軽鎖遺伝子および抗MIF抗体重鎖遺伝子を別のベクターに挿入することができ、また、両遺伝子を同じ発現ベクターに挿入する。該抗体遺伝子は、標準的方法、例えば該抗体遺伝子断片およびベクター上の相補制限部位のライゲーション、または制限部位が存在しない場合は平滑末端ライゲーションにより発現ベクター内に挿入する。
【0053】
抗MIF抗体またはその抗原結合部分の製造法には、トランスフェクションにより、例えばエレクトロポーレーションまたはマイクロインジェクションにより組み換えDNAを真核細胞内に導入するための当該分野で知られたあらゆる方法が含まれうる。例えば、抗MIF抗体の組み換え発現は、抗MIF抗体をコードするDNA配列を含む発現プラスミドを適切な宿主細胞系内に、1またはそれ以上の調節配列、例えば強いプロモーターの制御下で、ゲノム内に安定に統合された導入配列を持つ細胞を生じる適切なトランスフェクション法により導入することにより達成することができる。リポフェクション法は、本発明に従って用いることができるトランスフェクション法の例である。
【0054】
抗MIF抗体の製造法には、例えば連続的またはバッチ式で該トランスフェクションした細胞を培養し、抗MIF抗体を、例えば構成的にまたは導入により発現させるための当該分野で知られたあらゆる方法も含まれうる。
【0055】
本発明の宿主細胞の種類はあらゆる真核細胞であってよい。ある態様において、該細胞は、抗MIF抗体の翻訳後修飾を行う能力を有する哺乳動物細胞である。例えば、該哺乳動物細胞は、例えば、SkHep-、CHO-、HEK293-、およびBHK-細胞からなる群から選ばれる細胞系のような哺乳動物細胞系から誘導される。ある態様において、抗MIF抗体は、選択マーカーとしてG418を付加したDHFR欠損CHO細胞系、例えばDXB11中で発現する。抗体遺伝子をコードする組み換え発現ベクターを哺乳動物宿主細胞内に導入するときは、該抗体を宿主細胞中で発現させるか、または宿主細胞が増殖する培養液中に抗体を分泌させるのを可能にするのに十分な時間宿主細胞を培養することにより該抗体を製造する。抗MIF抗体は、標準的なタンパク質精製法を用いて培養液から回収することができる。
【0056】
さらに、抗MIF抗体の製造法には、抗体を生成するための当該分野で知られたあらゆる方法、例えば陰イオン交換クロマトグラフィーまたはアフィニティクロマトグラフィーが含まれうる。ある態様において、該抗MIF抗体は、サイズ排除クロマトグラフィーにより細胞培養上清から精製することができる。
抗MIF抗体の特性
【0057】
本発明は、以下の特性の少なくとも1を有する抗MIF抗体またはその抗原結合部分に関する:
a)ヒトMIFのC末端または中心領域と結合する、
b)グルココルチコイド・オーバーリッジング(GCO)活性を阻害する、
c)細胞系、例えば繊維芽細胞または癌細胞(例えばNIH/3T3またはPC-3)の増殖を阻害する、
d)活性MIFと結合する、
e)非活性MIFと結合しない、
f)マウス抗MIF抗体 III.D.9と競合する。
【0058】
ある態様において、活性MIFは、ヒトMIFを穏やかな酸化試薬、例えばシスチンで処理するか、ヒトMIFをELISAプレートまたはビーズのような支持体上に固定化することにより生じる活性MIFのアイソフォームである。他の態様において、活性MIFは、動物を細菌で攻撃した後にin vivoで生じる活性MIFのアイソフォームである。他の態様において、活性MIFは、細胞(例えばTHP1、CFB)表面上にin vivoで生じる活性MIFのアイソフォームである。ある態様において、非活性MIFは還元MIF(例えば実施例7に記載されている)または細胞内保存MIFである。他の態様において、抗MIF抗体またはその抗原結合部分は500nM以下のKDで活性MIFと結合する。
抗MIF抗体の医薬組成物、および治療方法
【0059】
本発明は、MIF関連病状、特に免疫性疾患、例えば炎症性疾患、および過剰増殖性障害の治療が必要な対象を治療するための抗MIF抗体またはその抗原結合部分を含む組成物に関する。
【0060】
ある態様において、治療が必要な対象はヒトである。本発明の抗MIF抗体で治療することができる過剰増殖性障害、例えば癌性疾患は、あらゆる組織もしくは器官を含み、限定されるものではないが、脳、肺、扁平上皮細胞、膀胱、胃、膵臓、乳房、頭、首、肝臓、腎臓、卵巣、前立腺、結腸直腸、食道、婦人科、鼻咽頭、または甲状腺の癌、メラノーマ、リンパ腫、白血病、または多発性骨髄腫を含みうる。特に、本発明の抗MIF抗体は、乳房、前立腺、結腸、および肺の癌を治療するのに有用である。
【0061】
本発明は、ヒトを含む対象の、炎症性疾患、例えば、血管炎、関節炎、敗血症、敗血症性ショック、内毒素性ショック、毒素性ショック症候群、後天性呼吸窮迫症候群、糸球体腎炎、炎症性腸疾患、クローン病、潰瘍性大腸炎、腹膜炎、腎炎、アトピー性皮膚炎、喘息、結膜炎、発熱、マラリア、または乾癬の治療方法であって、治療的有効量の抗MIF抗体またはその抗原結合部分を該治療を必要とする対象に投与する工程を含む方法も含む。
【0062】
他の態様において、本発明の該抗MIF抗体を含む組成物は、糸球体腎炎、炎症性腸疾患、腎炎、および腹膜炎からなる群から選ばれる炎症性疾患の治療に用いられる。
【0063】
該治療は、本発明の1またはそれ以上の抗MIF抗体またはその抗原結合断片の単独または医薬的に許容される担体と組み合わせた投与も含みうる。医薬的に許容される担体の例には、水、生理食塩水、リン酸緩衝生理食塩水、デキストロース、グリセロール、エタノールなど、およびその組み合わせがある。多くの例において、該組成物中に、等張剤、例えば糖、ポリアルコール、例えばマンニトール、ソルビトール、または塩化ナトリウムを含むことが好ましい。医薬的に許容される物質のさらなる例には、該抗体の保存期間または有効性を増強する、湿潤剤もしくは少量の補助剤、例えば湿潤剤もしくは乳化剤、保存料または緩衝剤がある。
【0064】
本発明の抗MIF抗体およびそれを含む医薬組成物は、1またはそれ以上の他の治療薬、診断薬、または予防薬と組み合わせて投与することができる。さらなる治療薬には、治療する疾患に応じて、他の抗新生物薬、抗腫瘍薬、抗血管新生薬、化学療法剤、またはステロイドが含まれる。
【0065】
本発明の医薬組成物は、種々の形、例えば、液体、半固体、および固体剤形、例えば液体溶液剤(例えば、注射可能溶液剤および注入可能溶液剤)、ディスパージョン剤またはサスペンジョン剤、錠剤、丸剤、粉末剤、リポソーム、および坐剤でありうる。好ましい形は、意図する投与方法および治療的適用によって決まる。典型的な好ましい組成物は、ヒトの受け身免疫に用いるものと同様の組成物のような注射可能溶液剤もしくは注入可能溶液剤の形である。好ましい投与方法は、非経口的(例えば、静脈内、皮下、腹腔内、筋肉内)である。好ましい態様において、該抗体は静脈内注入または注射により投与される。別の好ましい態様において、該抗体は筋肉内注射または皮下注射により投与される。当業者が認識するであろうように、投与経路および/または投与方法は、期待する結果に応じて変化する。
【0066】
抗MIF抗体は一回投与されるかもしれないが、より好ましくは複数回投与される。例えば、該抗体は、1日に3回〜6ヶ月毎またはそれより長期間毎に1回投与することができよう。投与は、計画通りに、例えば1日3回、1日2回、1日1回、2日に1回、3日に1回、1週間に1回、2週間に1回、1月に1回、2月に1回、3月に1回、および6ヶ月に1回でありうる。
【0067】
本発明は、免疫性疾患、例えば炎症性疾患および過剰増殖性障害を治療するための医薬を製造するための抗MIF抗体またはその抗原結合断片の使用も含む。
【0068】
さらに、本発明は、免疫性疾患、例えば炎症性疾患および過剰増殖性障害の治療に用いる抗MIF抗体またはその抗原結合断片を含む。
【0069】
本発明は、診断的方法に用いるための抗MIF抗体またはその抗原結合断片も含む。ある態様において、抗MIF抗体またはその抗原結合部分を用いて生物試料中のヒトMIFを検出することができる。
【0070】
抗MIF抗体またはその抗原結合部分を用いて、組織または組織由来の細胞中の細胞表面MIFのレベルを測定することができる。ある態様において、組織は病的組織である。次に、該組織を、例えば総MIFレベル、MIFの細胞表面レベル、またはMIFの局在を測定するためのイムノアッセイに用いることができる。
【0071】
さらに、本発明は、本発明の抗MIF抗体もしくは抗原結合部分またはそのような抗体もしくは部分を含む医薬組成物、を含むキットに関する。キットは、該抗体または医薬組成物に加えて、診断薬または治療薬を含みうる。キットは、診断または治療方法に用いるための指示書も含むことができる。
【0072】
本発明は、さらに以下の工程を実施することによりヒトMIF生物学的機能を阻害し、動物において有益な効果をもたらすことができる抗MIF抗体を同定する方法に関する:
a)活性MIFと結合し、非活性MIFと結合しない抗体を選択し、
b)グルココルチコイド・オーバーリッジング(GCO)アッセイまたは細胞増殖アッセイのようなin vitroアッセイで該抗体を試験し、
c)GCOおよび/または細胞増殖を阻害する抗体を選択する。
【0073】
結果は、活性MIFのみと結合し、非活性MIFと結合せず、さらにGCOおよび/または細胞増殖を阻害する抗MIF抗体は動物モデルにおいて有益な効果をもたらすことを示す(例えば実施例6)。
【0074】
本発明を以下の実施例によりさらに説明するが、これらに限定されるものではない。
実験パート
【実施例1】
【0075】
抗体選択
ファージディスプレイ技術を用いてヒト抗MIF抗体断片を製造する。ファージディスプレイライブラリーから出発し、種々のスクリーニングを行う。その内の3つは完全長MIFを用いて行う(ヒトMIFコーテッド/溶液中ヒトMIF/ヒト-ネズミMIF交互)。その他は、完全長MIFと交互の6種のMIF由来ペプチドを用いて行う。これら6種のペプチドは、MIFタンパク質を、約15アミノ酸の重複ストレッチを有する約30アミノ酸の6ペプチドに分割することにより設計する。数回選択した後にユニークなバインダーが同定され、すべてのユニークなバインダーが発現し、ヒトIgG4抗体として精製される。これら抗体を種々のアッセイで試験し、MIFのin vitro阻害を証明する。MIFタンパク質内の結合領域を決定するためのエピトープマッピングを行う。193抗体を試験し、in vitroのMIF阻害活性にしたがって分類する。In-vitroアッセイを以下で説明する。3種のネズミ抗MIF抗体をコントロールとして用いる(III.D.9、XIV.14.3、および XIV.15.5)。
【実施例2】
【0076】
MIFのグルココルチコイド・オーバーリッジング(GCO)活性の阻害
この方法は、内在性MIF、すなわち、用いる細胞系により産生されるMIFの阻害に基づく。この方法は、抗体スクリーニング、および用量反応曲線の決定に適用される。
抗体スクリーニングのためのGCOアッセイ
【0077】
THP1浮遊培養を遠心し、細胞を細胞密度が106個/mLとなるよう新鮮完全培地に再浮遊させる。この培養を96ウェルマイクロプレートのウェルに移し(90μl/ウェル)、抗MIF抗体を加えて最終濃度75μl/ウェルとする。各抗体はトリプリケートで試験する。37℃でo/nインキュベーションした後、デキサメサゾンを濃度2nMとなるように加え、37℃で1時間インキュベーションした後、LPSを加える(最終濃度3ng/mL)。37℃でさらに6時間インキュベーションした後、上清を回収し、ELISA(Cytosetキット、市販品を利用可能)を用いてIL-6濃度を測定する。トリプリケートの結果を平均し、IL-6分泌パーセントをコントロール抗体と比較して測定する。75%以下のIL-6分泌をもたらす抗体を陽性と評価する。
IC50値を決定するためのアッセイ
【0078】
実験手順は、増加する量の抗体を用いる(典型的には1〜125nM)以外はスクリーニングアッセイに記載したように実施する。得られる用量反応曲線を陰性コントロール抗体と比較して阻害%で表す。この曲線は、抗体の最大阻害効果(%Inh max)および最大阻害効果の50%を示す抗体濃度(IC50)の計算に用いる。
【0079】
結果を図8のカラム3(IC50)およびカラム4(最大阻害)にまとめている。比較のために、ネズミ抗体 XIV.14.3はGCOの36%阻害のみを示す(データ示さず)。
【実施例3】
【0080】
細胞増殖の阻害
血清は、静止NIH/3T3におけるMIFの分泌を刺激し、同様にMIFは細胞増殖を刺激する。したがって、内在性MIFを阻害する抗体は、静止NIH/3T3細胞の増殖を低下させる。増殖の低下は、3H-チミジンの取り込みにより測定する。NIH/3T3細胞1000個/ウェルを、96ウェルプレート中で、10%血清含有培地中、週末の間培養する。次に、細胞を0.5%血清含有培地中、37℃で一夜インキュベーションして飢餓させる。0.5%培地を除去し、10%血清、75μg/ml抗体、および5μCi/mlの3H-チミジンを含む新鮮培地に交換する。37℃のCO2インキュベーター中で16時間した後、細胞を150μlの冷PBS/ウェルで2回洗浄する。マルチチャンネルピペットを用いて、150μlの5%(w/v)TCA溶液/ウェルを加え、4℃で30分間インキュベーションする。プレートを150μl PBSで洗浄する。1ウェルあたり75μlの0.5% SDS含有0.5M NaOH溶液を加え、混合し、次いで室温で保存する。試料を、5mlのUltima Gold(Packard)と75μlの試料溶液を混合してβカウンターにて測定する。各測定はトリプリケートで行い、値をt検定でコントロール抗体の値と比較する。増殖を有意に低下させる(P<0.05)抗体を陽性と評価する。結果を図8、カラム5にまとめる。
【実施例4】
【0081】
結合試験:抗MIF抗体のエピトープ測定
各ペプチドを結合抗体中で希釈し、典型的には5μg/mlのペプチド濃度としたものをマイクロプレート(NUNC Immobilizer(登録商標) Amino Plate F96 Clear)に加え、4℃で一夜インキュベーションする(100μl/ウェル)。コントロールとして、組み換え完全長MIFおよびPBSを用いる。プレートを200μl PBSTで3回洗浄し、抗体(PBS中4μg/ml)を加え(100 μl/ウェル)、次いで静かに振盪させながら室温で2時間インキュベーションする。プレートを200 μl PBSTで3回洗浄し、次いで検出用抗体(例えば、Fc特異的抗ヒトIgG/HRP標識、Sigma)を加える(100μl/ウェル)。静かに振盪させながら室温で1時間インキュベーションした後、プレートを200μl PBSTで3回洗浄する。各ウェルを、暗い所で30分間100μl TMB溶液(T-0440、Sigma)とインキュベーションする。染色反応を100μlの1.8M H2SO4溶液/ウェルを加えて止める。試料を450nmで測定する。
【実施例5】
【0082】
ヒト抗MIF抗体とネズミ抗MIF抗体III.D.9との競合
抗体Bax94をマウス抗MIF抗体 III.D.9との競合に用いる。96ウェルプレート(NUNC Maxisorp)を組み換えヒトMIFでコートする。ネズミ抗MIF抗体 II.D.9およびヒト抗MIF抗体をTBST/2% BSAで希釈し、III.D9の最終濃度が2μg/mlに保たれ、ヒト抗MIF抗体濃度が0μg/mlから典型的には32μg/mlに増加するように混合する。マイクロプレートを洗浄した後に抗体を適用し、典型的には2時間室温でインキュベーションする。洗浄後、プレートを抗マウスIgG(Fc spec.)パーオキシダーゼコンジュゲートとインキュベーションし、次いで室温で1時間インキュベーションする。洗浄後、プレートをTMB溶液とインキュベーションし、次いで染色反応をH2SO4溶液を加えて止める。得られた競合曲線のフィッティングにより、III.D.9結合の最大阻害を計算することができる。結果を図8、カラム6にまとめる。
【実施例6】
【0083】
生存E.coli 腹膜炎動物モデルにおける抗MIF抗体による生存増加
雌NMRIマウス(25〜30g、6〜10週齢)を用い、Calandra et al.(Nature Immunology、2000)に従って、15%ムチンおよび4%ヘモグロビン中の6000CFUのE.coli 0111:B4サスペンジョンを腹腔内注射して実験を行う。栄養寒天平板培養から得た2または3コロニー(E.coli 0111:B04)を10 mlのTSBに接種し、振盪させながら36℃で一夜インキュベーションする。培養を生理食塩水で必要濃度に希釈し(典型的には培養は、一夜で2x109 CFU/mlに達する)、ムチンおよびヘモグロビンと混合する(1容量の希釈接種物、2容量の15%ムチン、2容量の4%ヘモグロビン)。接種物混合物は沈殿する傾向があるので、注射と注射の間に混合する。注射混合物中の粒状物質で針が詰まるのを避けるため注射には大(例えば23ゲージ)注射針を用いる。抗体Bax94(IgG4)およびアイソタイプが一致するコントロール抗体を、細菌を投与する2時間前に腹腔内に投与する。抗体の用量は、典型的には800μg/マウスであり、各群20匹のマウスを用いる。生存/死亡までの時間に対する統計的に有意な効果がヒト抗MIF抗体のIgG1およびIgG4アイソタイプでみられるかもしれない。図6は、抗体Bax94および抗体Bax152(IgG4)について得られた結果を示す。Kaplan-Meier統計処理を生存曲線の評価に用いる。
【実施例7】
【0084】
活性MIFに対する結合特異性
本発明に記載の抗MIF抗体は、それぞれ穏やかな酸化または還元により生じる活性MIFと非活性MIFを区別することができる。これら配座異性体間の区別は、ELISAまたは表面プラズモン共鳴により評価する。
該抗体の結合の差を評価するためのELISA
・穏やかな酸化によるMIFのその活性構造への変換
【0085】
組み換えヒトMIF(PBS中0.5mg/ml)を、3倍過剰(容量)のPBS中のL-シスチンの飽和溶液(〜0.4〜0.5mM L-シスチン)と37℃で3時間インキュベーションする。次に、MIFを分子量カットオフ値が7kDaのSlide-A-Lyzer(登録商標)透析カセット(Pierce)を用いてPBSで2回透析する。
・MIFのその非活性構造への変換
【0086】
MIFは、0.5mg/mlの濃度で、4℃で8〜16mMジチオスレイトール(最終濃度)と一夜インキュベーションすると還元される。
・ELISAプロトコール
【0087】
抗MIF抗体を5μg/mlの濃度(コーティング用緩衝液で希釈)96-ウェルマクロプレート(NUNC Maxisorp(登録商標))にコーティングする。プレートをTBST(0.1%Tween-20(v/v)含有トリス緩衝生理食塩水)で洗浄し、TBST/2%BSA(TBSTおよび2%ウシ血清アルブミン(w/v))でブロックした後、活性MIFまたは非活性MIFの希釈シリーズと室温で1〜2時間インキュベーションする。結合したMIFをポリクローナルウサギ抗MIF抗体およびホースラディッシュパーオキシダーゼ標識ヤギ抗ウサギ抗体(Biorad)を用いて検出する。TBST/2%BSAを用いてMIF、ウサギ抗MIF抗体、およびパーオキシダーゼコンジュゲートを希釈し、非特異結合を減らす。図7は、抗体Bax94を用いて得られたELISAの結果を示す。
Biacoreによる抗体の結合の違いの評価
【0088】
活性MIFおよび非活性MIFの抗体Bax94に対する結合動態をBiacore 3000 Systemを用いる表面プラズモン共鳴分析により測定する。したがって、10000反応単位のBax 94を、CM5(=カルボキシメチル化デキストラン)マトリックスを有するセンサーチップ上に固定化し、HBS-EP緩衝液(GE Healthcare)中の4.8mM GSH/0.2mM GSSG(GSSG = 酸化グルタチオン)〜5mM GSSGの範囲の還元促進(pro-reductive)および酸化促進(pro-oxidative)グルタチオン酸化還元緩衝液中の活性MIFまたは非活性MIF huMIFとインキュベーションする。コントロールとして、MIFを固定化アイソタイプコントロール抗体を含む第2フローセルを用いるバインディングアッセイに用いる。コントロール抗体および抗体Bax94の結合反応単位を評価のために引く。
【実施例8】
【0089】
THP-1細胞の表面上の活性MIFの検出
細胞を抗MIF抗体Bax94とインキュベーションする。細胞を氷冷PBSで洗浄し、冷細胞溶解用緩衝液(Cell Signaling Technology(登録商標))中に細浮遊させる。磁性プロテインG Dynabeads(登録商標)(Invitrogen)をTBST + 5%脱脂粉乳(w/v)でブロックし、洗浄し、次いで溶解した細胞を加える。免疫沈降法を4℃で一夜行う。次に、ビーズを細胞溶解用緩衝液およびTBSTで洗浄し、SDS PAGE試料用緩衝液(還元剤不含)中で煮沸する。試料をウエスタンブロット分析のために非還元SDS PAGEにかける。
【実施例9】
【0090】
抗MIF抗体の膜結合MIFとの結合
THP-1細胞を氷冷PBSで洗浄し、200μg/ml マウスIgG添加冷細胞染色用緩衝液(Biolegend)に再浮遊させる。FITC-またはTRITC-標識抗MIF抗体を加えて典型的には200〜500nMの最終濃度とし、4℃でインキュベーションする。次に、細胞を氷冷細胞染色用緩衝液で洗浄し、Via-Probe(登録商標)Cell Viability溶液(BD Biosciences)を添加した細胞染色用緩衝液に再浮遊させる。細胞をFACS Canto(登録商標)II Flow Cytometry System(BD Biosciences)を用いて測定し、生細胞ポピュレーションのFITC-/TRITC-シフトの中央値を色素標識アイソタイプコントロール抗体と比較する。
【実施例10】
【0091】
Biacoreによる抗MIF抗体のFab断片のアフィニティ測定
典型的には、40RU単位のヒト組み換えMIFを、CM5(=カルボキシメチル化デキストラン)マトリックス(Biacore)を有するセンサーチップ上に固定する。Fab 断片をHBS-EPで希釈した典型的には6〜100nMの濃度範囲で注射する。各サイクル後、チップを50mM NaOH + 1M NaClで再生する。アフィニティを1:1 Langmuirモデルに従って計算する。結果を図8、カラム7にまとめる。
【実施例11】
【0092】
半月体形成性糸球体腎炎の動物モデルにおける抗MIF抗体の有益な効果
抗MIF抗体をFrederick W.K. Tam et. al.(Nephrol Dial Transplant、1999、1658-1666)が記載したラットの半月体形成性糸球体腎炎モデルを用いて試験する。腎毒性腎炎を、抗ラット糸球体基底膜血清の単回静脈内注射により雄Wistar Kyotoラットに誘導する。実験の予防的設定において、抗MIF抗体およびアイソタイプが一致するコントロール抗体による処置を、該抗体の腹腔内注射により腎炎誘導時(第0日)に開始する。処置を典型的には1日おきに反復し、動物を組織学的分析のために第7日に処分する。実験前(ベースライン)および実験終了前(第7日)に尿を採取する。治療的設定において、抗MIF抗体による処置を疾患誘導後4日に開始し、1日おきに反復する。ラットを典型的には第8日に処分する。尿を、実験前(ベースライン)、処置開始前(第4日)、および動物処分前(第8日)に採取する。抗体の用量は典型的には1〜20mg/kg/注射であり、各群あたり6〜8匹のラットを用いる。疾患の重症度は、タンパク尿、糸球体へのマクロファージへの浸潤、および組織学的損傷(三日月形成)を測定することにより決定する。予防実験において、7日間の抗MIF抗体Bax69(10 mg/kg/用量)による処置は、コントロール抗体処置動物に比べてタンパク尿の47%の減少をもたらす。確立された疾患の治療(治療実験)は、コントロール抗体処置動物に比べて、タンパク尿の16%(10mg/kg Bax69/用量)および34%(20mg/kg Bax69/用量)の用量依存性の減少をもたらす。
【実施例12】
【0093】
潰瘍性大腸炎の動物モデル(Rag-/-マウスにおけるナイーブT細胞の養子導入)における抗MIF抗体の有益な効果
C57BL/6マウスをと殺し、CD45RBhi細胞(ナイーブT細胞)を脾臓細胞ポピュレーションのFACSソーティングにより単離する。CD45RBhi細胞(5x105)をRag-/-C57BL/6マウス(7〜9週齢)にi.p.注射すると、約2週間後に潰瘍性大腸炎が発現する。(de Jong et al.、Nature immunology.、2001、1061-1066)。抗MIF抗体、およびアイソタイプコントロール抗体を1週間に2回腹腔内注射する(1mg/マウス/用量)。予防的設定において、処置をT細胞注射時に開始する。治療的設定において、処置を疾患誘導後4週間に開始する。マウスの体重および疾患の発現を毎週モニターする。典型的には、CD4CD45RBhi細胞をRag-/-C57BL/6レシピエントに導入後8週間に疾患活動性指数(DAI)を計算し、結腸切片を組織学的指数(HI)スコア用に採取する。疾患活動性指数(DAI)および組織学的指数(HI)を動物モデルの終了時に求める(DAIは、4つのパラメーター:ハンチング(hunching)、消耗(スコア0または1)、結腸肥厚(0〜3)、および便の硬さ(0〜3))に基づく。治療実験において、抗MIF抗体Bax69およびBaxA10を確立された疾患の治療に用いる、平均DAIはアイソタイプコントロール処置マウスに比べて約60%(Bax69)および約40%(BaxA10)有意に低下する。さらに、平均HIスコアはBax69処置後に約33%低下する。
【実施例13】
【0094】
潰瘍性大腸炎の動物モデル(アゴニスト抗CD40モデル)における抗MIF抗体の有益な効果
このモデルは、Rag1-/-マウスにおけるIBDに似た腸病変を誘発するアゴニスト抗CD40抗体によるマクロファージおよび樹状細胞の活性化に基づく。年齢/性が一致したRag−1−/−マウス(4〜5wks)をJackson Laboratoriesから購入し、実験前2週間、動物施設に収容する。アゴニスト-CD40モノクローナル抗体(FGK45、IgG2a)またはアイソタイプコントロールのラットIgG2aを1mg/mlとなるようPBSに溶解する。5群(10マウス/群)に200μgのアゴニスト抗CD40モノクローナル抗体をi.p.注射し、そのうち4群は第0日および第1日に抗MIF抗体で処置する(2x1mg/マウス)。第6群(10匹)にはアイソタイプコントロール(ラットIgG2a、健康コントロール)のみを注射する。次の7日間マウスの体重を測定する。第7日に、疾患活動性指数(DAI)を計算し、結腸切片を組織指数(HI)スコア用に採取した。DAIスコアは、ハンチング(0〜1);消耗(0〜1)、便の硬さ(0〜3)、および結腸肥厚(0〜3)に基づく。病歴スコアは、厚み(0〜3)、陰窩伸長、炎症(0〜3)、および膿瘍(0〜1)に基づいた。抗MIF抗体Bax94、BaxA10、およびBax69による処置は、アイソタイプコントロール処置マウスに比べてDAIスコアを有意に減少させる(BaxA10:〜48%減少;Bax94 〜62%減少;Bax69〜73%減少)。さらに、平均HIスコアも該抗体により低下する。
【実施例14】
【0095】
抗MIF抗体によるMf1ヌードマウスにおける腫瘍増殖の阻害
ヒト前立腺腺癌細胞(PC-3)を対数増殖期の培養から回収し、増殖因子枯渇マトリゲルと混合する。0.25mlマトリゲル中の2*106細胞をMf1ヌードマウスの右脇腹に皮下接種する。抗MIF抗体Bax94およびアイソタイプコントロールC3による処置を接種後1日に開始し(0.6mg抗体/マウス/日)、1日おきに反復する。腫瘍サイズの測定は典型的には細胞注射後2週間に開始し、1日おきに行う。体積を式V=0.5*a*b2(ここで、「a」は最長直径であり、「b」は最短直径である)を用いて計算する。Bax94で処置したマウスの腫瘍増殖は有意に減少し、腫瘍誘発後28日に分析した腫瘍の平均体積はBax94処置群に比べてアイソタイプコントロール処置群で4.3倍大きかった。
【0096】
実験の治療的設定において、抗体処置を腫瘍生着後1週間に開始した。50mg/kg/用量のアイソタイプコントロール抗体C3および抗MIF抗体Bax69を1日おきに腹腔内注射する。22日間処置後、腫瘍体積の中央値は、Bax69処置群に比べてC3処置群で2.7倍大きかった。
【実施例15】
【0097】
抗MIF抗体のアポトーシス促進効果
抗MIF抗体Bax94のアポトーシス促進効果は、ヒト前立腺癌細胞系PC-3を用いる細胞ベースのカスパーゼ-3アッセイにおいて示される。PC-3細胞を、10%FCS存在下、10cm培養皿(細胞〜106個/皿)に接種する。100nM抗体Bax94または100nMコントロール抗体C3を含む新鮮培地を、24時間後に加える。さらに48時間インキュベーションした後、細胞溶解物を調製し、カスパーゼ-3活性を蛍光標識カスパーゼ基質を加えて測定する(図9)。
【実施例16】
【0098】
腫瘍細胞浸潤の阻害
抗MIF抗体Bax94およびBax69を、ヒト前立腺癌細胞系PC-3を用いるTranswell(登録商標)浸潤アッセイで試験する。PC-3細胞5*104個/ウェルを、ポリカーボネート膜の底面をポリD-リジンでコートし、Transwell(登録商標)挿入表面を成長因子枯渇マトリゲルでコートした24ウェル-Transwell(登録商標)ディッシュ(ポアサイズ8μm)に播く。細胞を10%FCS存在下で4時間付着させる。次に、培地を無血清培地に交換し、細胞を一夜飢餓させる(すなわち16時間)。次に、化合物(10nM MIF、500nM抗体)を下のチャンバーに加える。細胞を多孔膜を通して24時間移動させる。このインキュベーション期間後、膜の下面に付着した移動細胞をギムザ溶液で染色する。膜の下面に付着した細胞の数を独立した視野について400倍の倍率でカウントする(図10)。

【特許請求の範囲】
【請求項1】
MIFのC末端または中心領域と特異的に結合し、ヒトMIF生物学的機能を阻害するモノクローナル抗体またはその抗原結合部分。
【請求項2】
以下の特性の少なくとも1つを有する請求項1記載のモノクローナル抗体または抗原結合部分:
a)グルココルチコイド・オーバーリッジング(GCO)活性を阻害し、
b)癌細胞または繊維芽細胞の増殖を阻害し、
c)活性MIFと結合し、
d)非活性MIFと結合せず、
e)マウス抗MIF抗体III.D.9と競合する。
【請求項3】
KD 500nM以下でヒトMIDと結合する請求項1または2記載のモノクローナル抗体または抗原結合部分。
【請求項4】
活性MIFと結合する請求項1記載のモノクローナル抗体または抗原結合部分。
【請求項5】
抗体Bax8、抗体Bax69、抗体Bax74、抗体Bax94、抗体Bax152、および抗体BaxA10からなる群から選ばれる請求項1〜4のいずれかに記載のモノクローナル抗体。
【請求項6】
IgG4サブフォーマット抗体である請求項5記載のモノクローナル抗体。
【請求項7】
該IgG4サブフォーマットが1個の突然変異を有することにより、IgG4のFc領域中のCPSC部分配列がCPPCになる、請求項6記載のモノクローナル抗体。
【請求項8】
以下のものを含む請求項1記載のモノクローナル抗体または抗原結合部分:
a)抗体Bax8、抗体Bax69、抗体Bax74、抗体Bax94、抗体Bax152、および抗体BaxA10からなる群から選ばれる抗体の重鎖から独立して選ばれる重鎖CDR1、CDR2、および CDR3;
b)抗体Bax8、抗体Bax69、抗体Bax74、抗体Bax94、抗体Bax152、および抗体BaxA10からなる群から選ばれる抗体の軽鎖から独立して選ばれる軽鎖CDR1、CDR2、およびCDR3。
【請求項9】
以下のものを含む請求項1記載のモノクローナル抗体:
c)抗体Bax8、抗体Bax69、抗体Bax74、抗体Bax94、抗体Bax152、および抗体BaxA10の重鎖アミノ酸配列と少なくとも90%同一な重鎖アミノ酸配列;
d)抗体Bax8、抗体Bax69、抗体Bax74、抗体Bax94、抗体Bax152、および抗体BaxA10の軽鎖アミノ酸配列と少なくとも90%同一な軽鎖アミノ酸配列。
【請求項10】
該免疫性疾患が炎症性疾患または過剰増殖性障害である免疫性疾患を治療するのに用いるための請求項1〜9のいずれかに記載のモノクローナル抗体または抗原結合部分。
【請求項11】
該炎症性疾患が、血管炎、関節炎、敗血症、敗血症性ショック、内毒素性ショック、毒素性ショック症候群、後天性呼吸窮迫症候群、糸球体腎炎、炎症性腸疾患、クローン病、潰瘍性大腸炎、腹膜炎、腎炎、および乾癬からなる群から選ばれる請求項10記載のモノクローナル抗体または抗原結合部分。
【請求項12】
請求項1〜9のいずれかに記載のモノクローナル抗体または抗原結合部分および医薬的に許容される担体を含む医薬組成物。
【請求項13】
該モノクローナル抗体が、抗体Bax8、抗体Bax69、抗体Bax74、抗体Bax94、抗体Bax152、および抗体BaxA10からなる群から選ばれる抗体である請求項12記載の医薬組成物。
【請求項14】
ヒトを含む対象の、炎症性疾患または過剰増殖性障害から選ばれる免疫学的疾患を治療する方法であって、それを必要とする対象に、治療的有効量の請求項1〜9のいずれかに記載のモノクローナル抗体または抗原結合部分、ここで、該抗体または該抗原結合部分はさらにヒトMIF生物学的機能を阻害する、または請求項12または13記載の医薬組成物を投与する工程を含む方法。
【請求項15】
該炎症性疾患が、血管炎、関節炎、敗血症、敗血症性ショック、内毒素性ショック、毒素性ショック症候群、後天性呼吸窮迫症候群、糸球体腎炎、炎症性腸疾患、クローン病、潰瘍性大腸炎、腹膜炎、腎炎、および乾癬からなる群から選ばれる請求項14記載の方法。
【請求項16】
請求項1〜9のいずれかに記載のモノクローナル抗体または抗原結合部分を生成する単離された細胞系。
【請求項17】
請求項1〜9のいずれかに記載のモノクローナル抗体または抗原結合部分の重鎖または軽鎖をコードするヌクレオチド配列を含む単離された核酸分子。
【請求項18】
請求項17記載の核酸分子を含むベクターであって、該核酸分子と作動可能に連結した発現調節配列を含むことがあるベクター。
【請求項19】
請求項18記載のベクターまたは請求項17記載の核酸分子を含む宿主細胞。
【請求項20】
請求項1〜9のいずれかに記載のモノクローナル抗体または抗原結合部分の重鎖をコードする核酸分子および軽鎖をコードする核酸分子を含む請求項19記載の宿主細胞。
【請求項21】
請求項19記載の宿主細胞または請求項16記載の細胞系を適切な条件下で培養し、該抗体またはその抗原結合部分を回収することを含むモノクローナル抗体またはその抗原結合部分の製造方法。
【請求項22】
以下の工程を行うことにより、ヒトMIF生物学的機能を阻害し、動物モデルに有益な効果を誘導することができる抗MIF抗体の同定方法:
a)活性MIFと結合し、非活性MIFと結合しない抗体を選択し、
b)in vitroアッセイで該抗体を試験し、
c)GCOおよび/または細胞増殖を阻害する抗体を選択する。

【図1】
image rotate

【図2】
image rotate

【図3−1】
image rotate

【図3−2】
image rotate

【図3−3】
image rotate

【図4−1】
image rotate

【図4−2】
image rotate

【図4−3】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2011−510616(P2011−510616A)
【公表日】平成23年4月7日(2011.4.7)
【国際特許分類】
【出願番号】特願2010−541032(P2010−541032)
【出願日】平成20年12月30日(2008.12.30)
【国際出願番号】PCT/EP2008/011146
【国際公開番号】WO2009/086920
【国際公開日】平成21年7月16日(2009.7.16)
【出願人】(591013229)バクスター・インターナショナル・インコーポレイテッド (448)
【氏名又は名称原語表記】BAXTER INTERNATIONAL INCORP0RATED
【出願人】(301043225)バクスター・ヘルスケア・ソシエテ・アノニム (9)
【氏名又は名称原語表記】Baxter Healthcare S.A.
【出願人】(504326804)ダイアックス コーポレイション (8)
【Fターム(参考)】