説明

摩擦係合装置

【課題】ハイブリッド車両用の駆動装置に好適な湿式の摩擦係合装置を実現する。
【解決手段】第一回転板11の摩擦当接面と第二回転板の摩擦当接面との少なくとも一方に、回転軸の径方向に延びる溝状部30が形成されており、係合状態における出力部材の正転時の第一回転板及び第二回転板の回転方向を順方向Fとして、分離状態において、第二回転板が第一回転板11に対して順方向Fに相対回転する際に第一回転板11及び第二回転板が潤滑冷却液から受ける抵抗が、第一回転板11が第二回転板に対して順方向Fに相対回転する際に第一回転板11及び第二回転板が潤滑冷却液から受ける抵抗よりも小さくなるように、溝状部30が回転軸の周方向一方側と周方向他方側とで非対称な形状とされている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関に駆動連結される入力部材と、回転電機及び車輪の双方に駆動連結される出力部材と、を有するハイブリッド車両用の駆動装置に備えられ、潤滑冷却液が供給される空間内で動作する湿式の摩擦係合装置に関する。
【背景技術】
【0002】
ハイブリッド車両用の駆動装置に備えられる上記のような湿式の摩擦係合装置の従来例として、例えば、下記の特許文献1に記載された技術がある。特許文献1に記載の構成では、当該文献の図1及び図2に示されるように、ダンパを介して内燃機関に駆動連結された入力部材(入力側部材15)と、回転電機及び車輪の双方に駆動連結された出力部材(出力側部材16)との間の駆動力の断接を行う湿式の摩擦係合装置(湿式多板クラッチ2)が備えられている。このような構成では、回転電機の駆動力のみで車両が走行する際には、摩擦係合装置は分離状態とされ、内燃機関の駆動力のみ或いは内燃機関の駆動力及び回転電機の駆動力の双方の駆動力で車両が走行する際には、摩擦係合装置は係合状態とされる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2006−298272号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、湿式の摩擦係合装置では、分離状態において、潤滑冷却液の粘性に起因する抵抗(以下、単に「粘性抵抗」という。)により引き摺りトルクが発生し、当該摩擦係合装置が備えられた駆動装置のエネルギ効率が低下するという問題がある。しかしながら、上記特許文献1に記載の構成では、この引き摺りトルクについて全く考慮されていない。そのため、ハイブリッド車両用の駆動装置に用いられる湿式の摩擦係合装置に特有の課題については未だ判明しておらず、上記特許文献1にはその課題を解決するための手段も当然ながら示されていない。
【0005】
そこで、ハイブリッド車両用の駆動装置に好適な湿式の摩擦係合装置の実現が望まれる。
【課題を解決するための手段】
【0006】
本発明に係る、内燃機関に駆動連結される入力部材と、回転電機及び車輪の双方に駆動連結される出力部材と、を有するハイブリッド車両用の駆動装置に備えられ、潤滑冷却液が供給される空間内で動作する湿式の摩擦係合装置の特徴構成は、前記入力部材に駆動連結される第一回転板と、前記出力部材に駆動連結される第二回転板とを備え、前記第一回転板と前記第二回転板とは、互いに回転軸が一致するように配置され、全体として円環状とされた摩擦当接面をそれぞれ有すると共に、双方の摩擦当接面同士が当接可能に対向配置され、前記第一回転板の摩擦当接面と前記第二回転板の摩擦当接面とが当接して摩擦係合した係合状態と、これらが分離した分離状態とを切り替え可能とされ、前記第一回転板の摩擦当接面と前記第二回転板の摩擦当接面との少なくとも一方に、前記回転軸の径方向に延びる溝状部が形成されており、前記係合状態における前記出力部材の正転時の前記第一回転板及び前記第二回転板の回転方向を順方向として、前記分離状態において、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記第一回転板及び前記第二回転板が前記潤滑冷却液から受ける抵抗が、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記第一回転板及び前記第二回転板が前記潤滑冷却液から受ける抵抗よりも小さくなるように、前記溝状部が前記回転軸の周方向一方側と周方向他方側とで非対称な形状とされている点にある。
【0007】
なお、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
また、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。
さらに、本願において、部材の形状に関して「ある方向(以下、「対象方向」という。)に延びる」は、延在方向を向くベクトルが、対象方向の成分を少しでも有する形状を含む概念として用いている。すなわち、延在方向が対象方向に平行な形状だけでなく、延在方向が対象方向に交差する方向であって交差角が直角でない方向である形状も含む。また、延在部分の各部位における延在方向は一様でなくても良く、上記の要件を満たす各部位が、延在方向が連続するように組み合わせられた形状(例えば、円弧状等の、対象方向に向かうに従って延在方向が当該対象方向とは異なる方向に向かう形状等)も含む。
そして、本願において、「出力部材の正転時」とは、出力部材に駆動連結された車輪の前進方向回転時を指す。
【0008】
上記のような構成のハイブリッド車両用の駆動装置では、例えば内燃機関の駆動力による車両の発進に備えた状態では、出力部材の回転が停止している状態で内燃機関が動作される状態となる。この状態では、摩擦係合装置が分離状態とされるとともに、内燃機関に入力部材を介して駆動連結される第一回転板は、出力部材に駆動連結される第二回転板に対して順方向に相対回転する状態(以下、この状態を「第一回転状態」という。)となる。また、例えば内燃機関が始動されておらず回転電機の駆動力のみにより車両が前進走行中の状態では、内燃機関に駆動連結された入力部材の回転が停止している状態で出力部材が回転する状態となる。この状態では、摩擦係合装置が分離状態とされるとともに、出力部材に駆動連結される第二回転板は、入力部材に駆動連結される第一回転板に対して順方向に相対回転する状態(以下、この状態を「第二回転状態」という。)となる。
そして、本願発明者らは、上記のような構成のハイブリッド車両に特有の以下のような知見(課題)を得た。すなわち、第一回転状態では、内燃機関の駆動力により車両を発進させるための摩擦係合装置の分離状態から係合状態への切り替えを、係合ショックを抑制しつつ迅速に行えることが望ましい。そのためには、この第一回転状態では、潤滑冷却液の粘性抵抗をある程度確保することで、潤滑冷却液を介した第一回転板から第二回転板への駆動力(トルク)の伝達がある程度行われる状態とし、出力部材にクリープトルクが伝達される状態とすることが望ましい。一方、第二回転状態では、潤滑冷却液の粘性抵抗を第一回転状態よりも小さくすることで、潤滑冷却液を介した第二回転板から第一回転板への駆動力(トルク)の伝達を抑制し、エネルギの効率の低下を抑制することが望ましい。
本発明は、上記の知見(課題)に基づきなされたものであり、上記の特徴構成によれば、第一回転状態においては潤滑冷却液の粘性抵抗をある程度確保しつつ、第二回転状態においては潤滑冷却液の粘性抵抗を低く抑えることができる。これにより、内燃機関の駆動力により車両を発進させる際に出力部材にクリープトルクを伝達することができ、摩擦係合装置を分離状態から係合状態に切り替える際の係合ショックの抑制と迅速な制御とを両立することができる。また、回転電機の駆動力のみにより車両を走行させる際には、潤滑冷却液を介した第二回転板から第一回転板への駆動力(トルク)の伝達を抑制することができ、摩擦係合装置における引き摺りトルクに起因する駆動装置のエネルギ効率の低下を抑制することができる。このように、本発明に係る摩擦係合装置は、ハイブリッド車両用の駆動装置に好適な形態となっている。
【0009】
ここで、前記溝状部は、前記回転軸を軸心とする円筒面に沿って切断した断面の形状と、前記回転軸に直交する面に沿って切断した断面の形状との少なくとも一方が、前記回転軸の周方向一方側と周方向他方側とで非対称な形状とされていると好適である。
【0010】
第一回転板と第二回転板との間における潤滑冷却液の粘性抵抗には、潤滑冷却液が溝状部を相対的に周方向に横切る際に溝状部が受ける抵抗、すなわち、溝状部で潤滑冷却液が攪拌されることに起因する抵抗(以下、単に「攪拌抵抗」という。)と、比較的狭い間隔である第一回転板と第二回転板との間の潤滑冷却液に対して、第一回転板と第二回転板とが互いに異なる速度で回転することで、潤滑冷却液がせん断されることに起因する抵抗(以下、単に「せん断抵抗」という。)とが含まれる。そして、攪拌抵抗は、潤滑冷却液と溝状部との衝突の際に潤滑冷却液と溝状部との間に作用する抗力により変化する。一方、せん断抵抗は、第一回転板と第二回転板との離間距離に応じて変化する。
この構成によれば、溝状部の回転軸を軸心とする円筒面に沿って切断した断面(第一断面)における形状の周方向に関する非対称性と、溝状部の回転軸に直交する面に沿って切断した断面(第二断面)における形状の周方向に関する非対称性との少なくとも一方を利用して、第二回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗が、第一回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗よりも小さくなるように、溝状部の形状を適切に設定することが可能となる。
すなわち、溝状部の第一断面及び第二断面の少なくとも一方の形状を周方向一方側と周方向他方側とで非対称とすることで、潤滑冷却液の攪拌抵抗及びせん断抵抗の双方を制御することができる。なお、潤滑冷却液のせん断抵抗を制御することができるのは、溝状部の形状によって潤滑冷却液が第一回転板の摩擦当接面と第二回転板の摩擦当接面との間に入り込む力(すなわち、第一回転板と第二回転板とを引き離そうとする力)が変化するからである。
【0011】
また、前記溝状部の周方向両側の側壁である溝側壁に関して、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第一溝側壁とし、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第二溝側壁とし、前記回転軸を軸心とする円筒面に沿って前記溝状部を切断した断面である第一断面における、前記第一溝側壁の底部から頂部へ向かう方向を第一側壁起立方向とし、前記第二溝側壁の底部から頂部へ向かう方向を第二側壁起立方向とすると共に、前記第一側壁起立方向が前記摩擦当接面に直交する方向に対して前記頂部へ向かうに従って前記第二溝側壁から離れる方向へ傾斜する角度を第一起立方向傾斜角度とし、前記第二側壁起立方向が前記摩擦当接面に直交する方向に対して前記頂部へ向かうに従って前記第一溝側壁から離れる方向へ傾斜する角度を第二起立方向傾斜角度とし、前記第二起立方向傾斜角度が、前記第一起立方向傾斜角度よりも大きく設定されていると好適である。
【0012】
この構成によれば、第二起立方向傾斜角度が、第一起立方向傾斜角度よりも大きく設定されているため、第二回転状態において潤滑冷却液が溝状部を相対的に横切る際に溝状部が受ける攪拌抵抗を、第一回転状態における当該攪拌抵抗よりも小さくすることができる。また、第一回転状態に比べ、第二回転状態においては潤滑冷却液が溝状部を相対的に周方向に横切る際に、潤滑冷却液が溝状部の頂部に乗り上げやすくなるため、第一回転板と第二回転板とを引き離そうとする力をより大きく発生させることができる。よって、第二回転状態におけるせん断抵抗を、第一回転状態におけるせん断抵抗よりも小さくすることができる。従って、簡素な構成で、第二回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗を、第一回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗よりも小さくすることができる。
【0013】
また、前記溝状部の周方向両側の側壁である溝側壁に関して、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第一溝側壁とし、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第二溝側壁とし、前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁に、前記回転軸の径方向一方側から径方向他方側へ向かうに従って周方向位置が変化する第一変位部がある場合に、当該第一変位部の径方向における総変位量と周方向における総変位量との和を第一変位量とし、前記第二断面において、前記第二溝側壁に、前記回転軸の径方向一方側から径方向他方側へ向かうに従って周方向位置が変化する第二変位部がある場合に、当該第二変位部の径方向における総変位量と周方向における総変位量との和を第二変位量とし、前記第一変位部及び前記第二変位部の内の前記第二変位部のみが形成されているか、又は、前記第一変位部及び前記第二変位部の双方が形成されているとともに、前記第二変位量が前記第一変位量よりも大きく設定されている構成とすると好適である。
【0014】
また、前記溝状部の周方向両側の側壁である溝側壁に関して、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第一溝側壁とし、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第二溝側壁とし、前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁の径方向一方側又は両側の端部と第二溝側壁の径方向一方側又は両側の端部との少なくともいずれかに円弧状に形成された円弧状部又は直線状に形成された面取り部が設けられ、前記円弧状部が設けられている場合には、前記第二溝側壁のみに前記円弧状部が設けられているか、又は、前記第一溝側壁及び前記第二溝側壁の双方に前記円弧状部が設けられているとともに、前記第二溝側壁の前記円弧状部の曲率半径が前記第一溝側壁の前記円弧状部の曲率半径よりも大きく設定されており、前記面取り部が設けられている場合には、前記第二溝側壁のみに前記面取り部が設けられているか、又は、前記第一溝側壁及び前記第二溝側壁の双方に前記面取り部が設けられているとともに、前記第二溝側壁の前記面取り部の長さが前記第一溝側壁の前記面取り部の長さよりも大きく設定されている構成としても好適である。
【0015】
これらの構成によれば、第二回転状態において潤滑冷却液と溝状部との衝突の際に潤滑冷却液と溝状部との間に作用する抗力を、第一回転状態における当該抗力よりも小さくすることができる。すなわち、第二回転状態において潤滑冷却液が溝状部を相対的に横切る際に溝状部が受ける攪拌抵抗を、第一回転状態における当該攪拌抵抗よりも小さくすることができる。更に、回転軸に直交する面に沿って切断した断面である第二断面における第一溝側壁及び第二溝側壁の形状によっては、第一回転状態に比べ、第二回転状態において潤滑冷却液が溝状部を相対的に周方向に横切る際に、潤滑冷却液が溝状部の頂部に乗り上げやすくすることができる。この場合には、第一回転板と第二回転板とを引き離そうとする力をより大きく発生させ、第二回転状態におけるせん断抵抗を、第一回転状態におけるせん断抵抗よりも小さくすることができる。従って、簡素な構成で、第二回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗を、第一回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗よりも小さくすることができる。
【0016】
また、上記のように、前記第二起立方向傾斜角度が、前記第一起立方向傾斜角度よりも大きく設定されている構成において、前記第一溝側壁及び前記第二溝側壁のそれぞれは、前記第一断面における形状が、前記溝状部の底部から頂部へ向かう直線状、曲線状、或いは階段状に形成されていると好適である。
【0017】
この構成によれば、溝状部の形成方法や所望の粘性抵抗の大きさ等に応じて、溝状部の構成として適切なものを採用することが可能となる。
【0018】
また、上記のように、前記第一変位部及び前記第二変位部の内の前記第二変位部のみが形成されているか、前記第一変位部及び前記第二変位部の双方が形成されているとともに、前記第二変位量が前記第一変位量よりも大きく設定されている構成において、前記第一変位部及び第二変位部のそれぞれは、前記第二断面における形状が、前記回転軸の径方向一方側から径方向他方側へ向かうに従って周方向におけるいずれか一方側に向かう直線状、曲線状、或いは階段状に形成されていると好適である。
【0019】
この構成によれば、溝状部の形成方法や所望の粘性抵抗の大きさ等に応じて、溝状部の構成として適切なものを採用することが可能となる。
【0020】
さて、上記のように、前記第二起立方向傾斜角度が、前記第一起立方向傾斜角度よりも大きく設定されている構成において、前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁の径方向両側の端部と前記第二溝側壁の径方向両側の端部との双方に円弧状に形成された円弧状部が設けられ、前記第一起立方向傾斜角度が0度に設定されるとともに、前記第二起立方向傾斜角度が0度よりも大きい鋭角に設定され、前記第一溝側壁の径方向両側の端部に形成された前記円弧状部の曲率半径と、第二溝側壁の径方向両側の端部に形成された前記円弧状部の曲率半径とが一致すると好適である。
【0021】
この構成によれば、溝状部の第一断面における形状の周方向に関する非対称性を利用して、第二回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗を、第一回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗よりも小さくすることができる。また、このような構成を第一溝側壁の第一起立方向傾斜角度と第二溝側壁の第二起立方向傾斜角度とを異ならせるだけで実現できるため、装置の構造及び製造工程の簡略化を図ることが容易となる。
【0022】
また、上記のように、前記第二断面において、前記第一溝側壁の径方向一方側又は両側の端部と前記第二溝側壁の径方向一方側又は両側の端部との少なくともいずれかに前記円弧状部又は前記面取り部が設けられ、前記円弧状部が設けられている場合には、前記第二溝側壁のみに前記円弧状部が設けられているか、又は、前記第一溝側壁及び前記第二溝側壁の双方に前記円弧状部が設けられているとともに、前記第二溝側壁の前記円弧状部の曲率半径が前記第一溝側壁の前記円弧状部の曲率半径よりも大きく設定される構成において、前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁の径方向両側の端部と前記第二溝側壁の径方向両側の端部との双方に円弧状に形成された円弧状部が設けられ、少なくとも軸方向位置が前記溝状部の頂部と一致する前記第二断面において、前記第二溝側壁の径方向外側の端部に設けられた前記円弧状部の曲率半径が、前記第二溝側壁の径方向内側の端部に設けられた前記円弧状部の曲率半径及び前記第一溝側壁の径方向両側の端部に設けられた前記円弧状部の曲率半径より大きくなるように設定されている構成とすると好適である。
【0023】
この構成によれば、溝状部の第二断面における形状の周方向に関する非対称性を利用して、第二回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗を、第一回転状態において第一回転板及び第二回転板が潤滑冷却液から受ける抵抗よりもより小さくすることができる。なお、この構成によれば、第二回転状態において、潤滑冷却液が積極的に径方向外側に押しやられるため、この構成は、第一回転板及び第二回転板に対して、径方向内側から径方向外側に向かって潤滑冷却液を流す構成に特に適している。
【0024】
また、前記第一回転板及び前記第二回転板の少なくとも一方の前記摩擦当接面に摩擦材が固着され、前記溝状部は前記摩擦材を成形することにより形成されていると好適である。
【0025】
この構成によれば、第一回転板や第二回転板の基材に加工を施すことなく、比較的加工が容易な摩擦材を成形することで溝状部を形成することができる。よって、摩擦係合装置の製造工程を簡略化して製造コストを低く抑えることができる。
【図面の簡単な説明】
【0026】
【図1】本発明の第一の実施形態に係る駆動装置の概略構成を示す模式図である。
【図2】本発明の第一の実施形態に係る駆動装置の部分断面図である。
【図3】本発明の第一の実施形態に係る内摩擦板の一部模式図である。
【図4】図3におけるIV−IV断面図(第一断面図)である。
【図5】図4におけるV−V断面図(第二断面図)である。
【図6】内摩擦板が外摩擦板に対して順方向に相対回転する状態(第一回転状態)における油の流れを模式的に示す図である。
【図7】外摩擦板が内摩擦板に対して順方向に相対回転する状態(第二回転状態)における油の流れを模式的に示す図である。
【図8】本発明の第二の実施形態に係る内摩擦板の一部模式図である。
【図9】図8におけるIX−IX断面図(第一断面図)である。
【図10】図9におけるX−X断面図(第二断面図)である。
【図11】図9におけるXI−XI断面図(第二断面図)である。
【図12】本発明の別実施形態に係る内摩擦板の一部模式図である。
【図13】本発明の別実施形態に係る内摩擦板の一部模式図である。
【図14】本発明の別実施形態に係る内摩擦板の一部模式図である。
【図15】本発明の別実施形態に係る内摩擦板の一部模式図である。
【図16】図15におけるXVI−XVI断面図である。
【図17】本発明の別実施形態に係る溝状部の第一断面図である。
【図18】本発明の別実施形態に係る溝状部の第一断面図である。
【図19】本発明の別実施形態に係る溝状部の一部の第二断面図である。
【図20】本発明の別実施形態に係る溝状部の一部の第二断面図である。
【図21】本発明の別実施形態に係る外摩擦板の一部模式図である。
【発明を実施するための形態】
【0027】
1.第一の実施形態
本発明の第一の実施形態について図面を参照して詳細に説明する。ここでは、本発明を、パラレル方式のハイブリッド車両用の駆動装置に備えられる発進クラッチに適用した場合を例として説明する。本実施形態に係る発進クラッチCは、内摩擦板11の摩擦当接面に形成された溝状部30が、回転軸Xの周方向一方側と周方向他方側とで非対称な形状とされている点に特徴を有する。これにより、パラレル方式のハイブリッド車両用の駆動装置に好適な形態の発進クラッチCが実現されている。以下、本実施形態に係る発進クラッチCの構成について詳細に説明する。
【0028】
なお、以下の説明では、特に断らない限り、内摩擦板11及び外摩擦板12の回転軸である回転軸X(図2参照)を基準として、「軸方向」、「周方向」、「径方向」を定義している。また、以下の説明では、特に断らない限り、図2における右側を「軸方向一方側」とし、図2における左側を「軸方向他方側」とする。また、本実施形態では、発進クラッチC、内摩擦板11、外摩擦板12、油が、それぞれ、本発明における「摩擦係合装置」、「第一回転板」、「第二回転板」、及び「潤滑冷却液」に相当する。
【0029】
1−1.駆動装置の全体構成
図1に示すように、本実施形態に係る駆動装置1は、第一の駆動力源としてのエンジンEに駆動連結される入力軸Iと、車輪Wに駆動連結される出力軸Oと、第二の駆動力源としての回転電機MGと、変速装置TMと、を備え、エンジンEと回転電機MGとが発進クラッチCを介して直列に連結されるパラレル方式のハイブリッド車両用の駆動装置として構成されている。本実施形態では、入力軸I、中間軸M、及び出力軸Oが同軸上に配置された一軸構成とされている。本実施形態においては、エンジンE、入力軸I、及び出力軸Oが、それぞれ、本発明における「内燃機関」、「入力部材」、及び「出力部材」に相当する。
【0030】
エンジンEは、燃料の燃焼により駆動される内燃機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種エンジンを用いることができる。本例では、エンジンEのクランクシャフト等のエンジン出力軸が入力軸Iに駆動連結されている。
【0031】
入力軸Iは、エンジンEの駆動力を駆動装置1内に入力するための軸である。本例では、入力軸Iは、エンジンEのエンジン出力軸と一体回転するように駆動連結されている。入力軸Iとエンジン出力軸との間には、ダンパ等が介挿されていても良い。この入力軸Iは、ケース2を貫通する状態で配設されている。
【0032】
発進クラッチCは、エンジンE及び入力軸Iを選択的に回転電機MGに駆動連結可能とすべく設けられている。すなわち、発進クラッチCは、エンジンEと回転電機MGとの間の駆動力の断接を行うクラッチである。この発進クラッチCの係合状態では、入力軸Iを介してエンジンEと回転電機MGとが駆動連結され、エンジンEの駆動力のみ或いはエンジンE及び回転電機MGの双方の駆動力で車両(図示せず)が駆動される。また、発進クラッチCの分離状態(解放状態)ではエンジンEと回転電機MGとが分離され、回転電機MGの駆動力のみで車両が駆動される。この発進クラッチCの構成については、後に詳細に説明する。
【0033】
回転電機MGは、ステータ21とロータ22とを有して構成されている(図2参照)。ステータ21は、積層板からなるステータコアにコイルを巻回して構成されている。また、ロータ22は、永久磁石が埋め込まれた積層板により構成され、その外周面がステータ21の内周面に対して所定の隙間をあけて対向している。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを果たすことが可能とされている。そのため、回転電機MGは、不図示の蓄電装置(バッテリやキャパシタ等)と電気的に接続されている。回転電機MGは、蓄電装置から電力の供給を受けて力行し、或いは、車輪Wから伝達される駆動力により発電した電力を蓄電装置に供給して蓄電させる。回転電機MGのロータ22は、中間軸Mと一体回転するように駆動連結されている。
【0034】
中間軸Mは、エンジンEや回転電機MGから出力されるトルクを変速装置TMに入力するための軸である。中間軸Mの内部には、図2に示すように、軸方向に延びる複数の油路(第一油路L1、第二油路L2)が形成されている。第一油路L1は、発進クラッチCが備える油圧室(詳細は後述する)へ供給される油の供給路とされている。具体的には、第一油路L1を流通する油が、第一油穴Lh1を介して当該油圧室に供給される。
【0035】
変速装置TMは、中間軸Mの回転速度を所定の変速比で変速して出力軸Oへ伝達する装置である。このような変速装置TMとしては、変速比の異なる複数の変速段を切替可能に備える自動又は手動式の有段変速装置や、変速比を無段階に変更可能な自動の無段変速装置等を用いることができる。変速装置TMは、各時点における所定の変速比で、中間軸Mの回転速度を変速するとともにトルクを変換して、出力軸Oへ伝達する。そして、変速装置TMから出力軸Oへ伝達されたトルクは、出力用差動歯車装置Dを介して左右2つの車輪Wに分配されて伝達される。なお、出力軸Oは、出力用差動歯車装置Dを介して車輪Wに駆動連結されているとともに、変速装置TM及び中間軸Mを介して回転電機MGに駆動連結されている。すなわち、出力軸Oは、回転電機MG及び車輪Wの双方に駆動連結されている。
【0036】
そして、駆動装置1を構成する上記の各構成要素は、車台に固定される非回転部材としてのケース2(図2参照)の内部に収容されている。ケース2は、入力軸I、中間軸M、回転電機MGのロータ22等の各回転部材を、ケース2のエンジンE側(軸方向一方側)及び変速装置TM側(軸方向他方側)の支持部で回転可能に支持する。
【0037】
ケース2の内部にはオイルポンプ3が備えられている。オイルポンプ3は、本例では、インナロータとアウタロータとを有する内接型のギヤポンプとされている。オイルポンプ3は、入力軸I及び中間軸Mと同軸状に配置されており、中間軸Mと一体回転するように構成されている。中間軸Mの回転に伴いオイルポンプ3は油(作動油)を吐出し、変速装置TM、発進クラッチC等に油を供給するための油圧を発生させる。なお、ケース2の壁部や中間軸M等の内部にはそれぞれ油路が形成されており、オイルポンプ3により吐出された油は、不図示の油圧制御装置及びこれらの油路を流通して、油圧供給対象となる各部位に供給される。
【0038】
1−2.発進クラッチの構成
次に、発進クラッチCの構成について、図2を参照して詳細に説明する。発進クラッチCは、回転電機MGの径方向内側に配置されており、クラッチハウジング50と、クラッチハウジング50の内部に配置されたクラッチ機構10と、を備えている。クラッチハウジング50は、入力軸Iが貫通するためのボス孔を有する椀状部材51と、椀状部材51と連結されている円板部材52と、中間軸Mが貫通するためのボス孔を有するボス部材53とを備えている。円板部材52は、当該円板部材52の本体部から軸方向一方側に延びる周壁部52aを備えている。円板部材52の周壁部52aの内周面には、後述する外摩擦板12を保持するためのスプライン溝が形成されている。クラッチ機構10を収容するための空間を作り出すため、椀状部材51はクラッチハウジング50の外周壁(径方向外側の周壁)とクラッチハウジング50の第一側壁(軸方向一方側の側壁)とを形成し、円板部材52とボス部材53とがクラッチハウジング50の第二側壁(軸方向他方側の側壁)とを形成している。
【0039】
椀状部材51の軸方向一方側に突き出したボス部51aの外周面とケース2の隔壁に形成されたボス状の軸方向突出部2aとの間に第一軸受61(本例ではボールベアリング)が椀状部材51を支持すべく配置され、椀状部材51の径方向内側端部に形成されたボス部51aの内周面と入力軸Iとの間に第二軸受62(本例ではシールリング付ニードルベアリング)が入力軸Iを回転支持すべく配置されている。これにより、椀状部材51はケース2の隔壁及び入力軸Iに対して相対回転可能となっている。また、その径方向突起フランジ部の先端で円板部材52と連結しているボス部材53は、そのボス内周面で中間軸Mとスプライン結合しており、中間軸Mと一体回転する。ボス部材53のボス外周面とケース2の隔壁に形成されたボス状の軸方向突出部2bとの間に第三軸受63(本例ではボールベアリング)が配置されている。
【0040】
回転電機MGのステータ21はケース2の内周壁に固定され、ロータ22はクラッチハウジング50、正確には椀状部材51の周壁部51bの外周面に外嵌して支持されている。従って、クラッチハウジング50(椀状部材51)は、ロータ22を支持するロータ支持部材として機能している。
【0041】
クラッチ機構10は、入力軸Iに固定され入力軸Iと一体回転する入力側部材71と、複数(本例では5枚)の内摩擦板11と、複数(本例では5枚)の外摩擦板12と、ピストン72と、を備える多板式のクラッチ機構である。クラッチ機構10の出力側部材は、クラッチハウジング50を形成する円板部材52とボス部材53とが構成している。
【0042】
入力側部材71は、クラッチハウジング50内における軸方向一方側に配置された入力側部材71の本体部から軸方向他方側に延びるとともに外周面にスプライン溝が形成された周壁部71aを有している。そして、内摩擦板11の内周面にはスプライン溝14(図3参照)が形成されており、当該スプライン溝14と入力側部材71のスプライン溝とが係合することで、内摩擦板11は、入力側部材71に対して相対回転が規制されると共に軸方向にスライド自在に保持されている。このように、内摩擦板11は、入力側部材71及び入力軸Iと一体回転するように構成されており、入力軸Iを介してエンジンEに駆動連結されている。
【0043】
外摩擦板12の外周面にはスプライン溝が形成されており、当該スプライン溝と円板部材52の周壁部52aの内周面に備えられたスプライン溝とが係合することで、外摩擦板12は、円板部材52に対して相対回転が規制されると共に軸方向にスライド自在に保持されている。このように、外摩擦板12は、出力側部材(円板部材52及びボス部材53)及び中間軸Mと一体回転するように構成されており、中間軸M及び変速装置TMを介して出力軸Oに駆動連結されている。そして、ピストン72は、クラッチハウジング50の内部に軸方向に摺動可能に設けられており、スプリングにより軸方向他方側に付勢されている。
【0044】
ボス部材53の内部には、第三油路L3が形成されている。第三油路L3は、クラッチ機構10へ潤滑及び冷却のために供給される油の供給路とされている。具体的には、第三油路L3を流通する油は、第四軸受64(本例では、スラストベアリング)を潤滑・冷却した後、入力側部材71とピストン72との間に形成される空間を流通し、当該油の少なくとも一部は、入力側部材71の周壁部71aに形成された給油孔(図示せず)を介して径方向内側から径方向外側に向けて内摩擦板11及び外摩擦板12に供給され、これらの潤滑及び冷却を行う。このように、クラッチ機構10は、油が供給される空間内で動作する湿式のクラッチ機構である。
【0045】
そして、内摩擦板11と外摩擦板12との間の隙間を流通した油の少なくとも一部は、円板部材52の周壁部52aに形成された排油孔(図示せず)を介して円板部材52の周壁部52aと椀状部材51の周壁部51bとの間の空間へ排出され、入力側部材71と椀状部材51との間に形成される空間を流通して第五軸受65(本例では、スラストベアリング)に供給される。そして、第五軸受65を潤滑・冷却した後の油の一部は、入力軸Iの外周面に開口する径方向の連通孔及び中間軸Mの内径部に形成された第二油路L2を介して排出される。また、第五軸受65を潤滑・冷却した後の油の一部は、第二軸受62から軸方向に漏出し、第一軸受61及び第二油穴Lh2を介して第四油路L4に流れ込む。そして、第四油路L4を流通して排出される油は、不図示のオイルパンへ戻される。すなわち、本実施形態では、第二油路L2及び第四油路L4の双方が、発進クラッチCの内摩擦板11及び外摩擦板12へ供給された油の排出路とされている。すなわち、発進クラッチCの内摩擦板11及び外摩擦板12へ供給された油の排出経路は2系統に分かれている。
【0046】
また、ピストン72と円板部材52との間には油圧室が形成されている。この油圧室には、第一油路L1を流通する油が、第一油穴Lh1及びボス部材53に形成された油路を介して供給されるように構成されている。そして、この油圧室に圧油が供給されるとピストン72が軸方向一方側に移動し、クラッチ機構10が係合して発進クラッチCが係合状態となる。この状態では、入力軸Iを介して入力側部材71に伝達されたエンジンEのトルクは、出力側部材(円板部材52及びボス部材53)を介して中間軸Mに伝達される。なお、この際、ピストン72により軸方向一方側に押圧される内摩擦板11と外摩擦板12との軸方向位置を規制すべく、円板部材52の周壁部52aにおける軸方向一方側の端部には、バッキングプレート54と当該バッキングプレートの軸方向位置を規制するスナップリング55とが配置されている。また、油圧室から圧油が排出されると、スプリングによってピストン72が軸方向他方側に戻され、クラッチ機構10が解放されて発進クラッチCは分離状態となる。
【0047】
ところで、内摩擦板11及び外摩擦板12は、円環板状の部材であり、互いに回転軸Xが一致するように軸方向に交互に配置されている。すなわち、円板部材52(周壁部52a)に軸方向に移動可能に組み込まれた外摩擦板12は、入力側部材71(周壁部71a)に軸方向に移動可能に組み込まれた内摩擦板11の間に介在するように配置されている。なお、回転軸Xは、図2に示すように、入力軸I及び中間軸Mの回転軸心に一致する。
【0048】
内摩擦板11及び外摩擦板12は、互いに対向する軸方向端面が、全体として円環状とされた摩擦当接面とされており、双方の摩擦当接面同士が当接可能に対向配置されている。内摩擦板11及び外摩擦板12の少なくとも一方の摩擦当接面には、例えば紙や合成樹脂等を基材とする摩擦材13が貼り付けられている。本例では、図3に示すように、内摩擦板11の摩擦当接面に、摩擦材13が固着されている。
【0049】
そして、内摩擦板11の摩擦当接面に、径方向に沿って延びる溝状部30が形成されている。具体的には、内摩擦板11の軸方向端面に固着された摩擦材13を成形することにより、溝状部30が形成されている。本実施形態では、内摩擦板11は、金属(鋼板等)により形成されたコアプレート11aの軸方向端面に、セグメント状の複数の摩擦材13が周方向に沿って複数固着されて構成されており、当該摩擦材13の軸方向におけるコアプレート11aとは反対側の端面が摩擦当接面を構成している。そして、周方向に隣接する摩擦材13間の隙間が溝状部30を形成している。よって、本実施形態では、溝状部30の底面部は、コアプレート11aの軸方向端面が形成し、溝状部30の側壁部は摩擦材13の周方向端面が形成している。一方、外摩擦板12は、金属(鋼板等)により形成されたコアプレート12aにより構成され、コアプレート12aの軸方向端面が摩擦当接面を構成している。
【0050】
発進クラッチCの係合状態では、内摩擦板11の摩擦当接面と、外摩擦板12の摩擦当接面とが当接して摩擦係合する。ここで、この係合状態における出力軸Oの正転時の内摩擦板11及び外摩擦板12の回転方向を順方向Fとする。発進クラッチCの分離状態では、内摩擦板11の摩擦当接面と外摩擦板12の摩擦当接面とは分離する。
【0051】
そして、発進クラッチCの分離状態において、外摩擦板12が内摩擦体11に対して順方向Fに相対回転する際に内摩擦板11及び外摩擦板12が油から受ける抵抗が、内摩擦板11が外摩擦板12に対して順方向Fに相対回転する際に内摩擦板11及び外摩擦板12が油から受ける抵抗よりも小さくなるように、溝状部30が回転軸Xの周方向一方側と周方向他方側とで非対称な形状とされている。これにより、パラレル方式のハイブリッド車両用の駆動装置に好適な形態の発進クラッチCが実現されている。以下、本発明の要部であるこの溝状部30の構成について詳細に説明する。
【0052】
1−3.溝状部の構成
本実施形態に係る溝状部30の構成について図3から図7を参照して詳細に説明する。図3に示すように、内摩擦板11のコアプレート11aの軸方向端面には、互いに同じ形状のセグメント状の複数の摩擦材13が、周方向に沿って一定の間隔毎に全体として円環状に配置されている。そして、周方向に隣接する摩擦材13間の隙間により、互いに同じ形状の径方向に沿って延びる溝状部30が、周方向に沿って一定間隔毎に形成される。本実施形態では、摩擦材13の径方向内側の端面及び径方向外側の端面の双方は、摩擦当接面に対して垂直に形成されている。なお、本実施形態では、内摩擦板11は、コアプレート11aの軸方向両側の端面のそれぞれに複数の摩擦材13が固着されて溝状部30が形成されているが、軸方向一方側と軸方向他方側とで対称に形成されている。よって、以下の説明では、内摩擦板11の軸方向における一方側の構成についてのみ説明するが、軸方向における他方側の構成については一方側と同様とする。
【0053】
図4は、図3におけるIV−IV断面図であり、図3に示す溝状部30を、回転軸Xを軸心とする円筒面に沿って切断した断面(以下、単に「第一断面」という。)の形状を示す模式図である。また、図5は、図4におけるV−V断面図であり、図3に示す溝状部30を回転軸Xに直交する面に沿って切断した断面(以下、単に「第二断面」という。)の形状を示す模式図である。そして、外摩擦板12が内摩擦板11に対して順方向Fに相対回転する際に内摩擦板11及び外摩擦板12が油から受ける抵抗が、内摩擦板11が外摩擦板12に対して順方向Fに相対回転する際に内摩擦板11及び外摩擦板12が油から受ける抵抗よりも小さくなるようにすべく、溝状部30は、第一断面の形状と、第二断面の形状との少なくとも一方が、周方向一方側と周方向他方側とで非対称な形状に形成される。なお、第一断面の径方向位置及び第二断面の軸方向位置によって溝状部30の断面形状は異なるものとなり得る。本発明では、少なくとも何れかの径方向位置の第一断面において溝状部30の形状が周方向一方側と周方向他方側とで非対称となっていれば、溝状部30は、第一断面の形状が、周方向一方側と周方向他方側とで非対称な形状に形成されているとする。同様に、本発明では、少なくとも何れかの軸方向位置の第二断面において溝状部30の形状が周方向一方側と周方向他方側とで非対称となっていれば、溝状部30は、第二断面の形状が、周方向一方側と周方向他方側とで非対称な形状に形成されているとする。
【0054】
本実施形態では、図4に示すように、溝状部30の第一断面の形状は、周方向一方側と周方向他方側とで非対称となっている。一方、図5に示すように、溝状部30の第二断面の形状は、厳密には第二断面が位置する溝状部30における軸方向位置によってやや非対称となり得るが、周方向一方側と周方向他方側とでほぼ対称となっている。よって、本実施形態では、溝状部30の第一断面における形状を、周方向一方側と周方向他方側とで非対称な形状とすることにより、内摩擦板11及び外摩擦板12が油から受ける抵抗を、何れの摩擦板が順方向Fに相対回転しているかによって変化させることを実現している。
【0055】
ここで、図3に示すように、溝状部30の周方向両側の側壁である溝側壁に関して、内摩擦板11が外摩擦板12に対して順方向Fに相対回転する際に油の流れに対向する方の溝側壁を第一溝側壁31とし、外摩擦板12が内摩擦板11に対して順方向Fに相対回転する際に油の流れに対向する方の溝側壁を第二溝側壁32とする。
【0056】
そして、図4に示すように、第一断面における、第一溝側壁31の底部33(軸方向におけるコアプレート11a側の端部、以下同様。)から頂部34(軸方向におけるコアプレート11aとは反対側の端部、以下同様。)へ向かう方向を第一側壁起立方向A1とし、第一側壁起立方向A1が摩擦当接面に直交する方向(図4で破線で示す方向)に対して頂部34へ向かうに従って第二溝側壁32から離れる方向へ傾斜する角度を第一起立方向傾斜角度θ1とする。また、第一断面における、第二溝側壁32の底部33から頂部34へ向かう方向を第二側壁起立方向A2とし、第二側壁起立方向A2が摩擦当接面に直交する方向に対して頂部34へ向かうに従って第一溝側壁31から離れる方向へ傾斜する角度を第二起立方向傾斜角度θ2とする。なお、図4に示す例では、第一起立方向傾斜角度θ1は0度とされているためθ1の表記は省略しているが、後に説明する別実施形態の模式図である図18に示すように第一起立方向傾斜角度θ1は定義される。
【0057】
また、図5に示すように、第二断面の第一溝側壁31における、径方向一方側から径方向他方側(径方向におけるいずれか一方側から他方側)へ向かうに従って周方向位置が変化する部位を第一変位部41とし、当該第一変位部41の径方向における総変位量Drと周方向における総変位量Dcとの和を第一変位量D1する。ここで、第一変位部41の径方向における総変位量Drとは、第一溝側壁31が複数の第一変位部41を有する場合には各第一変位部41の径方向における変位量の和である延べ変位量を意味する。同様に、第一変位部41の周方向における総変位量Dcとは、第一溝側壁31が複数の第一変位部41を有する場合には各第一変位部41の周方向における変位量の和である延べ変位量を意味する。また、第二断面の第二溝側壁32における、径方向一方側から径方向他方側へ向かうに従って周方向位置が変化する部位を第二変位部42とし、当該第二変位部42の径方向における総変位量Drと周方向における総変位量Dcとの和を第二変位量D2とする。ここで、第二変位部42の径方向における総変位量Drとは、第二溝側壁32が複数の第二変位部42を有する場合には各第二変位部42の径方向における変位量の和である延べ変位量を意味する。同様に、第二変位部42の周方向における総変位量Dcとは、第二溝側壁32が複数の第二変位部42を有する場合には各第二変位部42の周方向における変位量の和である延べ変位量を意味する。
【0058】
本実施形態では、図4に示すように、第一溝側壁31及び第二溝側壁32の双方が、第一断面において、溝状部30の底部33から頂部34へ向かう直線状に形成されている。そして、第二起立方向傾斜角度θ2が、第一起立方向傾斜角度θ1(本例では0度)よりも大きく設定されている。本例では、第二起立方向傾斜角度θ2は一例として45度に設定されているが、第二起立方向傾斜角度θ2は、0度より大きく90度より小さい任意の角度(0度より大きい鋭角)とすることができる。このように第二起立方向傾斜角度θ2を第一起立方向傾斜角度θ1よりも大きくすることで、以下に述べるように、外摩擦板12が内摩擦板11に対して順方向Fに相対回転する際に内摩擦板11及び外摩擦板12が油から受ける抵抗を、内摩擦板11が外摩擦板12に対して順方向Fに相対回転する際に内摩擦板11及び外摩擦板12が油から受ける抵抗よりも小さくすることが可能となっている。
【0059】
図6は、発進クラッチCの分離状態において、内摩擦板11が外摩擦板12に対して順方向Fに相対回転している状態(以下、この状態を「第一回転状態」という。)における油の流れを模式的に示す図である。この第一回転状態は、例えば、車両が停車中(出力軸Oの回転が停止している状態)で、エンジンEの駆動力による車両の発進に備え、発進クラッチCが分離された状態でエンジンEが始動されている(エンジンEの燃料噴射装置が作動している)場合に起こり得る状態である。また、図7は、発進クラッチCの分離状態において、外摩擦板12が内摩擦板11に対して順方向Fに相対回転している状態(以下、この状態を「第二回転状態」という。)における油の流れを模式的に示す図である。この第二回転状態は、例えば、エンジンEが始動されておらず、回転電機の駆動力のみにより車両が前進走行中に起こり得る状態である。なお第一回転状態(図6)及び第二回転状態(図7)のいずれの場合においても、油は順方向Fに向かって流れるが、これらの図中における油の流れを示す矢印は、溝状部30を基準としたものである。すなわち、図6に示す第一回転状態では、油は溝状部30に対して順方向Fとは反対側に相対移動し、図7に示す第二回転状態では、油は溝状部30に対して順方向Fと同じ側に相対移動する。
【0060】
そして、図6と図7とを比較すれば明らかなように、図7に示す第二回転状態のように油が溝状部30に対して順方向Fと同じ側に相対移動する際に溝状部30が油から受ける抵抗は、図6に示す第一回転状態のように油が溝状部30に対して順方向Fとは反対側に相対移動する際に溝状部30が油から受ける抵抗よりも小さくなる。別の観点から見れば、第二回転状態において内摩擦板11及び外摩擦板12が油から受ける抵抗は、第一回転状態において内摩擦板11及び外摩擦板12が油から受ける抵抗よりも小さくなる。なぜなら、上記のように第二起立方向傾斜角度θ2が第一起立方向傾斜角度θ1よりも大きく設定されているため、第二回転状態においては油が溝状部30を相対的に周方向に横切る際に溝状部30が受ける抵抗、すなわち、溝状部30で油が攪拌されることに起因する抵抗(以下、単に「攪拌抵抗」という。)が、第一回転状態における油の攪拌抵抗よりも小さくなるからである。
【0061】
さらに、第二起立方向傾斜角度θ2が第一起立方向傾斜角度θ1よりも大きく設定されているため、第二回転状態では、第一回転状態に比べ、油が摩擦材13の摩擦当接面(外摩擦板12と対向する面)と外摩擦板12の摩擦当接面との間に積極的に導かれる。これにより、内摩擦板11と外摩擦板12とを引き離す力(図7において符号Tで示す力)が、第二回転状態では第一回転状態よりも大きくなる。従って、第二回転状態では、内摩擦板11と外摩擦板12との間の離間距離が過度に短くなることが抑制され、油がせん断されることに起因する抵抗(以下、単に「せん断抵抗」という。)が第一回転状態に比べ小さくなる。
【0062】
以上のように、図7に示す第二回転状態では、図6に示す第一回転状態に比べ、油の攪拌抵抗及びせん断抵抗の双方を小さくすることができ、結果、油の粘性に起因する抵抗(以下、単に「粘性抵抗」という。)を小さくすることができる。すなわち、第二回転状態において内摩擦板11及び外摩擦板12が油から受ける抵抗を、第一回転状態において内摩擦板11及び外摩擦板12が油から受ける抵抗よりも小さくすることができる。このように、溝状部30の第一断面における形状は、油の攪拌抵抗及びせん断抵抗の双方に影響を与えるものである。
【0063】
また、本実施形態では、図5に示すように、第一溝側壁31の径方向両側の端部に第一変位部41が形成されているとともに、第二溝側壁32の径方向両側の端部に第二変位部42が形成されている。そして、第一変位部41及び第二変位部42の双方が、第二断面において、径方向一方側から径方向他方側へ向かうに従って周方向におけるいずれか一方側に向かう曲線状に形成されている。第一溝側壁31の径方向外側に形成された第一変位部41は、径方向における変位量がDr1であるとともに周方向における変位量がDc1となっている。また、第一溝側壁31の径方向内側に形成された第一変位部41は、径方向における変位量がDr2であるとともに周方向における変位量がDc2となっている。よって、第一変位部41については、径方向における総変位量Drは「Dr1+Dr2」となり、周方向における総変位量Dcは「Dc1+Dc2」となり、結果、DrとDcとの和である第一変位量D1は、「Dr1+Dr2+Dc1+Dc2」となる。
【0064】
一方、第二溝側壁32の径方向外側に形成された第二変位部42は、径方向における変位量がDr3であるとともに周方向における変位量がDc3となっている。また、第二溝側壁32の径方向内側に形成された第二変位部42は、径方向における変位量がDr4であるとともに周方向における変位量がDc4となっている。よって、第二変位部42については、径方向における総変位量Drは「Dr3+Dr4」となり、周方向における総変位量Dcは「Dc4+Dc4」となり、結果、DrとDcとの和である第二変位量D2は、「Dr3+Dr4+Dc3+Dc4」となる。
【0065】
本実施形態では、図5に示すように、第一溝側壁31の径方向両側の第一変位部41、及び第二溝側壁32の径方向両側の第二変位部42の全ては、互いに曲率半径がほぼ同一の円弧状部とされている。すなわち、第二断面において、第一溝側壁31の径方向両側の端部と第二溝側壁32の径方向両側の端部との双方に円弧状に形成された円弧状部が設けられているとともに、第一溝側壁31の径方向両側の端部に形成された円弧状部の曲率半径と、第二溝側壁32の径方向両側の端部に形成された円弧状部の曲率半径とがほぼ一致するように形成されている。厳密には、本例では、軸方向位置が溝状部30の底部33と一致する第二断面では、第一溝側壁31の径方向両側の端部に形成された円弧状部の曲率半径と、第二溝側壁32の径方向両側の端部に形成された円弧状部の曲率半径とが一致している(図3参照)。これに対し、軸方向位置が溝状部30の頂部34と一致する第二断面では、第一溝側壁31の径方向両側の端部に形成された円弧状部の曲率半径は、第二溝側壁32の径方向両側の端部に形成された円弧状部の曲率半径よりやや大きくなっている(図3参照)。
【0066】
よって、本例では、径方向変位量Dr1〜Dr4及び周方向変位量Dc1〜Dc4のそれぞれが互いにほぼ等しい値となり、第一変位量D1は第二変位量D2とほぼ等しい値となる。このように、本実施形態では、溝状部30の第二断面の形状は、周方向一方側と周方向他方側とでほぼ対称となっている。ところで、溝状部30の第二断面における形状は、主に油の攪拌抵抗に影響を与えるものであるが、本例では第一変位部41及び第二変位部42の双方が形成されているとともに第一変位量D1と第二変位量D2とが互いにほぼ等しく設定されている。すなわち、本実施形態では、溝状部30の第二断面の形状によって、図6に示す第一回転状態と図7に示す第二回転状態との間で油の粘性抵抗(主に攪拌抵抗)に差異を生じさせるものとはなっていない。
【0067】
以上のように、本実施形態では、第二起立方向傾斜角度θ2を第一起立方向傾斜角度θ1よりも大きく設定すること、すなわち、溝状部30の形状の第一断面における周方向における非対称性を利用して、外摩擦板12が内摩擦体11に対して順方向Fに相対回転する第二回転状態において内摩擦板11及び外摩擦板12が油から受ける抵抗が、内摩擦板11が外摩擦板12に対して順方向Fに相対回転する第一回転状態において内摩擦板11及び外摩擦板12が油から受ける抵抗よりも小さくすることが可能となっている。
【0068】
2.第二の実施形態
本発明の第二の実施形態について図面を参照して詳細に説明する。ここでも、本発明を、パラレル方式のハイブリッド車両用の駆動装置に備えられる発進クラッチに適用した場合を例として説明する。本実施形態に係る駆動装置1の全体構成及び各部の構成は、基本的には上記第一の実施形態と同様である。本実施形態においては、溝状部30の構成が、上記第一の実施形態とは異なっている。以下では、本実施形態に係る発進クラッチCが備える溝状部30の構成について、図8から図11を参照して、上記第一の実施形態との相違点を中心に説明する。なお、特に明記しない点については、上記第一の実施形態と同様とする。
【0069】
図8に示すように、内摩擦板11のコアプレート11aの軸方向端面には、互いに同じ形状のセグメント状の複数の摩擦材13が、周方向に沿って一定の間隔毎に全体として円環状に配置されている。そして、周方向に隣接する摩擦材13間の隙間により、互いに同じ形状の径方向に延びる溝状部30が、周方向に沿って一定間隔毎に形成される。
【0070】
図9(a)は、図8におけるIXa−IXa断面図であり、図9(b)は、図8におけるIXb−IXb断面図である。すなわち、図9(a)及び図9(b)は、共に、図8に示す溝状部30を、回転軸Xを軸心とする円筒面に沿って切断した断面(第一断面)の形状を示しているが、図8に示すように、第一断面の径方向位置が互いに異なっている。これらの図に示すように、本実施形態では、第一溝側壁31の形状は、上記第一の実施形態と同様であるが、第二溝側壁32の形状が上記第一の実施形態とは異なっている。具体的には、本実施形態では、第一起立方向傾斜角度θ1は0度に設定されており、第二起立方向傾斜角度θ2は、径方向内側から径方向外側に向かうに従って、0度から0度より大きい所定の鋭角(本例では、45度)に向かって変化するように設定されている。
【0071】
本実施形態では、上記第一の実施形態と同様、第二起立方向傾斜角度θ2は、第一起立方向傾斜角度θ1よりも大きく設定されている。なお、厳密には、図9(a)に示す第一断面においては、第二起立方向傾斜角度θ2は、第一起立方向傾斜角度θ1(本例では0度)と等しくなっている。よって、本発明において、「第二起立方向傾斜角度が、第一起立方向傾斜角度よりも大きく設定されている」とは、少なくともいずれかの径方向位置の第一断面において、第二起立方向傾斜角度θ2が第一起立方向傾斜角度θ1よりも大きく設定されていることを含む概念である。
【0072】
図10は、図9(a)におけるX−X断面図であり、図11は、図9(a)におけるXI−XI断面図である。図10及び図11に示すように、本実施形態でも、上記第一の実施形態と同様、第一溝側壁31の径方向両側の端部に第一変位部41が形成されているとともに、第二溝側壁32の径方向両側の端部に第二変位部42が形成されている。そして、第一変位部41及び第二変位部42の双方が、第二断面において、径方向一方側から径方向他方側へ向かうに従って周方向におけるいずれか一方側に向かう曲線状に形成されている。しかし、本実施形態では、第二溝側壁32の第一断面における形状が上記のようなものとされているのに合わせて、第二溝側壁32の第二断面における形状も、上記第一の実施形態とは異なっている。
【0073】
図10に示すように、軸方向位置が溝状部30の底部33に近接した位置となる第二断面においては、上記第一の実施形態(図5参照)と同様に、第一溝側壁31及び第二溝側壁32が形成されている。具体的には、第一溝側壁31の径方向外側に形成された第一変位部41は、径方向における変位量がDr5であるとともに周方向における変位量がDc5となっている。また、第一溝側壁31の径方向内側に形成された第一変位部41は、径方向における変位量がDr6であるとともに周方向における変位量がDc6となっている。よって、第一変位部41については、径方向における総変位量Drは「Dr5+Dr6」となり、周方向における総変位量Dcは「Dc5+Dc6」となり、結果、DrとDcとの和である第一変位量D1は、「Dr5+Dr6+Dc5+Dc6」となる。
【0074】
一方、第二溝側壁32の径方向外側に形成された第二変位部42は、径方向における変位量がDr7であるとともに周方向における変位量がDc7となっている。また、第二溝側壁32の径方向内側に形成された第二変位部42は、径方向における変位量がDr8であるとともに周方向における変位量がDc8となっている。よって、第二変位部42については、径方向における総変位量Drは「Dr7+Dr8」となり、周方向における総変位量Dcは「Dc7+Dc8」となり、結果、DrとDcとの和である第二変位量D2は、「Dr7+Dr8+Dc7+Dc8」となる。
【0075】
図10に示すように、軸方向位置が溝状部30の底部33に近接した位置となる第二断面においては、第一溝側壁31の径方向両側の第一変位部41、及び第二溝側壁32の径方向両側の第二変位部42の全ては、互いに曲率半径がほぼ同一の円弧状部とされている。すなわち、軸方向位置が溝状部30の底部33に近接した位置となる第二断面において、第一溝側壁31の径方向両側の端部と第二溝側壁32の径方向両側の端部との双方に円弧状に形成された円弧状部が設けられているとともに、第一溝側壁31の径方向両側の端部に形成された円弧状部の曲率半径と、第二溝側壁32の径方向両側の端部に形成された円弧状部の曲率半径とがほぼ一致するように形成されている。よって、径方向変位量Dr5〜Dr8及び周方向変位量Dc5〜Dc8のそれぞれが互いにほぼ等しい値となり、第一変位量D1は第二変位量D2とほぼ等しい値となる。このように、軸方向位置が溝状部30の底部33に近接した位置となる第二断面における溝状部30の形状は、周方向一方側と周方向他方側とでほぼ対称となっている。
【0076】
一方、図11に示すように、軸方向位置が溝状部30の頂部34に近接した位置となる第二断面においては、溝状部30の形状は、周方向一方側と周方向他方側とで非対称になっている。具体的には、第一溝側壁31の径方向外側に形成された第一変位部41は、径方向における変位量がDr9であるとともに周方向における変位量がDc9となっている。また、第一溝側壁31の径方向内側に形成された第一変位部41は、径方向における変位量がDr10であるとともに周方向における変位量がDc10となっている。よって、第一変位部41については、径方向における総変位量Drは「Dr9+Dr10」となり、周方向における総変位量Dcは「Dc9+Dc10」となり、結果、DrとDcとの和である第一変位量D1は、「Dr9+Dr10+Dc9+Dc10」となる。
【0077】
一方、第二溝側壁32の径方向外側に形成された第二変位部42は、径方向における変位量がDr11であるとともに周方向における変位量がDc11となっている。また、第二溝側壁32の径方向内側に形成された第二変位部42は、径方向における変位量がDr12であるとともに周方向における変位量がDc12となっている。よって、第二変位部42については、径方向における総変位量Drは「Dr11+Dr12」となり、周方向における総変位量Dcは「Dc11+Dc12」となり、結果、DrとDcとの和である第二変位量D2は、「Dr11+Dr12+Dc11+Dc12」となる。
【0078】
そして、図11に示すように、軸方向位置が溝状部30の頂部34に近接した位置となる第二断面においては、第一溝側壁31の径方向両側の第一変位部41、及び第二溝側壁32の径方向内側の第二変位部42は、互いに曲率半径がほぼ同一の円弧状部とされるものの、第二溝側壁31の径方向外側の第二変位部42は、上記3つの変位部に対して大きな曲率半径を有する円弧状部とされている。すなわち、第二溝側壁32の径方向外側の端部に設けられた円弧状部の曲率半径は、第二溝側壁32の径方向内側の端部に設けられた円弧状部の曲率半径及び第一溝側壁31の径方向両側の端部に設けられた円弧状部の曲率半径より大きくなるように設定されている。言い換えれば、第二溝側壁32の径方向外側の端部に設けられた第二変位部42の径方向変位量Dr11及び周方向変位量Dc11は、その他の変位部の径方向変位量及び周方向変位量よりも大きくなっている。
【0079】
よって、径方向変位量Dr9、Dr10、Dr12及び周方向変位量Dc9、Dc10、Dc12のそれぞれが互いにほぼ等しい値となり、径方向変位量Dr11と周方向変位量Dc11とが互いにほぼ等しい値となり、更に、Dr11及びDc11は、Dr9、Dr10、Dr12、Dc9、Dc10、Dc12の全てに対して大きな値となる。よって、第二変位量D2は第一変位量D1より大きな値となる。このように、軸方向位置が溝状部30の頂部34に近接した位置となる第二断面における溝状部30の形状は、周方向一方側と周方向他方側とで非対称になる。
【0080】
なお、本例では、図8より明らかなように、第二溝側壁32の径方向外側の端部に設けられた円弧状部は、第二断面の軸方向位置が溝状部30の底部33と一致する位置から頂部34と一致する位置に向かうに従って、曲率半径、言い換えれば、径方向変位量及び周方向変位量が大きくなるように設定されている。
【0081】
このように、本実施形態では、第一変位部41及び第二変位部42の双方が形成されているとともに、第二変位量D2が第一変位量D1よりも大きく設定されている。なお、厳密には、図10に示す断面では、第二変位量D2は第一変位量D1とほぼ等しい値となる。よって、本発明において、「第二変位量が第一変位量よりも大きく設定されている」とは、少なくともいずれかの軸方向位置の第二断面において、第二変位量D2が第一変位量D1よりも大きく設定されていることを含む概念である。
【0082】
以上のように、本実施形態では、第二起立方向傾斜角度θ2が第一起立方向傾斜角度θ1よりも大きく設定されているため、上記第一の実施形態と同様、第二回転状態における油の粘性抵抗(攪拌抵抗及びせん断抵抗の双方)を、第一回転状態に比べて小さくすることが可能となっている。さらに、本実施形態では、上記第一の実施形態とは異なり、第二変位量D2が第一変位量D1よりも大きく設定されている。そのため、本実施形態では、溝状部30の第二断面の形状によっても、第二回転状態における油の粘性抵抗(主に攪拌抵抗)を、第一回転状態に比べて小さくすることを図る構成となっている。
【0083】
さらに、本実施形態では、第二溝側壁32の径方向外側の端部に設けられた円弧状部の曲率半径が、第二溝側壁32の径方向内側の端部に設けられた円弧状部の曲率半径及び第一溝側壁31の径方向両側の端部に設けられた円弧状部の曲率半径より大きくなるように設定されている。言い換えれば、第二溝側壁32の径方向外側の端部に設けられた第二変位部42の径方向変位量及び周方向変位量が、第二溝側壁32の径方向内側の端部に設けられた第二変位部42や第一溝側壁31の径方向両側の端部に設けられた第一変位部41における径方向変位量及び周方向変位量より大きくなるように設定されている。これにより、第二回転状態において、油を積極的に径方向外側に押しやることができる構成となっている。なお、上記のように、内摩擦板11及び外摩擦板12に径方向内側から供給された油は、これらの摩擦板11、12に対して径方向外側に位置する排油孔(円板部材52の周壁部52aに形成された図示しない排油孔)を介して径方向外側に向けて排出される。そのため、本実施形態では、油の流れにおける下流側である径方向外側に油が積極的に押しやられるため、この点からも、第二回転状態における油の攪拌抵抗を、第一回転状態に比べて小さくすることが可能な構成となっている。すなわち、本実施形態に係る構成は、内摩擦板11及び外摩擦板12に対して、径方向内側から油が供給され、径方向外側から油が排出される構成に特に適した構成となっている。
【0084】
3.その他の実施形態
最後に、本発明に係るその他の実施形態を説明する。なお、以下の各々の実施形態で開示される特徴は、その実施形態でのみ利用できるものではなく、矛盾が生じない限り、別の実施形態にも適用可能である。
【0085】
(1)上記第一及び第二の実施形態では、第二起立方向傾斜角度θ2が、第一起立方向傾斜角度θ1よりも大きく設定されている場合、すなわち、溝状部30の第一断面における形状が周方向一方側と周方向他方側とで非対称とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一起立方向傾斜角度θ1と第二起立方向傾斜角度θ2とを等しく、すなわち、溝状部30の第一断面における形状を周方向一方側と周方向他方側とで対称なものとすることもできる。例えば、図12に示すように、第一起立方向傾斜角度θ1及び第二起立方向傾斜角度θ2の双方を0度に設定し、溝状部30の第二断面における形状を周方向一方側と周方向他方側とで非対称とすることができる。詳細な説明は省略するが、図12に示す構成では、第二変位量D2は第一変位量D1よりも大きくなるため、上記第一及び第二の実施形態と同様、第二回転状態における油の粘性抵抗(主に攪拌抵抗)を、第一回転状態における油の粘性抵抗(主に攪拌抵抗)よりも小さくすることができる。なお、図示は省略するが、図12に示す構成において、第二溝側壁32の第二断面における形状を、上記第二の実施形態における溝状部30の頂部34付近での第二断面における第二溝側壁32の形状(図11参照)と同様のものとしても好適である。また、図12に示す構成において、溝状部30の底部付近の形状を、上記第二の実施形態と同様、第二断面における形状が周方向一方側と周方向他方側とで対称なものとなるように構成することもできる。
【0086】
(2)上記第一及び第二の実施形態では、摩擦材13の径方向内側の端面が摩擦当接面に対して垂直に形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、図13に示すように、摩擦材13の径方向内側の端面を、径方向外側に向かうに従って軸方向におけるコアプレート11aから離れる側へ向かうような、摩擦当接面に対して垂直な方向に対して傾斜した傾斜面として構成することもできる。このような構成では、径方向内側から内摩擦板11に供給される油を摩擦材13の摩擦当接面(外摩擦板12に対向する面)に積極的に導くことができ、油のせん断抵抗を低く抑えることが可能となる。
【0087】
(3)上記第一及び第二の実施形態では、第一変位部41及び第二変位部42の双方が形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、図14に示すように、第一変位部41及び第二変位部42の内の第二変位部42のみが形成されている構成とすることも、本発明の好適な実施形態の一つである。このような構成では、第一溝側壁31の径方向両側の端部は、第二断面における形状が直角状の直角端部36となるため、第一回転状態における油の粘性抵抗(主に攪拌抵抗)を大きくすることができる。よって、エンジンEの駆動力により車両を発進させる際に出力軸Oに伝達されるクリープトルクをより大きく確保することができる。
【0088】
(4)上記第一及び第二の実施形態では、第一変位部41や第二変位部42が円弧状に形成された部位である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。例えば、図15に示すように、第二溝側壁32における径方向中間位置に、第二断面における形状が、径方向外側に向かうに従って順方向F側に一様に向かう直線状部分と、径方向外側に向かうに従って順方向Fとは反対側に一様に向かう直線状部分とを組み合わせた略V字状の第二変位部42を形成することも、本発明の好適な実施形態の一つである。このような第二変位部42を形成することで、第二回転状態において油が溝状部30を相対的に周方向に横切る際に、当該第二変位部42を通過する油を摩擦材13の摩擦当接面に積極的に導くことができ、第二回転状態における油のせん断抵抗をさらに低く抑えることが可能となる。なお、図15に示す例では、図16に示すように、第二溝側壁32における径方向中間位置に形成される第二変位部42を通る第一断面において、第二起立方向傾斜角度θ2が第一起立方向傾斜角度θ1よりも大きく設定されているため、第二回転状態において油が溝状部30を相対的に周方向に横切る際に、当該第二変位部42を通過する油をより確実に摩擦材13の摩擦当接面に導くことが可能となっている。
【0089】
(5)上記第一及び第二の実施形態では、第一溝側壁31及び第二溝側壁32の双方が、第一断面において、溝状部30の底部33から頂部34へ向かう直線状に形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一溝側壁31の第一断面における形状を、溝状部30の底部33から頂部34へ向かう曲線状や階段状とすることができる。同様に、第二溝側壁32の第一断面における形状を、溝状部30の底部33から頂部34へ向かう曲線状や階段状とすることができる。図17は、第一溝側壁31の第一断面における形状が、溝状部30の底部33から頂部34へ向かう直線状であり、第二溝側壁32の第一断面における形状が、溝状部30の底部33から頂部34へ向かう階段状である場合を示す模式図である。このような構成では、図17に示すように、第二側壁起立方向A2を、当該階段状の形状における全体としての傾斜方向として規定することができる。第一溝側壁31の第一断面における形状が階段状である場合にも、同様に、第一側壁起立方向A1を規定することができる。また、第一溝側壁31や第二溝側壁32の第一断面における形状を、溝状部30の底部33から頂部34へ向かう曲線状とする場合には、当該曲線状の形状として円弧状のものを採用することができる。この場合において、当該円弧の中心点を溝側壁に対して当該溝側壁を形成する摩擦材13から離間する側に設定することで、当該円弧状の形状を摩擦材13側に凸状のものとしても良いし、或いは、当該円弧の中心点を溝側壁に対して当該溝側壁を形成する摩擦材13側に設定することで、当該円弧状の形状を摩擦材13から離間する側に凸状のものとしても良い。なお、このように第一溝側壁31や第二溝側壁32の第一断面における形状が曲線状である場合には、第一側壁起立方向A1や第二側壁起立方向A2は、溝状部30の底部から頂部へ向かって所定間隔毎に設定される位置での曲線の接線方向の平均としても良いし、溝状部30における特定位置(底部、頂部、高さが溝側壁の高さの半分となる位置)における曲線の接線方向として規定しても良い。
【0090】
(6)上記第一及び第二の実施形態では、第一変位部41及び第二変位部42の双方が、第二断面において、径方向一方側から径方向他方側へ向かうに従って周方向におけるいずれか一方側に向かう曲線状に形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一変位部41の第二断面における形状を、径方向一方側から径方向他方側へ向かうに従って周方向におけるいずれか一方側に向かう直線状や階段状とすることができる。同様に、第二変位部42の第二断面における形状を、径方向一方側から径方向他方側へ向かうに従って周方向におけるいずれか一方側に向かう直線状や階段状とすることができる。
【0091】
(7)上記第一及び第二の実施形態では、第一起立方向傾斜角度θ1が0度に設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、図18に示すように、第一起立方向傾斜角度θ1を、0度より大きく第二起立方向傾斜角度θ2より小さい角度とすることも、本発明の好適な実施形態の一つである。このような構成とすることで、第一回転状態における油の粘性抵抗を調節することができる。
【0092】
(8)上記第一及び第二の実施形態では、第一溝側壁31の第一変位部41や第二溝側壁32の第二変位部42の形状に関して、第一変位量D1や第二変位量D2に基づいて当該部位の形状を特定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではない。すなわち、第一変位部41や第二変位部42が円弧状に形成された円弧状部である場合には、当該円弧状部の曲率半径Rに基づいて当該部位の形状を特定する構成とすることができる。図19に示す例では、第一溝側壁31の径方向外側の端部に形成された第一変位部41が円弧状部であり、当該円弧状部の曲率半径をR1で表している。また、第二溝側壁32の径方向外側の端部に形成された第二変位部42が円弧状部であり、当該円弧状部の曲率半径をR2で表している。
また、第一変位部41や第二変位部42が面取り部である場合には、当該面取り部の長さYに基づいて当該部位の形状を特定する構成とすることができる。図20に示す例では、第一溝側壁31の径方向外側の端部に形成された第一変位部41が面取り部であり、当該面取り部の長さをY1で表している。また、第二溝側壁32の径方向外側の端部に形成された第二変位部42が面取り部であり、当該面取り部の長さをY2で表している。
そして、第二断面において、第一溝側壁31の径方向一方側又は両側の端部と第二溝側壁32の径方向一方側又は両側の端部との少なくともいずれかに円弧状に形成された円弧状部が設けられている場合には、第二溝側壁32のみに円弧状部が設けられているか、又は、第一溝側壁31及び第二溝側壁32の双方に円弧状部が設けられているとともに、第二溝側壁32の円弧状部の曲率半径R2が第一溝側壁31の円弧状部の曲率半径R1よりも大きく設定されていると好適である。また、第二断面において、第一溝側壁31の径方向一方側又は両側の端部と第二溝側壁32の径方向一方側又は両側の端部との少なくともいずれかに直線状に形成された面取り部が設けられている場合には、第二溝側壁32のみに面取り部が設けられているか、又は、第一溝側壁31及び第二溝側壁32の双方に面取り部が設けられているとともに、第二溝側壁32の面取り部の長さY2が第一溝側壁31の面取り部の長さY1よりも大きく設定されていると好適である。なお、第一溝側壁31や第二溝側壁32が、径方向における一方側の端部に円弧状部が設けられ、他方側の端部に面取り部が設けられる構成とすることもできる。また、第一溝側壁31が円弧状部及び面取り部のいずれか一方を備え、第二溝側壁32が円弧状部及び面取り部の他方を備える構成とすることもできる。
また、第一変位部41や第二変位部42の形状を特定するための指標はこれらのものに限られず、例えば、溝側壁の径方向端部が直角状である場合を基準として角部の切り欠き量(切除量)や切り欠き面積(切除面積)等を用いて、第一変位部41や第二変位部42の形状を特定することもできる。
【0093】
(9)上記第一及び第二の実施形態では、内摩擦板11が、コアプレート11aの軸方向端面に、セグメント状の複数の摩擦材13が周方向に沿って複数固着されて構成されており、周方向に隣接する摩擦材13間の隙間が溝状部30を形成している場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものでない。例えば、内摩擦板11が、コアプレート11aの軸方向端面に円環板状の摩擦材を固着されて構成されており、当該摩擦材の表面にプレス加工や切削加工等の加工が施されることで溝状部30が形成されている構成とすることも、本発明の好適な実施形態の一つである。
【0094】
(10)上記第一及び第二の実施形態では、内摩擦板11の摩擦当接面に、径方向に延びる溝状部30が形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、外摩擦板12の摩擦当接面に、径方向に延びる溝状部30が形成されている構成とすることも、本発明の好適な実施形態の一つである。図21に示す例では、外摩擦板12が、コアプレート12aの軸方向端面にセグメント状の複数の摩擦材13が周方向に沿って複数固着されて構成されている場合を例として示している。このような構成において、外摩擦板12の軸方向両側の端面のそれぞれに複数の摩擦材13が固着されて溝状部30が形成される構成としても良いし、内摩擦板11の軸方向におけるいずれか一方側にのみ溝状部30が形成されるとともに、外摩擦板12の軸方向における同じ側のみに溝状部30が形成されている構成としても良い。
【0095】
(11)上記第一及び第二の実施形態では、溝状部30が径方向に沿って延びるように形成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、溝状部30の全体が、径方向外側に向かうに従って周方向におけるいずれか一方側(例えば、順方向F側)に向かうように形成されている構成とすることも、本発明の好適な実施形態の一つである。
【0096】
(12)上記第一及び第二の実施形態では、入力軸Iに駆動連結される第一回転板が、内周面にスプライン溝が形成されるとともに入力側部材71に保持された内摩擦板11であり、出力軸Oに駆動連結される第二回転板が、外周面にスプライン溝が形成されるとともに円板部材52に保持された外摩擦板12である場合を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、入力軸Iに駆動連結される第一回転板が外摩擦板とされ、出力軸Oに駆動連結される第二回転板が内摩擦板とされた構成とすることも当然に可能である。
【産業上の利用可能性】
【0097】
本発明は、内燃機関に駆動連結される入力部材と、回転電機及び車輪の双方に駆動連結される出力部材と、を有するハイブリッド車両用の駆動装置に備えられ、潤滑冷却液が供給される空間内で動作する湿式の摩擦係合装置に好適に利用することができる。
【符号の説明】
【0098】
1:駆動装置1
11:内摩擦板(第一回転板)
12:外摩擦板(第二回転板)
13:摩擦材
30:溝状部
31:第一溝側壁
32:第二溝側壁
33:底部
34:頂部
41:第一変位部
42:第二変位部
A1:第一側壁起立方向
A2:第二側壁起立方向
C:発進クラッチ(摩擦係合装置)
D1:第一変位量
D2:第二変位量
Dr:径方向における総変位量
Dc:周方向における総変位量
E:エンジン(内燃機関)
F:順方向
I:入力軸(入力部材)
MG:回転電機
O:出力軸(出力部材)
R:円弧状部の曲率半径
W:車輪
X:回転軸
Y:面取り部の長さ
θ1:第一起立方向傾斜角度
θ2:第二起立方向傾斜角度

【特許請求の範囲】
【請求項1】
内燃機関に駆動連結される入力部材と、回転電機及び車輪の双方に駆動連結される出力部材と、を有するハイブリッド車両用の駆動装置に備えられ、潤滑冷却液が供給される空間内で動作する湿式の摩擦係合装置であって、
前記入力部材に駆動連結される第一回転板と、前記出力部材に駆動連結される第二回転板とを備え、
前記第一回転板と前記第二回転板とは、互いに回転軸が一致するように配置され、全体として円環状とされた摩擦当接面をそれぞれ有すると共に、双方の摩擦当接面同士が当接可能に対向配置され、
前記第一回転板の摩擦当接面と前記第二回転板の摩擦当接面とが当接して摩擦係合した係合状態と、これらが分離した分離状態とを切り替え可能とされ、
前記第一回転板の摩擦当接面と前記第二回転板の摩擦当接面との少なくとも一方に、前記回転軸の径方向に延びる溝状部が形成されており、
前記係合状態における前記出力部材の正転時の前記第一回転板及び前記第二回転板の回転方向を順方向として、
前記分離状態において、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記第一回転板及び前記第二回転板が前記潤滑冷却液から受ける抵抗が、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記第一回転板及び前記第二回転板が前記潤滑冷却液から受ける抵抗よりも小さくなるように、前記溝状部が前記回転軸の周方向一方側と周方向他方側とで非対称な形状とされている摩擦係合装置。
【請求項2】
前記溝状部は、前記回転軸を軸心とする円筒面に沿って切断した断面の形状と、前記回転軸に直交する面に沿って切断した断面の形状との少なくとも一方が、前記回転軸の周方向一方側と周方向他方側とで非対称な形状とされている請求項1に記載の摩擦係合装置。
【請求項3】
前記溝状部の周方向両側の側壁である溝側壁に関して、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第一溝側壁とし、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第二溝側壁とし、
前記回転軸を軸心とする円筒面に沿って前記溝状部を切断した断面である第一断面における、前記第一溝側壁の底部から頂部へ向かう方向を第一側壁起立方向とし、前記第二溝側壁の底部から頂部へ向かう方向を第二側壁起立方向とすると共に、前記第一側壁起立方向が前記摩擦当接面に直交する方向に対して前記頂部へ向かうに従って前記第二溝側壁から離れる方向へ傾斜する角度を第一起立方向傾斜角度とし、前記第二側壁起立方向が前記摩擦当接面に直交する方向に対して前記頂部へ向かうに従って前記第一溝側壁から離れる方向へ傾斜する角度を第二起立方向傾斜角度とし、
前記第二起立方向傾斜角度が、前記第一起立方向傾斜角度よりも大きく設定されている請求項2に記載の摩擦係合装置。
【請求項4】
前記溝状部の周方向両側の側壁である溝側壁に関して、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第一溝側壁とし、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第二溝側壁とし、
前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁に、前記回転軸の径方向一方側から径方向他方側へ向かうに従って周方向位置が変化する第一変位部がある場合に、当該第一変位部の径方向における総変位量と周方向における総変位量との和を第一変位量とし、
前記第二断面において、前記第二溝側壁に、前記回転軸の径方向一方側から径方向他方側へ向かうに従って周方向位置が変化する第二変位部がある場合に、当該第二変位部の径方向における総変位量と周方向における総変位量との和を第二変位量とし、
前記第一変位部及び前記第二変位部の内の前記第二変位部のみが形成されているか、又は、前記第一変位部及び前記第二変位部の双方が形成されているとともに、前記第二変位量が前記第一変位量よりも大きく設定されている請求項2又は3に記載の摩擦係合装置。
【請求項5】
前記溝状部の周方向両側の側壁である溝側壁に関して、前記第一回転板が前記第二回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第一溝側壁とし、前記第二回転板が前記第一回転板に対して前記順方向に相対回転する際に前記潤滑冷却液の流れに対向する方の前記溝側壁を第二溝側壁とし、
前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁の径方向一方側又は両側の端部と前記第二溝側壁の径方向一方側又は両側の端部との少なくともいずれかに円弧状に形成された円弧状部又は直線状に形成された面取り部が設けられ、
前記円弧状部が設けられている場合には、前記第二溝側壁のみに前記円弧状部が設けられているか、又は、前記第一溝側壁及び前記第二溝側壁の双方に前記円弧状部が設けられているとともに、前記第二溝側壁の前記円弧状部の曲率半径が前記第一溝側壁の前記円弧状部の曲率半径よりも大きく設定されており、
前記面取り部が設けられている場合には、前記第二溝側壁のみに前記面取り部が設けられているか、又は、前記第一溝側壁及び前記第二溝側壁の双方に前記面取り部が設けられているとともに、前記第二溝側壁の前記面取り部の長さが前記第一溝側壁の前記面取り部の長さよりも大きく設定されている請求項2又は3に記載の摩擦係合装置。
【請求項6】
前記第一溝側壁及び前記第二溝側壁のそれぞれは、前記第一断面における形状が、前記溝状部の底部から頂部へ向かう直線状、曲線状、或いは階段状に形成されている請求項3に記載の摩擦係合装置。
【請求項7】
前記第一変位部及び第二変位部のそれぞれは、前記第二断面における形状が、前記回転軸の径方向一方側から径方向他方側へ向かうに従って周方向におけるいずれか一方側に向かう直線状、曲線状、或いは階段状に形成されている請求項4に記載の摩擦係合装置。
【請求項8】
前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁の径方向両側の端部と前記第二溝側壁の径方向両側の端部との双方に円弧状に形成された円弧状部が設けられ、
前記第一起立方向傾斜角度が0度に設定されるとともに、前記第二起立方向傾斜角度が0度よりも大きい鋭角に設定され、
前記第一溝側壁の径方向両側の端部に形成された前記円弧状部の曲率半径と、第二溝側壁の径方向両側の端部に形成された前記円弧状部の曲率半径とが一致する請求項3に記載の摩擦係合装置。
【請求項9】
前記回転軸に直交する面に沿って切断した断面である第二断面において、前記第一溝側壁の径方向両側の端部と前記第二溝側壁の径方向両側の端部との双方に円弧状に形成された円弧状部が設けられ、
少なくとも軸方向位置が前記溝状部の頂部と一致する前記第二断面において、前記第二溝側壁の径方向外側の端部に設けられた前記円弧状部の曲率半径が、前記第二溝側壁の径方向内側の端部に設けられた前記円弧状部の曲率半径及び前記第一溝側壁の径方向両側の端部に設けられた前記円弧状部の曲率半径より大きくなるように設定されている請求項5に記載の摩擦係合装置。
【請求項10】
前記第一回転板及び前記第二回転板の少なくとも一方の前記摩擦当接面に摩擦材が固着され、前記溝状部は前記摩擦材を成形することにより形成されている請求項1から9のいずれか一項に記載の摩擦係合装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2011−214595(P2011−214595A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−80560(P2010−80560)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(000100768)アイシン・エィ・ダブリュ株式会社 (3,717)
【Fターム(参考)】